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Abstract. An important cause of miscarriages of justice is the failure of crime in-
vestigators and lawyers to consider important plausible explanation for the avail-
able evidence. Recent research has explored the development of decision support
systems that (i) assist human crime investigators by proposing plausible crime sce-
narios explaining given evidence, and (ii) provide the means to analyse such sce-
narios. While such approaches can generate useful explanations, they are inevitably
restricted by the limitations of formal abductive inference mechanisms. Building
on work presented previously at this venue, this paper characterises an important
class of scenarios, containing "alternative suspects" or "hidden objects", which can-
not be synthesised robustly using conventional abductive inference mechanisms.
The work is then extended further by proposing a novel inference mechanism that
enables the generation of such scenarios.
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1. Introduction

In a previous Jurix paper [9], we have discussed largely informally the logic that governs hy-
pothetical reasoning with evidence in a criminal law context. This paper builds on the results
developed there, and addresses several points made by the then referees, in particular the desir-
ability of a fully explicit formal account of that we had proposed. Hypothetical reasoning plays
an important part in crime investigation and also in criminal trials. At the same time, difficul-
ties with hypothetical reasoning strategies during crime investigations have been identified as
a common source for miscarriages of justice [6].

While our focuses in the past has been primarily on the use of hypothetical reasoning
during crime investigations, the emphasis in this paper will be on hypothesis generation in the
ensuing court room setting. The reason for this shift in emphasis is that our proposal is based
on the "abductive diagnosis" paradigm for physical systems diagnosis [1]. Physical systems
differ from crime investigation in that most, if not all, component objects of a physical system
are known. Typical examples of unknown components in physical systems include leaks in a
hydraulic system or short-circuits in an electrical systems. Existing abductive diagnosers can
model the behaviour of such unknown components quite easily because they influence the
overall physical system at only one location in its topology. Conversely, unknown persons and
objects constitute an important feature in crime scenarios and their existence can affect many
aspects of the crime scenario: When a body is first found under suspicious circumstances,

1Both authors have been supported by EPSRC grant GR/S63267.
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the possible causes for the death are considerably broader than the range of possibilities that
caused the breakdown of a piece of machinery. Some of the explanations will be "surprising"
in the sense that they were impossible to anticipate.

This paper shows how existing diagnostic systems can be amended to incorporate this type
of reasoning that is typical for legal proceedings. This paper therefore aims to demonstrate that
existing abductive reasoning techniques can not adequately deal with this aspect of reasoning
about crime scenarios and to propose a basic extension of our ATMS based decision support
system to tackle this restriction. The remainder of this paper is organised as follows: Section
2 presents an overview of the existing decision support system that this paper is based on,
Section 3 characterises the class of crime scenarios that are difficult to synthesise with the
present approach, Section 4 introduces a novel assumption based peg unification technique that
addresses the latter issue, and Section 5 concludes the paper.

2. Background

Although there is no consensus within the wider community of crime investigators as to what
constitutes an effective methodology for evidence discovery, crime investigation and foren-
sic argumentation in court, forensic scientists, statisticians and philosophers increasingly ad-
vocate the adoption of an abductive reasoning paradigm [2,7,16]. Decision support systems
(DSS) aimed at assisting human investigators in aspects of abductive reasoning are inevitably
restricted by the limitations of formal inference mechanisms. To alleviate such deficiencies,
the approach discussed in [10] combines abduction in the narrow sense (i.e. inverse modus
ponens) with model based reasoning techniques such as assumption based truth maintenance.
To render the paper sufficiently self-contained, this section will briefly discuss this background
material.

2.1. Assumption based truth maintenance

An assumption based truth maintenance system (ATMS) can assist a problem solver by main-
taining how each piece of inferred information depends on presumed information and facts,
and how inconsistencies arise. This section summarises the functionality of an ATMS as it is
employed in this work. For more details, the reader is referred to the original papers [3].
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Figure 1. Graphical representation of a sample ATMS

In an ATMS, each piece of information of relevance to the problem solver is stored as
a node. Some pieces of information are not known to be true and cannot be inferred easily
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from other pieces of information. In the ATMS, such information is represented by a special
type of node, called assumption. Our model based DSS employs two types of assumptions:
(i) conjectures, which cannot be deemed true or false a priori (e.g. "the victim asphyxiated
himself"), and (ii) default assumptions, which should be presumed true unless their truth leads
to inconsistencies (e.g. "the cause of death proposed by the medical examiner is correct") [15].

Inferences between pieces of information are maintained within the ATMS as inferences
between the corresponding nodes. In its extended form, the ATMS can take inferences, called
justifications of the form ni∧. . .∧nj∧¬nk∧. . .∧¬nl → nm, where ni, . . . , nj , nk, . . . , nl, nm

are nodes (and assumptions) representing information that the problem solver is interested in.
Figure 1 shows a graphical representation of an ATMS with seven regular nodes n1, . . . , n7,
five assumption nodes a1, . . . , a5, and the following justifications: a1 ∧ a2 → n1; a4 → n1;
a1∧a2∧a3 → n2; a4∧a5 → n2; n1 → n3; n2 → n4; a3 → n5; a5 → n6; and n3∧n4 → n7.
This ATMS provides a very simple description of some of the situations and events that might
explain the combined evidence of a dead body of a person v and petechiae on the eyes of v1.

An ATMS can also take justifications, called nogoods, that have lead to an inconsistency.
Nogoods are justifications of the form ni ∧ . . . ∧ nj ∧ ¬nk ∧ . . . ∧ ¬nl → ⊥. As such,
they impose constraints upon the combinations of assumptions that constitute valid explana-
tion for known observations. The latter nogood implies that at least one of the statements in
{ni, . . . , nj ,¬nk, . . . ,¬nl} must be false. In the sample ATMS of Figure 1, there is one no-
good n5 ∧ n6 → ⊥, which indicates that the death of a victim can not be both homicide and
suicide.

An environment in an ATMS is a set {a1, . . . , am} of assumptions. Each environment
describes the possible worlds in which all its assumptions are true. For each of its nodes, an
ATMS maintains a description, called a label, denoting the environments that entail it. Because
it would be inefficient to store all environments that entail a particular node, a label L(n) of a
node n is a set of environments, such that L(n) is minimal (L(n) does not contain any supersets
of an environment that entails n), complete (L(n) contains each environment that entails n or
a subset thereof), sound (L(n) contains no environment that does not entail n) and consistent
(L(n) does not contain an environment that entails the nogood node). In the sample ATMS of
Figure 1, for instance: L(n7) = {{a1, a2, a3}, {a4, a5}}.

Given a set of nodes, assumption nodes, justifications and nogoods, an ATMS can be
queried to provide useful information to an abductive problem solver. For example, an ATMS
can determine whether a given environment is consistent (i.e. corresponds to a possible world),
whether a given environment entails a given node, and which (consistent) environments are
sufficient to explain a given node.

2.2. A model based decision support system for reasoning about crime scenarios

The model based decision support system presented in [10] synthesises an ATMS representing
a space of plausible scenarios from a given set of available evidence, a given set of facts
and a knowledge base of causal rules and constraints upon the consistency of scenarios. The
approach follows roughly the following steps:

1. A new ATMS is initialised with one node for each piece of evidence and each fact.
Each fact node is justified by the empty environment (in other words, it is deemed true
in all possible worlds).

1For a substantially extended version of this example, the reader is referred to [10]
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2. Through the application of inverse modus ponens of the causal rules in the knowledge
base, the ATMS is filled with plausible explanations of the available evidence. In this
step, the plausible scenarios that may have caused the evidence are built up and com-
posed within the ATMS.

3. Through the application of modus ponens of the causal rules, the ATMS is filled with
plausible consequences of the causes generated in Step 2. In this step, collectible evi-
dence and the assumptions that such evidence depends upon is added to the ATMS.

4. Finally, the constraints of the knowledge base are instantiated in the ATMS in the form
of nogoods.

Once this scenario space has been constructed, it can be analysed to provide decision
support information by using standard ATMS operations to provide answers to a range of
queries, including the following ones:

• Which scenarios can explain the evidence? Scenarios explaining available evidence can
be identified by computing the complete and sound set of minimal and consistent envi-
ronments in the ATMS that entail the available evidence, and then tracing the justifica-
tions from the assumptions in the environments and the facts in the ATMS to the given
evidence. Our DSS provides the means to describe visually or textually such scenarios.

• Is a given hypothesis about the crime scenario underlying the evidence supported by the
available evidence? Any hypothesis is supported by the evidence provided a consistent
environment exists in the ATMS that entails both the hypothesis and the evidence.

• What pieces of evidence may be expected to be observed if a certain scenario/hypothesis
were true? These are discovered by searching for evidence that logically follows from
the/an environment entailing the given scenario/hypothesis, possibly extended with de-
fault assumptions.

3. Abductive inference mechanisms for abductive inference

While the DSS described in the previous section can generate a wide range of plausible sce-
nario to explain a given set evidence, there are certain types of plausible scenarios it is not
well suited to synthesise. This drawback is not due to any limitation of abductive reasoning,
which is accepted as an appropriate methodology to infer information in reasoning about crime
scenarios [16]. Instead, it is due to the limitation of our abductive reasoning algorithm.

The term "abduction" is used in philosophy and artificial intelligence to refer to relatively
distinct concepts [17]. In philosophy, "abduction" is associated with the formulation of hy-
potheses or explanations2. In what follows, this concept is named abductive inference. In arti-
ficial intelligence (AI), "abduction" characterises a specific class of algorithms that implement
inference mechanisms enabling knowledge based systems to compute hypotheses or explana-
tions. Hence, the AI concept of "abduction" refers to abductive inference mechanisms. While
abductive inference mechanisms aim to enable a machine to perform abductive inference, their
repertoire of reasoning tends to be substantially narrower than that discussed in philosophy
textbooks on abduction. This stems primarily from the fact that computer algorithms need to
be substantially more precise than typical analyses of human reasoning.

An example may help illustrate these issues. Assume the body of a man is found in his
home. The cause of death is identified as a single shot in the head and blood splatter evidence
indicates the man was shot with a small calibre handgun at very short range. No hand gun has

2Some authors also include the evaluation of hypotheses, but this topic is beyond the scope of this paper.
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been retrieved from the scene. Two witnesses claim to have information that may be relevant
to the case. The first heard a male voice shouting threats followed by a single shot. The second
saw a suspicious looking person running away from the home of the victim.

Abductive inference may yield several hypothetical causes that explain the pieces of evi-
dence. The victim may have been shot by another person, he may have committed suicide or
his death may have been an accident. The absence of the weapon that killed the victim at the
crime scene suggests that it was either taken away by a person (such as the victim’s killer in
the homicide scenario) or that it fell in an awkward location at the crime scene (after a possible
suicidal or accidental shooting). The male voice heard by the first witness may have been that
of a, say, paranoid delusional victim, or another person, say the killer, threatening the victim.
Finally, the suspicious person fleeing the scene may be the victim’s killer or a person unrelated
to the killing (e.g. the thief of the victim’s gun).

The distinct plausible causes for the individual pieces of evidence, which have been identi-
fied through causal reasoning, do not yet constitute hypothetical scenarios. These can be iden-
tified by composing the plausible causes into coherent combinations of causes that explain all
the available evidence. Two (of many) such scenarios in the ongoing example are:

• Scenario 1: The perpetrator threatened the victim at the victim’s home, killed him, and
ran away with the murder weapon, and

• Scenario 2: In a paranoid delusion, the victim shouted threats to kill himself and then
shot himself in the head; after hearing this, a second person entered the victim’s home,
saw the dead body, took the weapon, and fled the scene.

Note that this abductive inference involves causal reasoning to identify the situations and
events that may have generated the pieces of evidence, and a process that combines the sit-
uations and events into coherent hypothetical scenarios. Pierce referred to the latter process
as "colligation" and deemed it an inherent feature of abductive (and inductive) inference [14].
Abductive inference mechanisms, however, tend to focus on the causal reasoning task and pro-
vide little means for colligation. The ATMS based technique discussed in Section 2 can infer a
complete set of minimal and consistent combinations of the causes of the available set of evi-
dence (i.e. solutions to Konolige’s model of abduction [12]), but it is not well suited to discern
the important possible links between the causes involving unidentified entities.

The latter issue can be explained more precisely by means of the ongoing example. Con-
sider the following three causal rules, which may be part of a knowledge base that aims to aid
in the synthesis of plausible scenarios, such as Scenario 1:

person(P ) ∧ victim(V ) ∧ scene(S) ∧ at(P, S) ∧ near(W,S)∧

threatened(P, V ) ∧ near(W,P ) → witness(W, threat(near(S))
(1)

person(P ) ∧ scene(L) ∧ shot(S, P, V, L) ∧ gun(S, G) ∧ range(S, R, ) →

evidence(shot-at-range(V,R)) ∧ evidence(shot-with(V,G))
(2)

person(P ) ∧ scene(S) ∧ took(P,G) → ¬evidence(recover(G, S)) (3)

Rules (1), (2) and (3) respectively provide explanations for the testimony of the first witness,
the shot at short range with a handgun, and the absence of the weapon that killed the victim
at the crime scene. In each of these rules, P refers to an unknown person. Therefore, P is
considered to be existentially quantified.

While these rules can be employed by the abductive inference mechanism of Section 2
to produce useful explanations, the semantics of first order predicate logic can not distinguish
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between subtle but important variations of Scenario 1. The closest scenario that our abductive
inference mechanism can produce to Scenario 1 is one where three different instances of P
refer to the person threatening the victim, the person killing the victim and the person taking
the gun from the scene. The very plausible case that the three persons are one and the same is
not differentiated from its alternatives, even though this is a crucial distinction.

Situations such as the one in the example arise frequently in the crime investigation and
legal reasoning domains. Because evidence usually relates to aspects or features of persons and
objects, and the events and situations in which they occur, it is not always possible to uniquely
identify these entities from the start of the investigation, or even during the subsequent court
proceedings (as argued in the introduction). Nevertheless, the possible number of unidentified
entities relevant to the crime must be considered and taken into account. The remainder of
this paper proposes an approach to extend our abductive reasoning mechanism accordingly,
thereby expanding the applicability of abductive inference mechanisms.

4. Assumption based peg unification

The task of identifying different references to the same entity is known as coreference resolu-
tion in computational linguistics. In the analysis of a discourse, it is important that references
to the same entity are correctly associated with one another because each of the expressions
that contains one of these references may add some information about the entity in question.
For example, in the sentence "Every farmer who owns a donkey, beats it." "a donkey" and "it"
refer to the same entity. The first half of the sentence conveys that the entities of interest are
all donkeys owned by farmers. The second half of the sentence communicates that the entities
of interest are beaten. Thus, the sentence as a whole imparts the knowledge that all donkeys
owned by farmers are beaten.

A wide range of techniques has been devised to perform coreference resolution tasks,
such as the one illustrated in the example. The vast majority of these techniques specialise
in examining texts for discourse analysis or information extraction. An important property of
the existing approaches is that they tend to consider only a single possible solution at any one
time, while the present problem domain requires a method that can represent and reason with
multiple possible worlds simultaneously.

4.1. Pegs

The objective of this work is to identify possible references to the same unknown or partially
specified entities in the scenario space. In order to correctly distinguish such entities, the notion
of pegs is adopted from the literature on coreference resolution [8,13]. Pegs refer to a specific
entity whose exact identity remains unknown (or partially specified). In this paper, each peg is
identified by an expression of the form _n, where n is a non-negative natural number. At the
start of the scenario space generation algorithm n = 0, and n is incremented by 1 after each
generation of a new peg. As such, each new peg is identified uniquely.

New pegs may be introduced into the scenario space during the instantiation of
causal rules of the form if {An} assuming {As} then {c}, where An is a set
of antecedent predicates, As is a set of assumption predicates and c is a consequent
predicate. Whenever a rule, whose antecedent or assumption predicates contain variables
that do not occur in the consequent sentence, is applied during the inverse modus po-
nens phase of the scenario space generation algorithm (i.e. step 2), then those variables
are instantiated by pegs. Consider, for instance, applying inverse modus ponens on rule
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if {scene(S)} assuming {person(P ), took(P,G)} then {¬evidence(recover(G, S))}
given the piece of evidence: ¬evidence(recover(handgun, home(victim))}. The required sub-
stitution {G/handgun, S/home(victim)} does not provide an instance for P . Here, P refers to
an unknown entity and it is therefore substituted by a peg, say, _0. Therefore, the assumptions
person(_0) and took(_0, handgun) are added to the scenario space.

Similarly, pegs may also be introduced during the modus ponens phase of the scenario
generation algorithm (i.e. step 3). In this case pegs are introduced when a rule whose conse-
quent predicates contain variables that do not occur in the antecedent or assumption sentences,
is applied.

4.2. Peg unification

Because a peg refers to an unknown entity, it can be treated as a constant that uniquely identifies
a that entity, or it can be unified with a ground term, including another peg or terms containing
other pegs. In the latter case, the unification is possible if it is hypothesised that the entity
represented by the peg and the entity represented by the term unified to the peg are the same
one. This hypothesis must therefore be made explicit by means of an assumption whenever an
inference is made that depends on the unification of a peg and a ground term. In the remainder
of this paper, such assumptions are referred to as peg unification assumptions.

In this paper, each peg unification assumption takes the form bind(_n, t), where _n is a peg
and t is a ground term (which may include a peg). A peg unification assumption bind(_n, t) is
added to the scenario space for each pair of predicates that can be matched using a substitution
that contains a mapping of the form _n/t.

The binding relation implied by these assumptions is transitive. Therefore, peg unification
can not only be assumed, but also be entailed by other peg unification assumptions. This knowl-
edge is represented explicitly in the scenario space: for each pair of peg unification assump-
tions bind(_i, t1(. . . , _j, . . .)) and bind(_j, t2(. . . , _k, . . .)), the following new justification is
added to the emerging scenario space:

bind(_i, t1(. . . , _j, . . .)) ∧ bind(_j, t2(. . . , _k, . . .)) → bind(_i, t1(. . . , t2(. . . , _k, . . .), . . .))

4.3. Scenario space generation

Peg unification affects the way the scenario space generation algorithm operates, when apply-
ing causal rules of the form shown in 4.1 in steps 2 and 3 of the algorithm and constraints
of the form inconsistent { I }, where I is a set of sentences that should be deemed
nogood, in step 4 of the algorithm. In the extended approach, each application of a causal rule
or constraint requires the following operations:

1. Unify the relevant sentences (i.e. the consequent of the causal rule during inverse modus
ponens, the antecedents of the causal rule during modus ponens, or the inconsistent
sentences of the constraint) with nodes in the emerging scenario space, and return the
substitution σ required to achieve the unification.

2. Record each binding that unifies a peg with a term in the scenario space and a newly
created set Ap. That is, for each binding _n/t ∈ σ or t/_n ∈ σ, where _n is a peg
and t is a term that the _n is unified with, the peg unification assumption bind(_n, t) is
added to Ap.
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3. Instantiate the remaining sentences (i.e. the antecedents and assumptions during in-
verse modus ponens or the assumptions and consequent during modus ponens) by ap-
plying the substitution σ and add those that do not already exist in the scenario space
as new nodes.

4. Generate a justification of the form
[
∧(a∈An∪As)σa

]
∧

[
∧(u∈Ap)u

]
→ σc in case of an

application of a causal rule, or a nogood of the form
[
∧(a∈I)σa

]
∧

[
∧(u∈Ap)u

]
→ ⊥

in case of an application of a constraint.

Consider, for instance, the following rule expressing the constraint that a person should
be either male or female: person(P ) ∧ gender(P, male) ∧ gender(P, female) → ⊥ and let
the scenario space contain to references to persons, i.e. person(_0) and person(_1). Naturally,
_0 and _1 may refer to the same person. Therefore, the antecedents of the gender constraint
can match the ground terms person(_0), gender(_0, male), and gender(_1, female) assuming
the peg unification assumption bind(_0, _1) is made. Therefore, a valid instantiation of the
constraint is person(_0) ∧ gender(_0, male) ∧ gender(_1, female) ∧ bind(_0, _1) → ⊥.

The last example has show how additional predicates can describe certain features of the
entities represented by the pegs and how such predicates may impose constraints on the plau-
sibility of peg unification assumptions. It is important to point out that these features attributed
to unknown entities, as with other information stored in an ATMS, can be modelled as depen-
dent upon conjecture. As such, the approach allows for different pieces of evidence regarding
similar entities to be modelled to refer to: (i) correctly interpreted evidence of multiple entities,
(ii) conflicting evidence regarding the same entity, or (iii) evidence that bears no relation to
any entity in existence.

4.4. Scenario extraction

In [10], we argue that a scenario driven decision support system (DSS) for crime investigation
should explain the available evidence by means of the simplest scenario that entail this evi-
dence and one of the main hypotheses of interest. For example, in the investigation of a suspi-
cious death, our DSS provides the simplest scenarios that explain homicide, suicide, accidental
death and natural causes. In [10], the simplest scenarios are defined as those entailed by the
environments with the smallest number of conjectures. However, all other things being equal,
scenarios with fewer entities are normally deemed to be less complex. Therefore, peg unifica-
tion assumption simplify scenarios, and for that reason they treated as default assumptions.

While the ATMS label propagation algorithm provides an efficient means to determine
the minimal (or smallest) environments (of conjectures) that entail a given set of nodes (rep-
resenting pieces of evidence), it does not provide a facility to determine the maximum num-
ber of default assumptions. However, the basic candidate generation algorithm of the General
Diagnostic Engine (GDE) [5] can be employed to extend an environment E of conjectures
with a consistent set of peg unification assumptions. The candidate generation algorithm can
be applied as follows:

1. Let P be the set of all pegs that occur in predicates that logically follow from E. Let Ep

be the set of all peg unification assumptions that contain pegs in P and no other pegs.
In other words Ep is the set of all peg unification assumptions the E can be extended
with.

2. Let N be the set of nogood environments that are subsets of Ep ∪ E. Formally,
N = {Ei | Ei ⊆ Ep ∪ E,Ei ∈ L(⊥)}. Each environment in N is a combination
of peg unification assumptions that is inconsistent. Therefore, one peg unification as-
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sumption from each environment in N needs to be removed from Ep in order to make
it consistent.

3. If N is empty, then return the singleton LE = {E ∪ Ep} and end the algorithm.
Otherwise, proceed to step 4.

4. Let N ′ be the set of all combinations of peg unification assumptions from Ep that
are inconsistent with E. In other words, N ′ is the set constructed by removing all
conjectures in E from each of the nogood environments in N . Or formally N ′ = {E′

i |
E′

i = Ei − Ep, Ei ∈ N}
5. Generate the set C of GDE candidates from the nogood environments in N ′ as follows:

(i) Assemble a set C of all the cross product sets of the nogood environments in N .
Each cross product set in is a set that contains at least one assumption from each of
the environments in N . (ii) Remove each cross product set from C that is a superset
of another cross product set in C. Each candidate set in C is a minimal set of peg
unification assumptions from Ep that is not consistent with E.

6. Let LE = {E′ | E′ = E∪Ep−Ec, Ec ∈ C}. In other words LE is set of all supersets
of E that contain all the peg unification assumptions in Ep minus a candidate set from
C.

The set LE returned by the above procedure contains all consistent extensions of E with rele-
vant peg unification assumptions. To illustrate this approach, consider the graphical represen-
tation of a partial scenario space in Figure 2.
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Figure 2. Sample scenario

In Figure 2, the node evidence, which represents all the available evidence, is sup-
ported by a single environment of conjectures E = {a4, . . . , a11}. This environment
can be extended with peg unification assumptions as follows: Step 1: The set of relevant
pegs P = {_0, _1} and hence, the set of relevant peg unification assumptions Ep =
{bind(_0, _1), bind(_1, _2), bind(_0, _2)}; Step 2: The set of nogood environments N =
{{a1, a3, a4, a11}, {a2, a4, a11}}; Step 4: The combinations of peg unification assumptions
inconsistent with E is N ′ = {{a1, a3}, {a2}}; Step 5: The minimal candidates that can be
generated from N ′ is C = {{a1, a2}, {a2, a3}}; Step 6: The set of valid extensions of E is
LE = {{a3}, {a1}}. Thus, the environments entailing the available evidence with minimal
conjectures and maximal peg unification is: {{a3, a4, . . . , a11}, {a1, a4, . . . , a11}}.

5. Conclusions and future work

Building on the preliminary work presented in [9], this paper has characterised further the
benefits of peg unification in abductive reasoning about crime scenarios and basic approach has
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been proposed. The novelty and research contribution of this approach is twofold. Firstly, the
new representation formalism and inference mechanisms bring the benefits of peg unification
from the computational linguistics and information extraction domains to the entirely new
domains of reasoning about crime scenarios and evidence evaluation. As such, this work can
enable abductive inference mechanisms in the latter domains to accomplish a broader range of
abductive inference. Secondly, the peg unification approach is the first one to be integrated into
an assumption based truth maintenance system (ATMS). While conventional peg unification
mechanisms aim to find a single most likely set of coreferences, the use of the ATMS in peg
unification enables the associated problem solver to reason about multiple plausible sets of
coreferences that may be valid in different possible worlds.

As the approach presented herein is an initial proposal to incorporate peg unification into
abductive synthesis of crime scenarios, a number of important issues remain to be addressed
in future work. While the approach presented herein facilitates modelling certain types of ab-
ductive reasoning about crime scenarios, it does not address the broader problem of knowledge
acquisition for this type of reasoning. Future work intends to tackle this issue by developing
techniques aimed at extracting cause-and-effect knowledge from individual cases as they are
encountered. Also, the important issue of time and space complexity of the approach proposed
herein needs to be studied. Because ATMSs are constraint propagation mechanisms, they elim-
inate the need for search algorithms, such as backtracking and its variants. But that need not
be the most efficient approach to identify consistent crime scenarios, and hence, the use of
constraint satisfaction algorithms should be examined. Other future work will examine the in-
tegration of the peg unification approach into our Bayesian scenario space synthesis approach
[11] and the enrichment of the existing knowledge representation formalism.
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