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ABSTRACT
Bayesian networks are a predominant approach to analyse the find-
ings of forensic scientists. In part, this is due to the way the Bayesian
approach fits the scientific method employed in forensic practice.
The design of Bayesian networks that accurately and comprehen-
sively represent the relationships between investigative hypotheses
and evidence remains difficult and sometimes contentious, how-
ever. Recent research has shown that argumentation can inform
the construction of Bayesian networks. But argumentation is a dis-
tinct approach to evidential reasoning with its on representation for-
malisms. This issue could be alleviated if it were easy to represent
Bayesian networks as argumentation diagrams. This position pa-
per presents an investigation into the similarities, differences and
synergies between Bayesian networks and argumentation diagrams
and shows a first version of an algorithm to extract argumentation
diagrams from Bayesian networks.
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1. INTRODUCTION
Argumentation Diagrams (ADs) and Bayesian Networks (BNs) are
the two predominant approaches to legal evidential reasoning. Both
approaches provide a means to identify and evaluate the hypotheses
that may have produced the available evidence in a case and to
assess their plausibility [2].

Though they can also be employed as a means to model legal ar-
guments [5], BNs are used in evidential reasoning to quantify the
strength of support of evidence for alternative hypotheses, based on
a combination of domain knowledge and quantitatively expressed
beliefs. In other words, a BN summarises ones understanding of
relationships the evidence in a case and its hypothesised explana-
tions into numerical value. This feature of BNs enables two im-
portant types of application. Firstly, it provides a means to con-
dense complex technical or scientific reasoning about the strength
of inferences between two propositions. For instance, Mortera et.
al. employ a BN approach based on first principles to assess the
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probative force of evidence of a partial match between a person’s
DNA and that found in a pool of biological material to which mul-
tiple persons may have contribute [16]. Secondly, it provides a
means to estimate how much more strongly evidence supports one
hypothesis over another, and how strongly the addition or removal
of evidence would affect the relative level of support for alternative
hypothesis, with a view to suggest the investigative actions that are
most suitable for differentiating between the discovered alternative
hypotheses and to assess the amount of information that could be
gained by an investigative action or by the discovery of a particular
piece of additional evidence [14]. This allows the BN approach to
be employed for managing investigations efficiently [7].

An AD approach to evidential reasoning visualises and relates in-
ferences made from evidence, identifies their constituent elements
and depicts the different ways in which these inferences are sup-
ported and the ways in which they can be undermined. As ADs
are a means of visualisation, they normally employ far richer and
diverse representation formalisms than that of BNs. These repre-
sentation formalisms aim to differentiate the different kinds of in-
formation and knowledge that are part of evidential reasoning. As
such, ADs are used to marshal all the information pertaining to a
particular case and to scrutinise the ways in which they are related
in evidential reasoning. Like BNs, ADs can be employed to guide
inquiries, but with a view to the validity of evidential reasoning
inferences and testing those inferences for potential flaws [18].

Although ADs and BNs serve different purposes in evidential rea-
soning about a particular case, both approaches can also be consid-
ered as offering a different perspective on the same case. Therefore,
there may be scope for ADs and BNs to inform one another. This
paper is concerned with the way the AD perspective could inform
the construction of BNs. This idea was formulated by Hepler et.
al. [12], whose detailed examination of a case study shows how
content from an AD can be incorporated into a BN. It is devel-
oped further in this paper by proposing a means to help compare
the content of a BN with that of ADs, by means of a novel method
to extract ADs from a BN. The proposed approach is illustrated by
means of a number of BNs from the forensic science literature. It
aims to inspire the development of future tools to design BNs for
evidential reasoning and export ADs based on forensic BNs for le-
gal reasoning. Because ADs contain information that BNs do not
(and vice versa), generating arguments from BNs cannot be fully
automated. Any attempt to do so will require a limited AD repre-
sentation formalism, which is what the work presented in this paper
relies on.

The remainder of this paper is structured as follows. Section 2



introduces evidential reasoning by means of BNs and ADs. This
leads to an examination of the similarities and differences in the in-
formation contained in evidential reasoning BNs and ADs in Sec-
tion 3. Section 3 focusses on information contained in ADs that
is not readily available in BNs and on the elements of a BN that
may inform their extraction. Section 4.2 employs this analysis to
propose an algorithm to extract arguments from BNs, under certain
simplifying assumptions, and Section 5 evaluates the proposed ap-
proach by applying it to BNs that have been taken from the Forensic
Science literature.

2. BACKGROUND
2.1 Evidential Bayesian networks
A Bayesian network (BN) is a representation that facilitates the
representation and calculation of complex joint probability distri-
butions. In evidential reasoning, it is used to assess the probability
of certain states and plausible observations in hypothetical situa-
tions.

A BN consists of a directed acyclic graph (DAG) (Vb,Eb), where
Vb is a set of vertices or nodes and Eb is a set of edges or arcs, and
a set of conditional probability tables (CPTs), one for each vertex.
Each vertex V ∈ Vb corresponds to a variable with a domain of
mutually exclusive values DV . As such, the term vertex and vari-
able of a BN can be used interchangeably. The situation in any
possible world is described by assigning each variable V in the BN
exactly one of the values vi ∈ DV of its domain (hereafter denoted
V : vi). The edges of the DAG of the BN define independence re-
lations between vertices, by means of an assumption known as the
Markov condition: given truth values for the immediate parents of
any vertex V in the BN, V is independent from any combination of
other vertices in the network excluding its own descendants [8].
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Figure 1: DAG of a simple BN

Figure 1 illustrates these idea with a simple BN of evidential rea-
soning. It contains a DAG with four nodes labelled H , T , S and
E describing features relevant to a case where a suspect is accused
of breaking a window. H represents the hypothesis that the sus-
pect is guilty of the crime, T the transfer of glass fragments from
window to the suspect’s clothes, S whether sufficient long period
of time has elapsed since the crime in which the glass fragments
could have been shed from the suspect’s clothes, and E the dis-
covery of glass fragments matching the window in the suspect’s
clothes. All variables have boolean domains ({true,false}). Where
boolean domains are used, the assignment of V : true will be de-
noted as v and the V : false as v. While this example is simplistic
(for illustrative purposes), it is representative of an evidential rea-
soning BN. The hypothesis under investigation is represented by a
root node (H) in the BN, and the evidence by a leaf node (E). The
edges represent causal relations in that committing the crime (H)
causes glass fragments to end up in the perpetrator’s clothes (T ),
and this may be discovered as evidence (E), even though the like-
lihood of the latter is reduced if a substantial amount of time has
elapsed between crime and evidence collection.

h h

P (t|H) 0.9 0.01
P (t|H) 0.1 0.99

t t
s s s s

P (e|T, S) 0.3 0.9 0 0
P (e|T, S) 0.7 0.1 1 1

Table 1: Sample CPTs for the simple BN example

As mentioned above, a CPT is associated with each variable. A
CPT defines the probability distributions of the variable it is as-
sociated with, one for each combination of value assignments of
its parents. In combination with the Markov condition mentioned
earlier, this can be employed to calculate a joint probability distri-
bution:

P :DV1 × . . .DVn 7→ [0, 1] :

(v1, . . . , vn)→ P (V1 : v1, . . . , Vn : vn)
(1)

where Vb = {V1, . . . , Vn} and vi ∈ DVi . Thus, a BN can be
defined by a tuple 〈Vb,Eb, P 〉, where (Vb,Eb) defines a DAG, each
and V ∈ Vb possesses a domain DV and P defines a probability
distribution as in (1).

Sample CPTs for the ongoing example are shown in Table 1. CPTs
facilitate the calculation of conditional probabilities considerably.
For example:

P (e|h, s) =
X

T

P (e|T, s)× P (T |h)

=0.3× 0.9 + 0× 0.1 = 0.27

Similarly,

P (e|h, s) =
X

T

P (e|T, s)× P (T |h)

=0.3× 0.01 + 0× 0.99 = 0.003

Bayesian analysis of forensic evidence involves the careful formu-
lation of two hypothesis (H1 andH2) that are to be contrasted with
one another by means of the available evidence (E). Typically,
these correspond to explanations for the evidence put forward by
the prosecution and the defence, but they may also be a working
hypothesis put forward by investigators and the best alternative ex-
planation. Next, the likelihood ratio LR is calculated, which com-
pares the probability of the evidence under H1 with that under H2:

LR =
P (E|H1)

P (E|H2)
(2)

If LR results in very high values above 1, say in the 100s, 1,000s or
10,000s, then it is reported that the evidence is moderately to very
strongly "consistent with" hypothesis 1, compared to hypothesis 2.
If LR results in values that are very close to 0, say 0.01, 0.001 or
0.0001, then it is reported that the evidence is moderately to very
strongly "consistent with" hypothesis 2, compared to hypothesis 1.
Thus, because:

P (e|h, s)
P (e|h, s)

=
0.27

0.003
= 90

it can be argued that, according to the sample BN specified in Fig-
ure 1 and Table 1, the discovery of glass fragments in a suspect’s
clothes a substantial time after a perpetrator has broken a window,
is moderately more consistent with the hypothesis that the suspect
is guilty than the hypothesis that the suspect is innocent.



2.2 Argument diagrams
Argument diagrams (ADs) are visual representation of reasoning
structure [17]. In their most basic form, they are directed graphs
in which the vertices correspond to premises and conclusions and
the edges to inferences between premises and conclusions. The
premises and conclusions of ADs are propositions – statements that
are deemed to be either true or false – rather than variables. As
such, in an AD, the author commits to a particular truth value for
the premises and conclusions of arguments.

The vertices and edges may be annotated with further information.
Toulmin diagrams, for instance, will attach a warrant to specify
how the inference was made, a backing to references support for
the warrant and a qualifier to describe confidence in the strength of
the inference [22]. Wigmore and Schum annotate their vertices and
edges with symbols and text indicating the role of these elements
in the argument’s structure [18, 25]. These can extend the amount
of information depicted by such ADs considerably. For example,
edges in Wigmore and Schum’s diagrams not only suggest infer-
ential strength but also types of inferential support. Much of this
argument specific information is not present in a BN. Therefore,
this paper will employ a very simple AD representation formalism
in which the edges are only annotated with a Toulmin diagram-like
qualifier. Figure 2 illustrates this with a simple AD derived from the
sample BN introduced in Section 2.1. In this diagram, the propo-
sitions e, t and h correspond to the assignments E : true, T : true
and H : true respectively.
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Figure 2: A simple AD

Generally speaking, arguments concerning evidence tend to depict
what is known or observed, including the evidence, as the premises
to inferences and the direction of reasoning is towards the hypoth-
esis. The focus of the representation is on the individual inferences
and on the relationship of their premises and/or conclusions to re-
lated arguments. More precisely, within the context of an individ-
ual inference, absolute truth values are assumed for the premises,
including any major premise that warrants the inference itself, and
the conclusion. But in the context of the broader diagram, these are
related to reasons to reject them, such as conflicting propositions
and alternative hypotheses. As demonstrated by Hepler et. al., this
presentation of evidential can reveal useful knowledge that informs
the design of BNs.

Note that this evidence-to-hypothesis-oriented, argument focussed
representation is not a requirement of the application of ADs to
evidential reasoning, as Bex et. al. have shown [2]. But it is the
approach that this paper will adopt with a view to complement the
story-based representation of BNs.

3. REPRESENTATION FORMALISM
3.1 Vertices
As explained above, the vertices of BNs and ADs represent differ-
ent types of entities.

3.1.1 Vertex content
The vertices of BNs represent variables, each of which is associated
with a domain of two or more values. A possible world is described

by assigning each variable of the BN one value from its domain.
Thus, the vertices of a BN represent multiple, mutually exclusive,
possible worlds. The vertices of ADs represent propositions, usu-
ally representing a particular feature or property of possible worlds,
and each vertex of an AD corresponds to only those possible worlds
that share the particular feature referred to by the proposition. Con-
sequently, while it is relatively straightforward to map propositions
to boolean variables in extracting a BN from an AD [11], it is not
easy to automatically map vertices of BNs to vertices of ADs.

Generally speaking, propositions can be derived from the variables
and associated domains of a BN by constraining the value assign-
ment of said variables. Categorical variables, which possess do-
mains of values that cannot be meaningfully compared with one
another, can give rise to propositions based on variable assignments
and combinations thereof as defined by well-formed formulae of
propositional calculus. Variables with ordered domains can also
give rise to propositions based on lower and upper bounds as speci-
fied with comparative operators. In situations where arguments are
to be extracted from very precise BNs, such as ones based on first
principles of physics, for example, Davis’s work on traffic accident
reconstruction [9], fuzzy sets may need to guide the synthesis of
relevant propositions to build arguments with. In such complex sit-
uations, the synthesis of propositions itself may become part of the
arguments.

As such, the mapping of variables to propositions with a view to
extract arguments from a BN is difficult to automate. While this
constitutes an interesting research question, it is one that will not
be addressed in this paper but left for future work. The remainder
of this paper will assume that a BN only uses boolean variables.
Propositions are derived from such variables, simply by commit-
ting a truth value assignment to the variable. Note that despite this
simplifying assumption, the proposed approach still covers a sub-
stantial proportion of the BNs proposed in the Forensic Science
literature. In what follows, a simplified notation of assignments
will be employed whenever a variable V with a boolean domain is
encountered: V : true will be denoted as v and V : false as v.

3.1.2 Vertex types
Part of the explanatory value of an argumentation diagram lies in
its extensive labelling scheme of propositions. BNs employ a com-
paratively much simpler labelling scheme. In a BN, a node cor-
responds to an observed or an unobserved variables. An observed
variables amounts to a proposition that is known to be true, whereas
unobserved variables to propositions with unknown truth values.
An unobserved variable is said to be a hypothesis if it represents an
explanation that is being proposed for the observations. Naturally,
the hypothesis of a BN corresponds to the ultimate probandum of
an AD and the observed variables to the evidence of the case. Hy-
potheses that are assessed by means of BNs are routinely decom-
posed into so-called partitioning hypotheses, each corresponding
to a feature of the hypothesis of interest [4]. Such partitioning hy-
potheses of a BN correspond to penultimate probanda.

3.2 Edges
As the edges relate vertices to one another, these represent differ-
ent kinds of relationships as well. Strictly speaking, the edges of
a BN define conditional independence relations according to the
Markov condition, as explained earlier. In practice, however, they
represent influences between variable. In the example of Figure 1,
for instance, the probability of the suspect incident (H) increases
the likelihood (i.e. influences) of transfer of glass fragments (T ),
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Figure 3: Supporting edges

which, in turn affects the likelihood of the retrieving glass frag-
ments from the suspect (E).

The edges of ADs represent implications in a reasoning process.
The focus is not so much on explaining the evidence but on assess-
ing how the explanations where arrived at and whether the individ-
ual components are safe. For that reason, the direction of the repre-
sentation is routinely, though not necessarily, inverse to the causal
direction. In other words, a directed path of causal influences from
a plausible hypothesis to evidence of BN can be represented as a
set of arguments by inverting the path, starting at the evidence and
ending at the hypothesis.

There are also edges that are relevant to arguments supporting cer-
tain hypotheses by means of a given set of evidence and that are
not part of a directed path from hypothesis to evidence in the BN
from which arguments are being extracted. Consider a directed
path H → . . . → N → . . . → E defined by a BN , where
H,N,E ∈ Vb. Let A′ and C′ be nodes of Vb such that A′ →
N ∈ Eb, N → C′ ∈ Eb and A′ and C′ are not part of a path
between H and E. This situation is depicted in Figure 3. An AD
proposed based on this BN by means of the aforementioned will at
least contain a directed path e → . . . → n → . . . → h, where e,
n and h are propositions derived from E, N and H respectively.
Under the simplifying assumption committed to herein, the propo-
sition n corresponds to assigning a value to the variable N . By
doing so, and assuming that C′ does not lead to evidence that is to
be considered, it follows from the Markov condition that the prob-
ability distribution of C′ becomes independent from the rest of the
network and, therefore, can be ignored if merely for the sake of
arguing how e might support h. The edge A′ → N should be con-
sidered, however, and its role in an AD depends on effects in the
CPT of N .

3.2.1 Second order influences
Second order influences are influences that affect the likelihood of
the consequent variable, but only by modifying the effect or an-
other influence (called a "first-order influence) on the consequent
variable [13]. In the BN depicted in Figure 1, the edge S → E is
an example of a second order influence. Here, the passing of time
(S) does not cause the discover of glass fragments on the suspect
(E) by itself. Instead, it is the transfer of glass fragments onto the
suspect (T ) that causes the glass fragment evidence (E). But if the
transfer has occurred, then time will "inhibit" the causal effect of T
onE. Therefore, S → E is deemed to be a second order influence.

Two types of second order influence can be distinguished in BNs
with boolean or ordered domains: those that reduce the strength
of effect of a first-order influence (called "inhibitors") and those
that increase the strength of effect of a first-order influence (called
"amplifiers"). An inhibitor that removes the effect of a first-order
influence completely is known as a "disabler", and an amplifier that
is so important that it is a requirement for a first-order influence to
take effect is known as an "enabler" [13].

The CPTs of a BN can provide a strong indication as to whether
influences are first-order or second-order. Let A1,. . . ,Aj ,Aj+1,
. . . ,Ak,Ak+1,. . . ,Al,N be vertices with boolean domain in Vb

such that the nodes Ai are parent nodes to N : ∀i, Ai → N ∈ Eb.
To test whether influence of Aj+1, . . . , Ak on N is second-order
to the influence of A1, . . . , Aj on N , consider any combination of
variable assignments Ac, Ac, Ai, Ai, Ai, Ae and Ae such that:

• Ac and Ac are assignments of A1, . . . , Aj where Ac is any
combination of value assignments and Ac is a combination
of value assignments such that ∧a∈Ac

a = false.

• Ai, Ai and Ai are assignments ofAj+1, . . . , Ak where∧a∈Aia =
true, ∧a∈Ai

a = false and ∧
a∈Ai

a = false.

• Ae and Ae are assignments ofAk+1, . . . , Al where Ae is any
combination of value assignments and ∧a∈Ae

a = false

Aj+1, . . . , Ak are set to constitute an inhibitor with respect to the
effect of A1, . . . , Aj on N if:

P (n|Ac ∪ Ai ∪ Ae) = P (n|Ac ∪ Ai ∪ Ae) ≥ P (n|Ac ∪ Ai ∪ Ae)

P (n|Ac ∪ Ai ∪ Ae) = P (n|Ac ∪ Ai ∪ Ae)

= P (n|Ac ∪ Ai ∪ Ae) ≤ ε

where ε is a small probability. Aj+1, . . . , Ak are set to constitute
an amplifier with respect to the effect of A1, . . . , Aj on N if:

P (n|Ac ∪ Ai ∪ Ae) = P (n|Ac ∪ Ai ∪ Ae) ≤ P (n|Ac ∪ Ai ∪ Ae)

P (n|Ac ∪ Ai ∪ Ae) = P (n|Ac ∪ Ai ∪ Ae)

= P (n|Ac ∪ Ai ∪ Ae) ≤ ε

where ε is a small probability.

In proposing ADs from BNs, it important to be able to identify
inhibitors and amplifiers. If an argument is based on the premise
that the consequence of a first-order effect is true, then a possible
inhibitor to the effect adds nothing to the argument. Even if the
second-order effect of the inhibitor was a factor, it did not change
the outcome in this case. Indeed, this is the reason why, in the
sample AD of Figure 2, s or s need not be included. Similarly,
if an argument is based on the premise that the consequence of a
first-order effect is false, then a possible amplifier adds nothing to
the argument and need not be included in the proposed AD.

Conversely, if an argument is based on the premise that the conse-
quence of a first-order effect is false (true), then an inhibitor (am-
plifier) can justify that premise, and needs to be incorporated in the
AD. Given that such second-order effects are used as justifications
in such situations, the causal direction of the BN will be maintained
in the proposed ADs.

3.2.2 Other influences
Influences to nodes N on a directed path from hypothesis to evi-
dence in a BN that are not second-order to influences on such paths
need to be treated differently. in general, such influences may con-
stitute alternative plausible explanations for the proposition derived
from N and need to be treated accordingly in an AD. This implies



that they should be represented as consequences of the proposition
derived from N in the AD.

It is interesting to note that, as alternative explanations, these al-
ternative explanation provide hooks for the synthesis of counterar-
guments. As the latter is beyond the scope of this paper, the pro-
posed algorithm will merely include these alternative explanations
in the synthesised ADs. Their effectiveness as potential counter-
arguments can be assessed again by analysing the CPTs. Such al-
ternative explanations may be mutually independent, or to a larger
or smaller extent mutually exclusive or synergetic [24]. If they are
mutually independent, the likelihood of one explanation does not
affect the probability the other. If they are partially mutually exclu-
sive, evidence supporting one explanation undermines the support
for the other. Conversely, if they are partially mutually synergetic,
evidence supporting one also enhances support for the other. How
this idea can be formalised into a criteria for the content of a CPT
is to be examined in future work.

3.2.3 Convergent and linked arguments
Argument diagrams and Bayesian networks possess fundamentally
different ways of denoting the distinct ways in which two sets of an-
tecedents affect a consequent. Argument diagramming techniques
often seek to distinguish between so-called linked and convergent
arguments [21]. Two propositions are said to be convergent ar-
guments for a conclusion if both support the conclusion indepen-
dently, whereas they are said to be linked arguments if the strength
of support of one depends on the truth of the other.

It can be quite difficult to classify real-world arguments into the
convergent or linked category [6, 23]. As explained in 2.1, a BN
models the support of one or more premises for a conclusion by
means of CPTs. These CPTs, therefore, are to inform the degree
to which the support of an argument for a conclusion is indepen-
dent from other arguments. Let a1, a2 and c be propositions in an
AD derived from a BN, such that a1 supports c and a2 supports
c. The support of a1 for c in isolation of the a2 argument equals
P (c|a1, a2). Similarly, the support of a2 for c in isolation of a1

is P (c|a1, a2). If these effects are independent from one another,
then the combined effect (i.e. P (c|a1, a2)) must equal:

P (c|a1, a2) + P (c|a1, a2)− P (c|a1, a2)× P (c|a1, a2) (3)

This criterion is similar to the one obtained by Yanal [26]. How-
ever, Yanal represents the support of a1 for c as P (c|a1), which
does consider the effect of a2 sinceP (c|a1) = P (c|a1, a2)P (a2)+
P (c|a1, a2)P (a2).

As explained in 3.2 and 4.2, the propositions a1, a2 and c stem from
variablesA1,A2 andC respectively, of a BN in whichC is a parent
variable to A1 or A2 or both. Therefore, the conditional probabili-
ties of the criterion specified by (3) must be derived from CPTs ex-
pressing P (A1|A2, C), P (A2|A1, C) or P (A1|C) and P (A2|C),
using Bayes’ law. The result is, therefore, affected by prior prob-
abilities, in addition to the aforementioned CPTs1. This raises two

1For example, to derive P (c|a1, a2) from CPTs expressing
P (A1|C) and P (A2|C), Bayes’ law is applied as follows:

P (c|a1, a2) =
P (a1|c)P (a2|c)P (c)

P (a1|c)P (a2|c)P (c) + P (a1|c)P (a2|c)P (c)

The values for P (ai|c) and P (ai|c) are given by the CPTs for
P (Ai|C). However, the calculation of P (c) and P (c) relies on
prior probabilities.

questions, beyond the scope of this paper, but interesting as further
research. Firstly, does the classification of arguments into linked
and convergent ones, based on identification of (near) matches of
criterion (3), meet with the expectations of an expert designing the
BN? Secondly, how should the identification of linked arguments,
and therefore the applicability of (3), constrain CPTs and/or priors?

3.3 Qualifiers
BNs and ADs both possess a means to represent the strength of
links between vertices. BNs employ a precise numeric calculus to
describe how the probability of a node is affected by knowledge of
its parent variables. ADs employ qualitative schemes to describe
the probative force of inferences. As such, the proposed argument
extraction algorithm must convert the information contained in the
CPTs into a qualitative representation that categorises the informa-
tion contained in the CPTs into a notion of probative force.

LetA andN be variables of a BN with an influenceA→ N , a and
n be propositions derived from A and N respectively, and n → a
be an inference of the AD derived from the BN. According to (2),
the strength of support of n for a, as opposed to ¬q, is expressed
by:

LR =
P (n|a)
P (n|¬a)

Let A1, . . . , Aj be the antecedents of a second-order influence to
A → N in the BN. The conditional probabilities in the likelihood
ratio need to be constrained by the propositions a1, . . . , aj to be
derived from A1, . . . , Aj . That is:

LR =
P (n|a, a1, . . . , aj)

P (n|¬a, a1, . . . , aj)
(4)

If the AD incorporates the second-order influence, a1, . . . , aj are
chosen such that it affects its first-order influence. If the AD does
not contain the second-order influence, a1, . . . , aj are chosen such
that it is inactive.

LetAj+1, . . . , Ak be further antecedents toN in the BN. Then, the
outcome of the calculation of the likelihood ratio associated with an
inference in the AD will depend on the values that are assigned to
Aj+1, . . . , Ak. A number of different approaches can be employed
to deal with this. For example, (4) could be calculated asP

aj+1,...,ak
P (n|a, a1, . . . , aj , aj+1, . . . , ak)P (aj+1) . . . P (ak)P

aj+1,...,ak
P (n|¬a, a1, . . . , aj , aj+1, . . . , ak)P (aj+1) . . . P (ak)

where aj+1 ∈ DAj+1 , . . . , ak ∈ DAk and the P (ai) can be com-
puted by the BN. There are two problems with this approach. Firstly,
P (ai) is affected by prior probabilities. Secondly, the calculation
averages values conditional probabilities under different circum-
stances. This defeats the purpose of using the AD to scrutinise the
individual inferences for potential weaknesses. Therefore, the ap-
proach proposed herein will be to calculate a range of likelihood
ratios:

[LR,LR] (5)

where

LR = min
aj+1,...,ak

P (n|a, a1, . . . , aj , aj+1, . . . , ak)

P (n|¬a, a1, . . . , aj , aj+1, . . . , ak)

LR = max
aj+1,...,ak

P (n|a, a1, . . . , aj , aj+1, . . . , ak)

P (n|¬a, a1, . . . , aj , aj+1, . . . , ak)

where aj+1 ∈ DAj+1 , . . . , ak ∈ DAk .



LR Description
<1 not impossible
1 plausible
>1 to <2 tenuous
2 to <5 weak
5 to <10 limited
10 to <100 moderate
100 to <1000 moderately strong
1000 to <10000 strong
10000 and <∞ very strong
∞ certainly

Table 2: Qualitative descriptions of probative force derived
from likelihood ratios (based on [10])

Finally, the likelihood ratios need to be translated into verbal de-
scriptions of probative force. A, relatively conservative, conversion
table derived from [10] (and extended to refine qualifiers assigned
to low likelihood ratios) is shown in Table 2.

4. ARGUMENT EXTRACTION
4.1 Inputs, output and assumptions
The basic argument extraction algorithm takes as input a Bayesian
network, a hypothesis corresponding and a set of pieces of evi-
dence. Let us denote the hypothesis variableH , a value assignment
forH corresponding to the ultimate probandum, the set of evidence
variables O (for observations) and their value assignments, and a
value for ε (i.e. what constitutes a low probability). The output of
the algorithm is an argumentation diagram that explains how the
evidence supports the chosen hypothesis, including indications of
probative force for the inferences.

As explained in Section 3, the algorithm assumes that the variables
are boolean. It is also assumed that the influences in the BN are
either causal or definitions in nature. Without loss of generality, a
value of ε = 0.01 is assumed and the likelihood ratio translation
scheme of Table 2 is adopted.

4.2 Outline algorithm
Step 1: Initialisation of the graph
The algorithm begins by constructing an initial structure for the
AD. This initial construct will consist of the minimum elements
that are required to capture the ways in which the evidence support
the hypothesis according to the knowledge contained in the BN
〈Vb,Eb, P 〉. Put simply, this initial construct describes the way the
evidence supports the hypothesis in an evidence/observation to hy-
pothesis/probandum direction rather than a causal direction. It also
excludes vertices and edges that are not on a path between hypothe-
sis and evidence, as well as edges that are implied through transitiv-
ity. The next steps will add the vertices and edges that were ignored
at this stage if they are deemed to possess a qualitatively distinct
meaning in the BN rather than merely alter conditional probability
distributions in subtle ways.

More formally, the initial construct is a directed acyclic graphAD =
(Va,Ea), in which the vertices in Va correspond to propositions
and the edges in Ea to arguments of the AD. Each vertex in the AD
will eventually contain a variable from the BN and a value from
that variable’s domain. In the initial construct, the vertices that cor-
respond to the hypothesis and to the evidence nodes are assigned
both a variable and a domain value. All the other vertices will be

assigned a value in a later step. The initialisation algorithm is as
follows:

• Given that the hypothesis isH : v, whereH is the hypothesis
variable in the BN and v the value it is assigned (e.g. true or
false), add a node with variable H and value v to Va.

• For each piece of evidence E : v, where E is the evidence
variable in the BN and v the value it is assigned (e.g. true or
false), add a node with variable E and value v to Va.

• For each variable V ∈ Vb that is on a pathH → . . .→ V →
. . . → Ei in the DAG (Vb,Eb) defined by the BN, where
Ei is one of the pieces of evidence, add a node containing
variable V to Va.

• For each edge V1 → V2 ∈ Eb, such that (Vb,Eb) does not
define a longer path V1 → . . . → V3 → . . . → V2, with
V3 6= V1, V2, add an edge V2 → V1 to Ea.

Step 2: Initialisation of the propositions
Because an AD is concerned with propositions rather than vari-
ables, values must be associated with each of the nodes in the
emerging AD. More precisely, at least the variables currently in
the set Va − ({H} ∪ O) should be assigned values. A number of
different schemes can be devised to accomplish this assignment and
software designed to support the developer of BNs with arguments
generated from BNs should allow the user to overrule any set of
automatically generated value assignments. The only constraint the
initial value assignments is the requirement that the combination of
value assignments, including the hypothesis and observations, are
possible according the probability distribution defined by the BN.

Arguably, in the absence of any further requirements, the most suit-
able set of value assignments is the most probable combination of
value assignments given the hypothesis to be argued for and the ev-
idence. This is an instance of the problem of finding the most prob-
able explanation (MPE) of a BN [15]. Let X = Va−({H}∪O) =
{X1, . . . , Xn} and let Di denote the domain of Xi, then the MPE
we require equals:

max
x1∈D1,...,xn∈Dn

P (X1 : x1, . . . , Xn : xn|{H} ∪O) (6)

This problem can be solved by a number of standard algorithms
developed by Shimony [19] and Suermondt [20].

Step 3: Extend
Let a precedence-ordered queue QE be an ordered set of vertices,
such that for any pair of nodes N1 and N2 where E defines a path
N1 → · · · → N2, N1 precedes N2 in QE. Let enqueue(QE, N)
adds the nodeN to the precedence-ordered queue QE. Let dequeue(QE)
be an operation that removes and returns the first node N from the
queue (i.e. such that there is no node in QE that precedes N ). The
algorithm below employs a queue QEa

that contains vertices taken
from Va. Because (Va,Ea) is a DAG, a precedence ordered queue
that defines a partial order over its elements exists.

• Add all the nodes of Va to the precedence-ordered queue.
That is, for each N ∈ Va − {H}, enqueue(QEa

, N).

• While QEa
is not empty:

– Let N = dequeue(QE).



– Apply Step 3: process(N ).

Step 4: process(N )

• Let A = {A1, . . . , Ai, Ai+1, . . . , Aj} be the set of nodes
of nodes such that for each A ∈ A, there exists an edge
A → N ∈ Eb. Without loss of generality, it is assumed that
A can be partitioned into the set {A1, . . . , Ai} of nodes of
A already in Va and the set {Ai+1, . . . , Aj} of nodes of A
currently not in Va.

• For each Ak ∈ {Ai+1, . . . , Aj}:

– If N is assigned the value true and a subset of variables
of {Ai+1, . . . , Aj} constitute an inhibitor or a disabler
with regards to the effect of A1, . . . , Ai on N , then
ignore that subset of variables. If N is assigned the
value false and a subset of variables of {Ai+1, . . . , Aj}
constitute an amplifier or an enabler with regards to the
effect of A1, . . . , Ai on N , then ignore that subset of
variables.

– IfN is assigned the value false and a subset of variables
of {Ai+1, . . . , Aj} constitute an inhibitor or a disabler
with regards to the effect of A1, . . . , Ai on N , or if N
is assigned the value true and a subset of variables of
{Ai+1, . . . , Aj} constitute an amplifier or an enabler
with regards to the effect of A1, . . . , Ai on N , then:

∗ Let A be a set of variables containing {Ai+1, . . . , Aj}
and all their ancestor variables in the BN. Assign
the variables in A their MPE, as defined in (6),
given the assignments already made. Add each
variable and corresponding assignment to Va.
∗ For each edgeA1 → A2 ∈ Eb such thatA1, A2 ∈

A add an edge A1 → A2 to Ea.
∗ For each A ∈ A, enqueue(QEa

, A).

– For each remainingAk ∈ {Ai+1, . . . , Aj} that was not
considered previously:

∗ Let A be a set of variables Ak and its their descen-
dent variables in the BN. Assign the variables in A
their MPE, as defined in (6), given the assignments
already made. Add each variable and correspond-
ing assignment to Va.
∗ For each edgeA1 → A2 ∈ Eb such thatA1, A2 ∈

A add an edge A2 → A1 to Ea.
∗ For each A ∈ A, enqueue(QEa

, A).

– Calculate the qualifiers for the inferences departing from
N in the emerging AD by means of (5).

This algorithm is best explained further by means of some exam-
ples. This is covered by the next Section.

5. RESULTS
5.1 Two-way transfer evidence
5.1.1 The Bayesian network

Aitken et. al. have developed a BN for the analysis of two-way
transfer evidence. The scenario to which this BN is applicable is
one where there a violent exchange between two people that leads

RMvMvCvPvBv

Tv

CG

Ts

Cs Ms RMsPsBs

rmv mv cv tv

c g

tscs

msrms
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Figure 4: DAG of the two way transfer BN [1]

Variable Meaning
G The suspect is guilty
C The suspect and victim had violent contact
Tv Blood traces transferred from suspect to victim
Bv Victim comes into contact with blood
Pv Blood traces exist on victim unrelated to crime
Cv Investigator selects a blood trace from the victim that

is related to the crime
Mv Blood trace retrieved from victim matches suspect
RMv Reported match of blood trace retrieved from victim
Ts Blood traces transferred from victim to suspect
Bs Suspect comes into contact with blood
Ps Blood traces exist on suspect unrelated to crime
Cs Investigator selects a blood trace from the suspect that

is related to the crime
Ms Blood trace retrieved from suspect matches victim
RMs Reported match of blood trace retrieved from suspect

Table 3: Variables of the two way transfer BN [1]

to the death of one of them, the victim. A suspect is arrested later
and blood splatter is retrieved from both the victim and the suspect,
and analysed with a view to determine whether the suspect carries
blood traces matching the victim’s (RMs) and the victim traces
matching the suspect’s (RMv). This evidence is to be related to
a hypothesis indicating whether the suspect is guilty of killing the
victim (G) and a related proposition that there was violent contact
between suspect and victim (C). The DAG of this BN is shown in
Figure 4, the meaning of the symbols is explained in Table 3 and
the conditional probability tables of the BN are shown in Table 4.

In the BN developed by Aitken et. al., transfer of trace material
from suspect to victim (Tv) and from victim to suspect (Ts) is
much more likely under the hypothesis that the suspect is guilty
than under the hypothesis that the suspect is not guilty, and these
transfers are only possible if there was violent contact between sus-
pect and victim. If there was a transfer of trace material between
suspect and victim, then it is possible that traces related to the in-
cident are found on the victim (Cv) and on the suspect (Cs). If,
however, there is another potential source of the same type of trace
material for the victim/suspect (Pv/Ps), then it becomes harder
to find such trace material. For that reason, P (ci|ti, pi) = 0.3
whereas P (ci|ti, pi) = 1. The presence of trace material from
another source on the victim/suspect (Pv/Ps) depends on the vic-
tim’s/suspect’s background (Bv/Bs). If transfer related trace ma-
terial is retrieved from the victim/suspect, it is likely to match the
suspect’s/victim’s (Mv/Ms), though a Type I error (false positive)
of 0.0001 is assumed. As P (mi|ci) = 0, a Type II error is deemed



g g

P (c|G) 1 0.01
P (c|G) 0 0.99

g g
c c c c

P (ti|G,C) 0.95 0 0.095 0
P (ti|G,C) 0.05 1 0.905 1

bi bi

P (pi|Bi) 1 0
P (pi|Bi) 0 1

ti ti
pi pi pi pi

P (ci|Ti, Pi) 0.3 1 0 0
P (ci|Ti, Pi) 0.7 0 1 1

ci ci

P (mi|Ci) 1 0.0001
P (mi|Ci) 0 0.9999

mi mi

P (rmi|Mi) 1 0.001
P (rmi|Mi) 0 0.999

Table 4: Conditional probability tables of the two-way transfer
network (initial values proposed by Aitken et. al. [1])
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Figure 5: Intermediate argumentation diagram of a two-way
transfer case

to be impossible. In case of such a match, evidence is likely to
be reported accordingly (RMv/RMs), with a Type I error of 0.001
and Type II error of 0.

5.1.2 Argumentation diagram
To propose an AD based on this BN, hypothesis and evidence propo-
sitions must be given. To illustrate the algorithm, consider a case
where blood splatter found on the victim has been matched to the
suspect (rmv) and blood splatter found on the suspect has not been
matched to the victim (rms). Based on this, the algorithm is em-
ployed to produce an AD that argues in favour of the guilt of the
suspect. As such, the hypothesis under consideration is g.

In step 1 of the algorithm, the AD is initialised with the evidence
and hypothesis propositions as well as all the nodes on paths be-
tween evidence and hypothesis. The direction of the directed paths
from hypothesis to evidence in the BN are inverted in the AD. As
such, step 1 of the algorithm results in a graph containing two
directed paths: rmv → Mv → Cv → Tv → C → g and
rms →Ms → Cs → Ts → C → g.

Step 2 of the algorithm generates propositions for the variablesMv ,
Ms,Cv ,Cs, Tv , Ts andC. The most probable explanation of these
variables, given g, rmv and rms is mv , ms, cv , cs, tv , ts and
c. More precisely, the most probable explanation for the evidence
rmv in support of the hypothesis is the argument that the trace ev-
idence found on the victim (rmv) is the result of blood splatter
matched to the suspect (mv) that was found on the victim (cv) and
the result from transfer of blood from suspect to victim (ts) as a
consequence of violent contact (c). The most probable explanation
for the evidence rms in support of the hypothesis is the argument
that the trace evidence could not be matched to the victim (ms)
and was not crime related (cs). The latter leaves open the possi-
bility that blood was transferred from victim to suspect (ts) as a
consequence of violent contact (c). Figure 5 shows the resulting
emerging AD.

In the BN, Pv → Cv is an inhibitor to Tv → Cv and Ps → Cs

rmv mv cv tv

c g

ts

csmsrms

psbs
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Figure 6: Intermediate argumentation diagram of a two-way
transfer case
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Figure 7: Outline argumentation diagram of a two-way trans-
fer case

is an inhibitor to Ts → Cs. Because Cv is assigned true, Pv →
Cv is irrelevant to the argument. Because Cs is assigned false,
Ps → Cs is relevant to the argument. Thus, following step 4 of
the algorithm, a directed path Bs → Ps → cs is added to the
emerging AD. The most probable explanations for Bs and Ps are
bs and ps respectively (i.e. the inhibitor is active). This version of
the emerging AD is depicted in Figure 6.

In the process of generating the graph, qualifiers expressing proba-
tive force are added. For example, because

P (rmv|mv)

P (rmv|mv)
=

1

0.001
= 1000 ' strong

the inference rmv → mv is annotated with the qualifier "strong".

The AD generated by following the algorithm is shown in Figure
7. Arguably, the explanation provided by the AD is largely un-
controversial. The diagram contains one unconvincing inference:
cs ∧ ps → ts or choosing a non-crime related bloodstain on the
suspect and the presence of bloodstains on the suspect from sources
other than the crime imply a transfer of blood from victim to sus-
pect. In this case, the qualifier provides a helpful elaboration. Be-
cause

P (cs|ts, ps)

P (cs|ts, ps)
=

0.7

1
= 0.7 ' not impossible

As such, the AD states that because bloodstains were present on
the suspect from sources other than the crime and non-crime re-
lated bloodstain on the suspect were chosen for analysis, it is "not
impossible" that blood was transferred from victim to suspect. In
this way, the qualifier identifies the tenuous nature of this problem-
atic inference.

5.2 Terpenes traces in fire incidents
5.2.1 The Bayesian network

Biedermann et. al. have developed a set of BNs for the analysis of
traces of certain flammable materials in the forensic investigation
of fire incidents [3]. One representative sample for evaluating the
argument extraction algorithm: a BN designed to analyse traces of
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Figure 8: DAG of the fire incident BN [3]

Variable Meaning
H2 The fire was started by human action
H1 The fire was started by human action, using an ter-

penes containing accelerant
M The sampling point was located at origin of the fire
D Combustable liquid with terpenes was spilled
B Background presence of terpenes
L Presence of terpenes from source other than build-

ing itself
X Building constructed from materials with terpenes
T Presence of terpenes at sampling point
E Detection of terpenes in fire debris sample

Table 5: Variables of the fire-incident BN [3]

terpenes in fire debris. The DAG of the BN is shown in Figure 8, the
meaning of the symbols is explained in Table 5 and the conditional
probability tables of the BN are shown in Table 6.

The BN consists of two hypothesis variables, indicating whether
the fire incident was the result of human action, and one evidence
variable (E) indicating the identification of terpenes traces in fire
debris. The first hypothesis (H1) is that the fire was started by
human action by means of an accelerant containing terpenes. If
this hypothesis is true, and the origin of the fire was sampled (M ),
then that explains that a liquid containing terpenes was spilled (D).
The second hypothesis (H2) is that the fire was started by human
action. If H2 is true, there is a small probability of 0.02 that the
fire was started by human action using a terpenes based accelerant
(P (h1|h2) = 0.02). P (h1|h2), which is rather low, is based on the
composition and distribution of different types of accelerant.

Variable D is one possible source of terpenes other than the build-
ing itself (L). Another is storage of materials that have been con-
taminated with terpenes (B). Terpenes may also be contained in the
building itself as certain types of wood contain the substance (X).
Both L and X can account for the presence of terpenes at the sam-
pling point (T ). Generally speaking, there the presence of terpenes
will lead to the identification of terpenes in the fire debris, but the
model suggests a 0.001 chance of Type I error (false positive) and
a 0.01 chance of Type II error (false negative).

5.2.2 Arguing for the specific hypothesis (h1)
Consider a case where terpenes traces has been discovered near
the source of the fire (e) and the specific hypothesis that a fire
was started by human action using a terpenes containing acceler-
ant (h1). An AD can be generated by means of the algorithm in the
same was as in the two-way transfer example. The result is shown
in Figure 9. This diagram has one distinguishing feature compared
to the two-way transfer case. Here, two alternative explanations are
provided that are equally plausible to elements of the central argu-
ment. The evidence may also be the result of the use of terpenes
containing wood in the construction of the building (x) and of a

h2 h2

P (h1|H2) 0.02 0
P (h1|H2) 0.98 1

h h
m m m m

P (d|H,M) 1 0 0 0
P (d|H,M) 0 1 1 1

t t

P (e|T ) 0.99 0.001
P (e|T ) 0.01 0.999

d d

b b b b

P (l|D,B) 1 1 1 0
P (l|D,B) 0 0 0 1

l l
x x x x

P (t|L,X) 1 1 1 0
P (t|L,X) 0 0 0 1

Table 6: Conditional probability tables of the fire incident net-
work (initial values proposed by Biedermann et. al. [3])
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Figure 9: Outline argumentation diagram supporting the spe-
cific hypothesis

background presence of terpenes (b).

5.2.3 Arguing for the general hypothesis (h2)
Consider a case where terpenes traces has been discovered near
the source of the fire (e) and the generic hypothesis that a fire was
started by human action (h2). The result is shown in Figure 10.

In this case, there are three key differences compared to the AD
of Figure 9. Firstly, some of the propositions are different because
the MPE need not commit to hypothesis h1. As a result, the more
likely explanation that includes l, d and h1 is chosen. Secondly, be-
cause this AD commits to proposition h1, the enabler M → D to
H1 → D is not relevant. Neither of these these differences is con-
troversial. Thirdly, the inference h1 → h2 is added. This inference
is dubious, as is recognised by the automatically chosen qualifier
"not impossible". The problem with this case is the lack of a com-
plete set of partitioning hypothesis for h2. In other words, there
is not a complete set of specific hypothesis to justify h2. Instead,
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Figure 10: Outline argumentation diagram supporting the
generic hypothesis



there is only one specific hypothesis h1 supporting the general hy-
pothesis h2 and it is relatively unlikely (i.e. P (h1|h2) = 0.02.
This constitutes a possible fault model for the BN that an AD can
explain. Future work should examine this issue further.

6. CONCLUSIONS AND FUTURE WORK
This paper has introduced an approach to propose argument dia-
grams (ADs) based on Bayesian networks (BNs). Based on an
analysis of similarities and differences of the representation for-
malisms of ADs and BNs, the component translations that such
an approach requires have been identified, and initial solutions to
these challenges have been proposed. These include identification
of the scope of the AD (i.e. the part of BN to be converted to
an AD), extraction of AD propositions from BN variables and do-
mains, proposing an appropriate direction of inferences between
propositions, distinguishing between linked and convergent argu-
ments and assessing the strength of inferential support between in-
ferences. The limits on the kinds of information that are normally
a part of ADs and that can be extract from BNs (not enhanced with
additional information have been explored. The approach has been
evaluated by means of BNs from the Forensic Science literature.

The approach has been developed with a view to support the devel-
opment of BNs for evidential reasoning. Therefore, a key objective
of future research is to incorporate into software for evidential rea-
soning BN design. In such software, the algorithm would provide
the basis of an interactive tool to scrutinise BN under development
by testing it against test cases, for which argument diagrams are
to synthesised and evaluated. The algorithm relies on a number
of simplifying assumptions that are to be relaxed in future work.
In particular, the present version of the approach relies on boolean
variables, which is a significant limitation. In general, BNs may
employ significantly larger nominal or ordered domains. To relax
the assumption of boolean variables, the approach needs to be ex-
tended with a means to produce suitable propositions. The work
also assumes that the influences in the BN are causal of definitional
in nature. Although this does not appear to be a significant limi-
tation as influences in BNs then to be causal or definitional, future
work may seek to address this. While the paper has presented a
method to synthesise arguments, it has not produced a correspond-
ing means to produce counterarguments. The latter would likely
provide a suitable addition to an evidential reasoning BN design
tool as it would facilitate more elaborate case-based scrutiny.
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