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ABSTRACT
This paper presents a methodology for integrating two approaches
to building decision support systems (DSS) for crime investiga-
tion: symbolic crime scenario abduction [16] and Bayesian forensic
evidence evaluation [5]. This is achieved by means of a novel com-
positional modelling technique that allows for automatically gener-
ating a space of models describing plausible crime scenarios from
given evidence and formally represented domain knowledge. The
main benefit of this integration is that the resulting DSS is capable
to formulate effective evidence collection strategies useful for dif-
ferentiating competing crime scenarios. A running example is used
to demonstrate the theoretical developments.
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1. INTRODUCTION
Evidence is the central consideration in any proper crime invest-

igation effort. It has been the subject of a considerable amount of
research aimed at developing software systems to support human
decision making. Typical examples of such work include estab-
lishing the validity of evidence [2], identifying plausible crimes on
the basis of evidence [3, 13, 24, 26], formulating hypotheses for
individual cases on the basis of evidence and evaluating their like-
lihood [1, 4, 20], and establishing appropriate legal arguments in
court proceedings on the basis of evidence [18, 23, 27, 29]. How-
ever, relatively little work has focussed on developing mechanisms
useful to identify effective evidence collection strategies. Yet, this
is an important issue as failures to consider crucial lines of inquiry
are a prominent cause of miscarriages of justice [8]. This paper
introduces an approach to tackle this problem.

Constructing evidence collection strategies is a relatively com-
plex problem as it requires knowledge of how evidence was/will
be formed and a means of evaluating the likelihood of obtaining
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evidence under hypothetical scenarios [16]. The work presented
herein addresses this by integrating two novel ideas that have re-
cently emerged from research in building decision support systems
(DSS) for crime investigation. The first idea is that a space of plaus-
ible scenarios that each explains the available evidence in a case
can be efficiently stored in an assumption based truth maintenance
system (ATMS) [16]. The second is that the Bayesian inference
method forms an effective means for evaluating how well a given
piece of evidence can adjust belief in one scenario over a possible
alternative [5].

This paper will show how a compositional modelling method
can extend a symbolic scenario space (within the ATMS paradigm)
with a Bayesian representation of it, and how the resulting extended
scenario can be analysed to formulate effective evidence collection
strategies. It is organised as follows: Section 2 summarises the un-
derlying work upon which this paper is based. Section 3 presents an
outline of the proposed work. Then, Section 4 shows how Bayesian
Networks (BNs) can be synthesised from knowledge, and Section 5
describes how such BNs can be analysed to compute effective evid-
ence collection strategies. Finally, Section 6 concludes this paper
and presents some interesting areas of future work.

2. BACKGROUND

2.1 Compositional modelling method
The present work extends the compositional modelling approach

previously introduced in [16], which generates symbolic descrip-
tions of crime scenario from evidence. The approach employs a
knowledge base that consists primarily of so-called scenario frag-
ments. Scenario fragments are production rules, of the formif
conjunction of antecedent predicatesassuming conjunction of
assumption predicatesthen consequent predicate, which describe
certain causal relationships. Here, assumption predicates are pieces
of uncertain information whose truth must be established by con-
sidering their consequences. For example,

if {suffers(P,C),
cause-of-death(P,C),
medical-examiner(E)

} assuming {
determine(E,cause-of-death(P)),
correct-diagnosis(E,cause-of-death(P))

} then {
cause-of-death-report(E,P,C)}

states that if a personP suffers from an ailment or injuryC, C
is the cause of death ofP, and there is a medical examinerE, and



assuming thatE determines the cause of death ofP and entails a
correct diagnosis, then there will be a piece of evidence in the form
of a cause of death report indicating that according toE, the cause
of death ofP is C.

The knowledge base also contains so-called inconsistencies, or
rules describing which combinations of states and events are con-
tradictory with one another, and therefore can not be true within a
single scenario. For instance,

inconsistent {
suicide(P,hanging),
is-hanged(P)}

states that a personP can not both commit suicide by hanging
and be hanged by someone else. This knowledge base, of scen-
ario fragments and inconsistencies is employed to create a scenario
space. A scenario space is a hypergraph representation in which
the nodes correspond to plausible states and events, and hyperarcs
from a set of antecedent nodes to a single consequent node de-
scribe a causal relation from the conjunction of the antecedents to
the consequent. The scenario space is constructed by a computa-
tional procedure that applies the scenario fragments first in a back-
ward chaining fashion to instantiate all plausible scenarios that may
explain the available evidence and then, in a forward chaining fash-
ion to instantiate any possible evidence that can be collectible under
certain generated plausible scenarios.

Because a realistic scenario space would be too large to show
in this paper, Figure 1 depicts a sample part of the structure of
a scenario space. This sample space describes different plausible
scenarios of a dead body found hanging as well as the possible ad-
ditional evidence collectible under certain scenarios. The plausible
scenarios include suicide by hanging, a number of potential hom-
icide situation and non-suicide cases where the victim engaged in
autoerotic activities involving hanging and died accidentally. The
different squares in the figure correspond to a set of nodes and hy-
perarcs between them, showing part of one or more scenarios (the
reader is referred to [16] for a more detailed example of a scenario
space).

The nodes in the scenario space represent plausible states and
events that are part of one or more possible scenarios. There are
also special types of node that convey additional information that
may aid in decision support. These concepts have been adapted
from earlier work on (probabilistic) abductive reasoning [22, 25]
and model based diagnosis [12]. In particular,evidencenodes are
pieces of known information that are deemed to be observable con-
sequences of a possible crime1. Facts are pieces of known in-
formation that do no require an explanation. In practice, it is of-
ten convenient to accept some information at face value without
elaborating possible justifications. For instance, when a person
is charged with analysing the handwriting on the aforementioned
suicide node, the status of that person as a handwriting expert is
normally deemed to be a fact.Hypothesesare possible answers
to questions that must be addressed (by the investigators), reflect-
ing certain important properties of a scenario. Typical examples
of such nodes include the categorisation of a suspicious death into
homicidal, suicidal, accidental or natural.

Also, assumptionsare uncertain pieces of information that can
be presumed to be true for the purpose of performing hypothet-
ical reasoning. This work considers three types of assumption:
1Note that as evidence is herein defined as “information”, it does
not equal the “exhibits” presented in court. Thus, for example, a
suicide note is not considered to be a piece of evidence in itself, but
the conclusions of a handwriting expert who has analysed the note
are.

(i) Investigative actionsare assumptions that correspond to evid-
ence collection efforts made by the investigators. For example, a
node associated with the comparison of the handwriting on a sui-
cide note and an identified sample of handwriting of the victim is
an investigative action. Note that each investigative actiona is as-
sociated with an exhaustive setEa of mutually exclusive pieces of
evidence that covers all possible outcomes ofa. (ii) Default as-
sumptionsare assumptions that are presumed true unless they are
contradicted. Such assumptions are typically employed to repres-
ent the conditions that an expert produces evaluations based upon
sound methodology and understanding of his/her field. (iii)Con-
jecturescorrespond to uncertain states and events that need not be
described as consequences of other states and events.

In the knowledge base, hypotheses, facts, evidence, investigative
actions and default assumptions are defined by purpose built con-
structs that associate certain types of predicate with one of these
types of information (and corresponding evidence sets, in the case
of investigative actions). Conjectures contained in the knowledge
base are identified in theassuming clause of the scenario frag-
ments.

The scenario space is generated and accessed through an as-
sumption based truth maintenance system (ATMS) [7]. Given one
or more nodes in the scenario space, the ATMS can efficiently de-
termine all the minimal sets of assumptions that logically (and in
the present application causally) entail the given nodes, and that are
not inconsistent. This functionality of the ATMS is employed to
extract the following information, which may be helpful for crime
investigators (for a more detailed explanation of this approach, the
reader is again referred to [16]):

• Which scenarios are plausible?Scenarios in the scenario
space are associated with consistent sets of assumptions that
logically entail the available evidence. Therefore, any scen-
ario containing a set of assumptionsW and all the nodes that
follow from W in the scenario space is plausible provided
W entails all the available evidence.

• Is a given hypothetical predicate supported by the available
evidence?A hypothesis is supported by the available evid-
ence if there is a plausible scenario that entails it.

• What evidence may be available under a given scenario or
hypothesis?A piece of evidence is available under a given
scenario or hypothesis if a consistent collection of assump-
tions exist that jointly entail both the scenario or hypothesis
and the piece of evidence.

2.2 Bayesian approach to evidence evaluation
Briefly, the methodology of the Bayesian approach to evaluating

a piece of forensic evidencee, proposed by Evett et. al. [9], follows
the following procedure:

1. Identify theprosecution positionpprosecution. This may be the
case of a prosecution attorney after the investigation or a hy-
pothesis of the forensic scientist or crime investigator.

2. Identify thedefence positionpdefense. This may be the case
of the defence attorney, an explanation of a suspect, or a pre-
sumed “best defence”.

3. Build a model to compute the probabilityP (e | pprosecution) of
obtaining the given piece of evidence in the prosecution scen-
ario, and another to compute the probabilityP (e | pdefense)
of obtaining the given piece of evidence in the defence scen-
ario. One approach to modelling these probabilities is to
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Figure 1: Sample scenario subspace structure

use Bayesian networks. Bayesian networks describe how the
probability of the evidence of interest is affected by causes
within and outside of the prosecution and defence scenarios.

4. Calculate thelikelihood ratio:

LR =
P (e | pprosecution)

P (e | pdefense)
(1)

The greaterLR is (above1), the more support evidencee provides
for the prosecution position. The closerLR is to 0 (and smaller
than1), the bettere supports the defence position. IfLR is around
1, the evidence provides little information about either position.
As such,LR can be employed as a means for a forensic expert to
make consistent statements in court about the implications of evid-
ence and as a tool for investigators to decide the potential benefit of
an expensive lab experiment prior to committing any resources.

The methodology of inferring and comparing the (body of) evid-
ence that should be observed under conjectured (prosecution or de-
fense) scenarios corresponds to the hypothetico-deductive method
that is widely adopted in science, and which is gaining increased
acceptance in serious crime investigation [14]. The specific use of
precise probabilities is more controversial, although it is adopted by
major forensic laboratories, such as the UK’s Forensic Science Ser-
vice [4]. Obviously, the approach is very useful when substantial
data sets enable the analyst to calculate accurate estimates. This is
the case in evaluating DNA evidence, for example [20]. Neverthe-
less, the approach can also be successfully applied to cases where
analyst has to rely on subjective probabilities, by performing a de-
tailed sensitivity analysis [1] or by incorporating uncertainty con-
cerning the probability estimates within the Bayesian model [11].

3. ARCHITECTURE
Figure 2 shows the architecture of a decision support system

(DSS) that reflects the proposed approach taken in this work. The

DSS essentially works in two phases. In the first phase, thesyn-
thesismethods generate a space of plausible scenarios. This will
result in two versions of the scenario space: 1) a symbolic version
stored in an assumption based truth maintenance system (ATMS),
from which minimal consistent scenarios can be derived, and 2) a
numerical version expressed by a Bayesian network (BN) that con-
tains the probabilistic information. In the second phase, the scen-
ario space isanalysedto generate decision support information. As
shown in [16], the ATMS contains information sufficient to answer
the three types of query as described in Section 2.1. The rest of this
paper will show how the combination of the ATMS and the BN en-
ables the construction of evidence collection strategies. Naturally,
Figure 2 also includes a feedback loop indicating that investigat-
ors may use the decision support information to collect additional
evidence.

4. SCENARIO SPACE SYNTHESIS
This section describes the synthesis method for creating Bayesian

scenario spaces, with Section 4.1 addressing the knowledge repres-
entation and Section 4.2 the synthesis algorithm.

4.1 Knowledge base

4.1.1 Concepts
While the symbolic approach introduced in [16] aims at aiding

the user/investigator to establish the truth or falsehood of hypo-
thetical scenarios, states and events that are represented by means
of predicates, a probabilistic reasoner aims to compute probability
distributions for variables (describing, say, the intensity of contact
between a murderer and his victim or the amount of trace mater-
ial transferred between two people) with a given domain. To fa-
cilitate the integration of both techniques so as to maximise their
potential benefits, the subject of the reasoner proposed herein are
tuples〈p, Dp, vp,⊕〉. Each such tuple corresponds to a variable,



Collection
Evidence

Strategies

Assumption based
Truth Maintenance

System (ATMS)

Results
Analysis

Space
Scenario

Extension

Plausible Evidence

Evidence Knowledge Base

ATMS
Synthesis

BN
Synthesis

Bayesian Network
(BN)

Analysis
Symbolic

Analysis
Probabilistic

Scenarios,
Hypotheses,

Plausible Evidence

Scenarios,
Hypotheses,

Figure 2: Extended architecture

which is identified by apredicatep, which has adomainDp of
values, including a default valuevp ∈ Dp, that can be assigned to
the variable, and which is associated with acombination operator
⊕ : Dp × Dp 7→ Dp that describes how the effects of different
influences acting upon the variable are combined.

As in previous work [16], scenario fragments describe causal in-
fluences among types of state and event and crime scenarios. How-
ever, the consequence of any influence is no longer presumed to be
deterministic, but governed by predefined probability distributions.
Thus, the notion of scenario fragment is extended to incorporate
a set of probability distributions, one for each combination of the
antecedent and assumption variables. As such, probabilistic scen-
ario fragments are represented by:

if {p1, . . . , pk}
assuming {pl, . . . , pm}
then {pn}
distribution pn {

...
v1, . . . , vk, vl, . . . , vm-> vn1 : q1, . . . , vnjn : qjn

... }

where{p1, . . . , pk} is the set of antecedent predicates,{pl, . . . , pm}
is the set of assumption predicates,pn is the consequent predicate,
eachvi is a value taken from the domainDpi of the variable iden-
tified by pi and eachqj is a real value in the range[0, 1]. Similar
to conventional scenario fragments [16], theif , assuming and
then components of probabilistic scenario fragments respectively
describe the types of antecedents, assumptions and consequent of a
causal relation. As opposed to conventional scenario fragments,
however, the antecedents, assumptions and consequent within a
fragment refer to variables instead of truth assignments. The do-
main value that a consequent has is influenced by the values of the

antecedent and assumption variables and the probability distribu-
tions defined in thedistribution component of the fragment.
In particular, each line

v1, . . . , vk, vl, . . . , vm-> vn1 : q1, . . . , vnjn : qjn

defines a discrete probability distribution

fp1:v1,...,pk:vk,pl:vl,...,pm:vm→pn :

Dpn 7→ [0, 1] : fv1,...,vk,vl,...,vm (vnj) = qnj

Note that it is not required that a probability distribution is defined
for each combination of values assigned to the antecedent and as-
sumption variables in a scenario fragment. Instead, a probability
distribution in which the default value of the consequent variable
has a probability 1 is presumed. Here, the default probability dis-
tribution for those combinations of assignmentsp1 : v1, . . . , pk :
vk, pl : vl, . . . , pm : vm for which no probability distribution is
defined, is

fp1:v1,...,p:k:vk,pl:vl,...,pm:vm→pn(v) =

{
1 v = vpn

0 otherwise

Thus, the following scenario states that if a victimV has petech-
iae on his eyes and investigatorE examinesV’s eyes, then evidence
of petechiae is discovered with a certain probability:

if { petechiae(eyes(V)) }
assuming { examines(E,eyes(V) }
then { evidence(E,petechiae(eyes(V))) }
distribution evidence(E,petechiae(eyes(V))) {

true, true -> true:0.99, false:0.01 }

In the knowledge base, inconsistencies refer to inconsistent com-
binations of variable assignments. As such, an inconsistency denot-
ing thatp1 : v1 ∧ . . . ∧ pk : vk is inconsistent is represented as:

inconsistent {p1 : v1, . . . , pk : vk}
Inconsistencies are treated as a special type of scenario fragment

of the form:

if {p1, . . . , pk}
then {nogood }
distribution nogood {

v1, . . . , vk-> > : 1, . . . ,⊥ : 0}
(5)

wherenogood refers to a special type of boolean variable, that
remains hidden from the user and the knowledge engineer, and is
known to be false. Therefore,P (p1 : v1, . . . , pk : vk | nogood :
⊥) = 0.

In addition to scenario fragments, the knowledge base also con-
tains prior distributions for assumed states and events. Prior distri-
butions are represented by

define prior p {v1 : q1, . . . , vj : qj}
where{v1, . . . , vj} is the domainDp of p andq1, . . . , qj define
a functionfp : Dp 7→ [0, 1] : fp(vi) = qi that is a probability
distribution.



4.1.2 Presumptions
To enable their use in compositional modelling of BNs, it is pre-

sumed that the scenario fragments in a given knowledge base pos-
sess the following properties:

1. Any two probability distributions taken from two scenario
fragments involving the same consequent variable are inde-
pendent. Intuitively, this assumption indicates that the out-
come of an influence implied by one scenario fragment is
not affected by that of another.

2. There are no cycles in the knowledge base. This means that
there is no subset of scenario fragments in the knowledge
base which is of the form〈{. . . , p1, . . .}, Pa1, p2, f1〉, 〈{. . . ,
p2, . . .}, Pa2, p3, f2〉, . . ., 〈{. . . , pn, . . .}, Pan, p1, fn〉. This
assumption is required because BNs can not represent such
information as they are inherently acyclic [21].

While presumption 1 is a strong assumption, and may hence re-
flect a significant limitation of the present work, it is required herein
to efficiently compute the combined effect of a number of scenario
fragments on a single variable (see 4.2.2). When only a few dif-
ferent scenario fragments are needed to describe phenomena that
affect the same variable, it may be possible to satisfy the independ-
ence presumption by modelling the correlation between the phe-
nomena by means of latent variables [17]. In larger application
domains, where there may be many scenario fragments affecting a
single variable, this is no longer practical. Future work will seek to
relax this assumption in order to generalise further the application
of the method proposed.

4.2 Algorithm
BNs consist of two distinct features, a directed acyclic graph

(DAG) and a set of conditional probability tables. Accordingly, this
subsection is divided into two parts describing how both aspects
can be composed automatically from a given knowledge base.

4.2.1 Structure
The procedure to synthesise the structure of a Bayesian scenario

space is an extension of the symbolic scenario space construction
algorithm introduced in [16]. First, the algorithm composes a hy-
pergraph representation of the scenario space by means of the same
procedure as given in [16]. This results in a hypergraph〈N, A, J〉,
whereN is a set of nodes,A is a subset ofN containing all the as-
sumption nodes in the hypergraph andJ maps each nodeni ∈ N
to a setJ(ni) of justification sets. The latter is best explained by
an example. For instance, letn1, . . . , n5 represent the following
states and events in the scenario space of Figure 1:

n1 johndoe committed suicide by hanging
n2 unknown person1 killed johndoe by hanging
n3 johndoe hung himself accidentally
n4 johndoe’s choice of autoerotic hanging method
n5 knot

Then, J(n5) = {{n1}, {n2}, {n3, n4}}. Inconsistencies are
processed in the same manner, but they all have the same nogood
node as their consequent, which will be identified byn⊥ in what
follows.

Next, spurious nodes and justifications are removed from the hy-
pergraph. During the backward chaining phase, sets of minimal
sufficient causal justifications are generated incrementally to form
plausible explanations for the available evidence. Starting from the
individual pieces of evidence, conjunctions of states and events jus-
tifying the pieces of evidence are created by instantiating scenario
fragments, and these states and events are in turn justified by instan-
tiating certain other scenario fragments, and so forth. Ultimately,

the states and events in the justification must themselves be justi-
fied by assumptions and/or facts. As explained in Section 2.1, as-
sumptions and facts are the only types of information that require
no further explanation. Their role as so-called root nodes in the
scenario space is extended in the Bayesian scenario space as they
represent the only types of information which is associated with a
prior distribution. In particular, assumptions have a prior distribu-
tion as defined in the knowledge base and the prior distribution of
a fact corresponding to a variable assignmentp : v is defined by:

P (p : x) =

{
1 if x = v

0 otherwise
(7)

wherex ∈ Dp. Therefore, each root node in the hypergraph gener-
ated by this procedure must be either a fact or an assumption. How-
ever, the backward chaining phase can not guarantee this. Hence,
when the procedure terminate, all those nodes, which were origin-
ally regarded as root nodes and which are not a fact or assumption
and all the justifications including these nodes are deemed spurious.
Consider, for instance, the following scenario fragment:

if {victim(Victim)}
assuming {

suspect(Perpetrator),
fight(Perpetrator,Victim),
fight(Victim,Perpetrator)}

then {transfer(fibres,Victim,Perpetrator)}

if {victim(Victim)}
assuming {

suspect(Perpetrator),
fight(Perpetrator,Victim),
fight(Victim,Perpetrator)}

then {transfer(fibres,Perpetrator,Victim)}

Given evidencetransfer(fibres, 1, johndoe) , the
symbolic scenario space generator will create the following inform-
ation:victim(johndoe) , suspect(johndoe) , victim( 1) ,
suspect( 1) , fight( 1, johndoe) andfight(johndoe,
1) . Here, victim(johndoe) : > is a fact. Furthermore,

suspect(johndoe) andsuspect( 1) correspond to assump-
tion nodes, wheresuspect(johndoe) : > should be rendered
impossible by means of an inconsistency.victim( 1) is neither
fact nor assumption, and it is not further justified. Therefore, the
node containingvictim( 1) is spurious and must be removed.

While spurious nodes are ignored in an ATMS, if the belief propaga-
tion algorithm of a BN still attempts to take them into account,
this would inevitably result in an error as spurious nodes have no
prior probability distribution. Therefore, spurious nodes and jus-
tifications must both be removed from the hypergraph. This work
employs the following procedure to accomplish this in a given hy-
pergraph〈N, A, J〉:

Algorithm 4.1: SPURIOUSNODEREMOVAL(〈N, A, J〉,K)

for eachn ∈ N,
[
(@substitution(σ), J(n) = ∅, n 6∈ A

do

{
N ← N/{n};
for eachn′, E ∈ J(n′), (n ∈ E) ∧ (n′ ∈ N)

do J(n′)← J(n′)/E;

Finally, the hypergraph〈N, A, J〉 is collapsed in to a DAG by
means of the following procedure:

Algorithm 4.2: CREATEDAG(〈N, A, J〉)
G← new DAG;
for eachn ∈ N

do




add(G, n);
for eachn′ ∈ (⋃E∈J(n) E

)
do add(G, arc(n′, n));



The resulting DAG forms the structure of a BN that is extended
with conditional probability tables as described in the next section.

4.2.2 Conditional Probability Tables
A BN also requires a complete specification of the conditional

probability tables to be of any practical use. Letm be the number
of states of each node in the BN andq be the number of parents
of each non-root node. Then, a total ofmq × (m − 1) probab-
ilities must be assigned to each non-root node. In an abductive
diagnosis application,q may become large, thereby inhibiting the
manual specification of the conditional probabilities. For example,
the probability distribution of the amount of a particular anaesthetic
in the blood of a victim’s body can be affected by self-medication,
consumption of a spiked drink, surgery, etc.

Using the proposed method to derive the structure of a BN from
knowledge, a setJ(pn) = {J1, . . . , Jr}, containing sets of justi-
fying variables is constructed for each predicatepn, where each set
of justifying variables,Ji ∈ J(pn), is associated an instantiated
scenario fragmentCi. EachCi contains a set of probability distri-
butions describing how the value of the variable identified bypn

is affected by assignments to the variables inJi. Let A be a set of
value assignments to the variables inJi or a superset thereof. Then,
the probability thatCi causespn to take valuev ∈ Dpn is denoted

by P (A
Ci→ pn : v).

The setP = {p1, . . . , ps} of immediate parent variables in the
generated DAG is derived by computingJ1 ∪ . . . ∪ Jr. Let A be a
set of assignments{p1 : v1, . . . , ps : vs}, where eachvi ∈ Dpi , to
the parent variables ofpn in the DAG. It is clearpn will be assigned
c, with c ∈ Dpn , whenever the causal influences described by the
scenario fragmentsC1, . . . , Ck result in a collection of outcomes
c1, . . . , ck whose combined effectc1⊕ . . .⊕ ck equalsc. Thus, the
probability thatpn : c givenA is specified by:

P (pn : c | A) = P

[ ∨
c1⊕...⊕ck=c

( ∧
i=1,...,k

(
A

Ci→ pn : ci

))]
(8)

According to (8), computingP (pn : c | A) involves calculating
the likelihood of a combination of events described by a disjunctive
normal form (DNF) expression. Because the occurrence of differ-
ent combinations of outcomesc1, . . . , ck of the scenario fragments
C1, . . . , Ck involves mutually exclusive events, the calculation can
be resolved by adding the probabilities of the conjuncts in (8):

P (pn : c | A) =
∑

c1⊕...⊕ck=c

P

( ∧
i=1,...,k

(
A

Ci→ pn : ci

))
(9)

From presumption 1, the outcomes of different scenario frag-
ments (with the same consequent), in case of a given set of assign-
ments of the antecedent and assumption variables, correspond to
independent events. Therefore, the probability of the conjunctions
in (9) is equal to the product of the probabilities of their conjuncts,
and (9) is calculated as follows:

P (pn : c | A) =
∑

c1⊕...⊕ck=c

( ∏
i=1,...,k

P
(
A

Ci→ pn : ci

))
(10)

Consider, for example, the following two scenario fragments,
which are part of the probabilistic knowledge base from which its
symbolic counterpart as presented in Figure 1 can be generated:

if { autoerotic-hanging-habit(V) }
then { previous-hanging(V) }
distribution previous-hanging(V) {

true -> never:0.1, veryfew:0.4, several:0.5 }

if { previous-suicide-attempts(V) }
then { previous-hanging(V) }
distribution previous-hanging(V) {

true -> never:0.7, veryfew:0.29, several:0.01 }

whereautoerotic-hanging-habit(V) and previous-
suicide-attempts(V) correspond to boolean variables, and
previous-hanging(V) to a variable taking values from the
domain {never , veryfew , several } defined over combin-
ation operatormax2. Then, the probabilities of assignments to
previous-hanging(V) , given thatautoerotic-hanging-
habit(V) andprevious-suicide-attempts(V) are as-
signed>, can be computed as follows:

For notational convenience, letp1, p2 andp3 respectively denote
autoerotic-hanging-habit(johndoe) , previous-sui-
cide-attempts(johndoe) , andprevious-hanging(johndoe) ,
and let the above two scenario fragments be namedC1 andC2.
Then, the probabilities in the scenario fragments involved are as-
signed as:

P (p1 : > C1→ p3 : never ) = 0.1

P (p1 : > C1→ p3 : veryfew ) = 0.4

P (p1 : > C1→ p3 : several ) = 0.5

P (p2 : > C1→ p3 : never ) = 0.7

P (p2 : > C1→ p3 : veryfew ) = 0.29

P (p2 : > C1→ p3 : several ) = 0.01

Thus,P (p3 : veryfew |p1 : >, p2 : >) can be computed as
follows, according to (10):

P (p3 :veryfew |p1 : >, p2 : >)

=P (p1 : > C1→ p3 : veryfew )× P (p2 : > C1→ p3 : veryfew )+

P (p1 : > C1→ p3 : never )× P (p2 : > C1→ p3 : veryfew )+

P (p1 : > C1→ p3 : veryfew )× P (p2 : > C1→ p3 : never )+

=0.4× 0.29 + 0.1× 0.29 + 0.4× 0.7 = 0.425

Similarly, it can be shown that

P (p3 : never |p1 : >, p2 : >) = 0.07

P (p3 : several |p1 : >, p2 : >) = 0.505

5. SCENARIO SPACE ANALYSIS
Once constructed, the Bayesian scenario space can be analysed

in conjunction with the symbolic one to compute effective evid-
ence collection strategies. The concepts of evidence, hypotheses,
assumptions and facts are still employed in the Bayesian scenario
space, but they now refer to variable assignments instead of predic-
ates. For implementational simplicity, hypotheses and investigat-
ive actions are assumed to be represented by (truth) assignments to
boolean variables (although this will be extended in future work).

2Thus never ⊕veryfew = veryfew and
veryfew ⊕several = several



While the likelihood ratio approach can be extended to deal with
more than two hypotheses (for example by computing multiple
likelihood ratios or a likelihood ratio comparing combinations of
hypotheses), it is not clear how these extensions can employed to
compute a metric of doubtness over multiple positions. The be-
nefit of such a metric is that it enables a decision support system
to order different evidence collection strategies in order of their
effectiveness in reducing doubt between multiple hypotheses. An
alternative approach based on information theory is proposed here.

The work will be illustrated by means of probabilities derived
from a BN which has been generated using the techniques of Sec-
tion 4 and which is a Bayesian representation of the symbolic scen-
ario space given in Figure 1. The probabilities themselves are ar-
bitrarily chosen and merely serve as a means to illustrate the calcu-
lations. Also, due to space limitations, the knowledge base and the
BN can not be provided in this paper but interested readers can find
it online at http://users.aber.ac.uk/jrk/examples/icail2005.html.

5.1 Hypothesis sets and query types
Instead of two hypotheses, the approach aims to evaluate evid-

ence in relation to a setH of hypotheses. This set must be ex-
haustive and the hypotheses within it mutually exclusive.H is ex-
haustiveif one of the hypotheses in the set is guaranteed to be true,
ensuring that the approach will evaluate the scenario space entirely,
without ignoring any plausible scenarios. The hypotheses in a set
aremutually exclusiveif no pair of hypotheses taken from the set
can be true simultaneously. This property ensures that the approach
is not biased.

In this work, hypothesis sets are predefined in the knowledge
base along with a precompiled taxonomy ofquery types. Query
types represent important questions that the investigators need to
address, such as the type of death of victim in a suspicious death
case, or the killer of a victim in a homicide case. Query types are
identified with a predicate describing it and they may be associated
with a set of predicates identifying the hypothesis variables. For
example, the following two query type definitions

define query type {
unifiable = type-of-death(P),
hypotheses = {homicidal-death(P),suicidal-death(P),

accidental-death(P),natural-death(P)}}

define query type {
unifiable = killer-of(P),
hypotheses = {killed(Q,P)}}

are respectively associated with the following hypothesis sets:

H1 = {homicidal-death(johndoe) : >,

suicidal-death(johndoe) : >,

accidental-death(johndoe) : >,

natural-death(johndoe) : >}
H2 = {killed(mr-hyde,mary-kelly) : >,

killed(jack-the-ripper,mary-kelly) : >,

killed( 1,mary-kelly) : >,

killed(none,mary-kelly) : >}

It is the responsibility of the knowledge engineer to ensure that
the hypotheses sets generated in this way meet the exhaustiveness
and mutual exclusivity criteria. These criteria can be satisfied for
any given setP = {p1, . . . , pn} of predicates identifying hy-
potheses variables. Exhaustiveness can be assured by extending
P with an additional predicatepn+1 and adding a probabilistic
scenario fragment that enforcespn+1 : > with likelihood 1 if
p1 : ⊥, . . . , pn : ⊥, andpn+1 : ⊥ with likelihood1 otherwise:

if {p1, . . . , pn}
then {pn+1}
distribution pn+1 {⊥, . . . ,⊥-> > : 1,⊥ : 0}

The mutual exclusivity criterion can be easily attained by adding
inconsistencies for each pair of hypotheses:

inconsistent {pi : >, pj : >}

5.2 Entropy
The work here employs an information theory based approach,

which is widely used in areas such as machine learning [19] and
model based diagnosis [12]. Information theory utilises a measure-
ment of doubtness over a range of choices, called entropy. Applied
to the present problem, theentropyover an exhaustive set of mutu-
ally exclusive hypothesesH = {h1, . . . , hm} is given by:

ε(H) = −
∑
h∈H

P (h) log P (h)

where the valuesP (h) can be computed by means of conven-
tional BN inference techniques. Intuitively, entropy can be inter-
preted as lack of information. Under the exhaustiveness and mu-
tual exclusivity conditions, it can be shown thatε(H) reaches its
highest value (which corresponds to a total lack of information)
whenP (h1) = . . . = P (hm) = 1

m
andε(H) reaches0 (which

corresponds to a totally certain situation) when allP (hi), with
i = 1, . . . , m, equal0 or 1.

In crime investigation, additional information is created through
evidence collection. Thus, the entropy metric of interest for the
purpose of generating evidence collection strategies is the entropy
over a set of hypothesesH, given a setE = {e1 : v1, . . . , en : vn}
of pieces of evidence:

ε(H | E) = −
∑
h∈H

P (h | E) log P (h | E) (13)

where the valuesP (h | E) can, again, be computed by means of
conventional BN inference techniques. For the example problem
from the sample scenario space, the following probabilities can be
computed, withE1 containinghanging-dead-body(johndoe) :
> andnogood : ⊥:

P (homicidal-death(johndoe) | E1) = 0.22

P (suicidal-death(johndoe) | E1) = 0.33

P (accidental-death(johndoe) | E1) = 0.45

Thus, as an instance,

P (H1 | E1) = −(0.22 log 0.22+0.33 log 0.33+0.45 log 0.45) = 0.46

A useful evidence collection strategy involves selecting invest-
igative actions from a given setA according to the following cri-
terion:

min
a∈A

E(ε(H | E), a) (15)

Note that the entropy values calculated by equation (13) are af-
fected by the prior distributions assigned to assumptions, as de-
scribed in 4.1.1. Within the context of evidence evaluation (which



is the conventional application of the likelihood ratio approach),
this is a controversial issue as decision regarding the likelihood of
priors, such as the probability that a victim had autoerotic hanging
habits, are a matter for the courts to decide on. In the context of an
investigation, however, these prior distributions may provide help-
ful information often ignored by less experienced investigators. For
example, the probability of suicides or autoerotic deaths are often
underestimated. As such, decision criterion (15) is a useful means
of deciding on what evidence to collect next. Yet, the minimal en-
tropy decision rule does not yield information that should be used
for evidence evaluation in court.

5.3 Minimal entropy-based evidence collection
Let a denote an investigative action andEa be a set of the vari-

able assignments corresponding to different possible outcomes of
a (i.e. the pieces of evidence that my result from the investigative
action). The expected posterior entropy (EPE) after performinga
can then be computed by calculating the average of the posterior
entropies under different outcomese ∈ Ea, weighted by the likeli-
hood of obtaining each outcomee (given the available evidence):

E(ε(H | E), a) =
∑

e∈Ea

P (e | a : >, E)ε(H | E ∪ {a : >, e}) (16)

The ongoing example contains an investigative actiona = test-
toxicology(johndoe) : >, representing a toxicology test of
johndoe searching for traces of anaesthetics and a corresponding
set of outcomesEa = {toxscreen(johndoe) : >, toxscreen
(johndoe) : ⊥}, respectively denoting a positive toxscreen and
a negative one. LetE2 be a set containinghanging-dead-body
(johndoe) : >, text-toxicology(johndoe) : > and
nogood : ⊥. Then, through exploiting the Bayesian scenario
space the following can be computed:

P (toxscreen(johndoe) : > | E2) = 0.17

P (toxscreen(johndoe) : ⊥ | E2) = 0.83

P (homicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.40

P (suicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.49

P (accidental-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : >}) = 0.11

P (homicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.19

P (suicidal-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.44

P (accidental-death(johndoe) |
E2 ∪ {toxscreen(johndoe) : ⊥}) = 0.38

Intuitively, these probabilities can be explained as follows. In
a homicide situation, anaesthetics may have been used by the mur-
derer to gain control overjohndoe , and in a suicide case,johndoe
may have used anaesthetics as part of the suicide process. In the
accidental (autoerotic) death case, there is no particular reason for
johndoe to be anaesthetised. Therefore, the discovery of traces of
anaesthetics injohndoe ’s body supports both the homicidal and
suicidal death hypotheses whilst disaffirming the accidental death
hypothesis. By means of these probabilities, the EPEs can be com-
puted as the following instance:

E(ε(H | E1), a) = 0.17× 0.41 + 0.83× 0.45 = 0.45

The investigative action that is expected to provide the most in-
formation is the one that minimises the corresponding EPE. For
example, Table 1 shows a number of possible investigative actions
that can be undertaken (in column 1) and the corresponding EPEs
in the sample Bayesian scenario space (in column 2) computed on
the assumption that the aforementioned toxicology screen yielded
a positive result. The most effective investigative actions in this
case are a knot analysis and an examination of the body. This res-
ult can be intuitively explained by the fact that these investigative
actions are effective at differentiating between homicidal and sui-
cidal deaths, the most likely hypotheses if anaesthetics have been
discovered in the body.

5.4 Extensions
While the approach presented above is itself a useful extension

of the likelihood ratio approach, several further improvements are
proposed.

5.4.1 Local optima and action sequences
Although the minimum EPE evidence collection technique guar-

antees to return an effective investigative action, it does not en-
sure globally optimal evidence collection. This limitation is inher-
ent to any one step lookahead optimisation approach. The likeli-
hood of obtaining poor quality locally optimal evidence collection
strategies can be reduced by considering the EPEs after performing
a sequence of actionsa1, . . . , av (of course, with incurred over-
heads over computation):

E(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev | a1 : >, . . . , av : >, E) (18)

ε(H | e1, a1 : >, . . . , ev , av : >, E)

In order to determineE(ε(H | E), a1, . . . , av), equation (18)
can be simplified as follows:

E(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev , a1 : >, . . . , av : >, E)

a1 : >, . . . , av : >, E

ε(H | E ∪ {e1, a1 : >, . . . , ev , av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei, a1 : >, . . . , av : >, E)

a1 : >, . . . , av : >, E

)
ε(H | E ∪ {e1, a1 : >, . . . , ev , av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei | a1 : >, . . . , av : >, E)
)

ε(H | E ∪ {e1, a1 : >, . . . , ev , av : >})

5.4.2 Multiple evidence sets
Certain investigative actions may be associated with multiple

sets of evidence. For example, a careful examination of the body of
a man found hanging may yield various observations such as pete-
chiae on the eyes, defensive wounds on the hands and lower arms
and various types of discolouration of the body. The consequences
of some types of investigative action, e.g. the examination of a dead
body, are better modelled by multiple evidence sets since the res-
ulting symptoms may occur in any combination of such pieces of



evidence. The above approach can be readily extended to account
for this by computing the EPEs after performing actiona with as-
sociated evidence setsEa,1, . . . , Ea,w:

E(ε(H | E), a)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

P (e1, . . . , ew | a : >, E)

ε(H | e1, . . . , ew, a : >, E)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

( w∏
i=1

P (ei | a : >, E)
)

ε(H | E ∪ {e1, . . . , ew, a : >})

5.4.3 Multiple hypothesis sets
Finally, it may also be useful to consider multiple hypothesis sets

instead of just one. This enables the DSS to propose evidence col-
lection strategies that are effective at answering multiple queries.
To consider multiple hypothesis setsH1, . . . , Ht by measuring en-
tropy over these sets, given a set of pieces of evidenceE:

ε(H1, . . . , Ht | E)

= −
∑

h1∈H1

. . .
∑

ht∈Ht

P (h1, . . . , ht | E) log P (h1, . . . , ht | E)

= −
∑

h1∈H1

. . .
∑

ht∈Ht

( t∏
i=1

P (hi | E)
)
log
( t∏
i=1

P (hi | E)
)

5.5 User interface
While a detailed discussion of the user interface developed for

the present DSS system is beyond the scope of this paper, it is im-
portant to point out that a mere representation of the outcomes of
the decision rules is inadequate for the objectives of the DSS. In-
vestigators may have a number of considerations that are beyond
the scope of the current DSS. These include perishability of evid-
ence, legal restrictions, limitations on resources and overall work-
load. Therefore, the DSS is devised to list alternative evidence col-
lection strategies in increasing order of EPEs.

The benefits of each strategy is indicated by either thenormal-
ised expected entropy reduct(NEER) or therelative expected en-
tropy reduct(REER). The NEER represents the reduct in EPE, as
a consequence of performing an investigative actiona (i.e. ε(H |
E)− E(ε(H | E), a)) as a proportion of the maximal entropy un-
der total lack of information, and as such, it provides a means of
assessing case progress:

NEER(H | E, a) =
ε(H | E)− E(ε(H | E), a)

ε(H)

The REER represents EPE reduct as a proportion of the entropy
under the current set of available evidence, and as such, it focuses
on the relative benefits of each alternative investigative action pos-
sible:

REER(H | E, a) =
ε(H | E)− E(ε(H | E), a)

ε(H | E)

These calculations are illustrated in Table 1 for the running ex-
ample. As mentioned previously, this table presents the evaluation
of a number of investigative actions after traces of anaesthetics have
been discovered injohndoe ’s body. The second column of this
table displays the EPEs for investigative action while the third and

Investigative action EPE NEER REER

Knot analysis 0.30 26% 29%
Examine body 0.33 17% 19%
Search for cutting instrument 0.36 13% 14%
Search for signs of previous hangings0.41 1.3% 1.5%
Check eyes for petechiae 0.46 0% 0%

Table 1: Evaluation of investigative actions

fourth columns show the corresponding NEER and REER values
respectively.

6. CONCLUSIONS AND FUTURE WORK
This paper has introduced a novel decision support system aimed

at aiding crime investigators in establishing appropriate evidence
collection strategies. It extends previous work [16], in an effort
to generate a space of models of plausible scenarios that is use-
ful to explain what could have caused the available evidence in
a given case, with probabilistic information. Firstly, conventional
scenario fragments have been augmented to represent causal influ-
ences with a non-deterministic outcome governed by probability
distributions. Secondly, a new scenario space generation algorithm
is proposed that employs these probabilistic scenario fragments to
create both the structure and the conditional probability tables of
Bayesian Network representation of the scenario space. And fi-
nally, a minimal expected entropy technique has been devised to
analyse the Bayesian Scenario Space for producing effective evid-
ence collection strategies.

The approach described herein has been integrated into a proto-
type decision support system that enables users to access this func-
tionality and to visualise generated scenarios and inferred decision
support information (although the actual presentation of this system
is left out due to space limitations). With the ongoing development
of larger knowledge bases, it is hoped that this approach will lead
to a novel type of decision support system to guide less experience
crime investigators in considering appropriately broad hypothesis
sets, formulating effective evidence collection strategies and hence-
forth avoiding miscarriages of justice.

While the proposed approach presented herein offers very use-
ful functionalities for DSS, a number of further improvements are
possible. As the probability distributions in the scenario fragments
refer to subjective assessments by experts of the likely outcomes,
which are described in terms of vague concepts, the use of numeric
probabilities conveys an inappropriate degree of precision. It would
be more appropriate to incorporate a measurement of imprecision
within the probability distributions. A number of approaches can
provide a means of representing and reasoning with such impreci-
sion, such as second-order probability theory [6, 10, 28] and lin-
guistic probability theory [11]. Investigation into the use of sym-
bolic probabilities forms an interesting immediate future work.

In future work, the prototype application will be extended to in-
clude more detailed and sophisticated scenarios. This requires the
development of a larger scale common-sense reasoning knowledge
base, which may constitute a substantial challenge. One considera-
tion is that typical applications of this work involve reasoning about
hypothetical scenarios that occur in time and space. The likelihood
of such scenarios is not only affected by the observed symptoms
or evidence, but also by constraints on the time and space in which
the events in the scenarios occur. Therefore, further research into
incorporating temporal and spatial reasoning in this framework is
of significant relevance to this work.

Other important future work concerns relaxing two important as-



sumptions made within this work: 1) probability distributions gov-
erning the outcomes of different causal influences (and hence rep-
resented in distinct scenario fragments) that affect the same vari-
able must be independent, and 2) the effects of all causal influences
affecting the same variable must be combinable using a single com-
position operator. It has been argued in this paper that these issues
can be overcome by adding appropriate variables to the scenario
fragments in question and that the inconvenience posed by these
additional variables is far outweighed by the benefits of composi-
tionality of scenario fragments. However, the knowledge represent-
ation scheme adopted seems to allow the aforementioned assump-
tions to be relaxed. For example, information on the correlation
between causal influences, specified by scenario fragments, could
be added to the knowledge base, thereby explicitly representing
how influences are interdependent. Yet, exactly how this may be
implemented requires considerable further studies. Also, multiple
composition operators can be allowed by defining rules of compos-
ition, as in the work on compositional model repositories [15].
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