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ABSTRACT
Recent work in forensic statistics has shown how Bayesian
Networks (BNs) can be used to infer the probability of de-
fense and prosecution statements based on forensic evidence.
This is an important development as it helps to quantify the
meaning of forensic expert testimony during court proceed-
ings, for example, that there is “strong support” for the
defense or prosecution position. Due to the lack of experi-
mental data, inferred probabilities often rely on subjective
probabilities provided by experts. Because these are based
on informed guesses, it is very difficult to express them ac-
curately with precise numbers. Yet, conventional BNs can
only employ probabilities expressed as real numbers. To
address this issue, this paper presents a novel extension of
probability theory. This allow the expression of subjective
probabilities as fuzzy numbers, which more faithfully reflect
expert opinion. By means of practical examples, it will be
shown that the accurate representation of this lack of preci-
sion in reasoning with subjective probabilities has important
implications for the overall result.

Keywords
Linguistic Probabilities, Decision Support Systems, Crime
Investigation

1. INTRODUCTION
The question of how to avoid miscarriages of justice has

concerned governments and justice systems for many cen-
turies. With the ever increasing public and media scrutiny
and the continued introduction of new types of forensic ev-
idence, dealing with this issue has not become any easier.

Forensic statistics has emerged as an important discipline
in this respect by providing techniques, such as the likeli-
hood ratio [2], to evaluate evidence in terms of its relative
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support of claims made by the prosecution vs. claims made
by the defence. In other words, these methods provide a
statistical foundation for the expert testimony of expert wit-
nesses. (??)

A central component of this work is the use of Bayesian
Networks (BNs) to compute the probability P (E | C) of ob-
taining certain pieces of evidence E given a claim C. An
example of P (E | C) is the probability of finding a certain
number of glass fragments in the clothes of a person assum-
ing that that person has smashed a window. This is not a
trivial task because many factors influence the production
of evidence. In the glass fragment example, the number
of glass fragments retrieved in the laboratory depends on
the way the window was smashed, the movements of the
perpetrator after the crime (which cause some of the glass
fragments to fall from the garment) and the laboratory tech-
niques employed. BNs provide an effective way of organising
this knowledge. Additionally, they also enable the use of ef-
ficient algorithms to compute the probability of interest.

Common criticisms of the Bayesian approach are that it
requires too many numeric probability estimates and the
probabilities are often subjective estimates by experts.

The difficulty of obtaining point estimates of (e.g. prior)
probabilities in general has been widely reported ([13, 18]).
Moreover [19] has reported that verbal expressions of prob-
abilistic uncertainty were more accurate than numerical val-
ues in estimating the frequency of multiple attributes in his
experimental studies. In addition subjective probability as-
sessments are not generally precise and it has been claimed
that it is misleading to seek to represent them precisely.
So, for example, a committee of the U.S National Research
Council has written that there is an

an important responsibility not to use numbers,
which convey the impression of precision, when
the understanding of relationships is indeed less
secure. Thus whilst quantitative risk assessment
facilitates comparison, such comparison may be
illusory or misleading if the use of precise num-
bers is unjustified.1

All this suggests that it would be useful to involve probabilis-
tic terms directly in probabilistic models. Various studies
(e.g. [3]), have concluded that point estimates of probabil-

1[14] as quoted in [16].



ity terms are highly variable inter-subjectively and exhibit
great overlap between terms.

This paper presents a novel approach to the representa-
tion of subjective probability assessments known as linguis-
tic probabilities. Fuzzy sets have been widely used to repre-
sent the inherent vagueness in linguistic descriptions. Fur-
thermore, a number of psychometric studies have evaluated
the claim that fuzzy sets may be used to model qualitative
probabilites with generally positive conclusions. So, for ex-
ample, [16] have considered various methodological issues in
detail, and established that experimentally obtained fuzzy
sets do indeed seem to provide a model for every day prob-
abilistic assessments.

Linguistic Probability Theory [11] combines the ability of
fuzzy sets to capture the haziness of natural language, with
a calculus modelled after that of classical probaility theory.
The result is a formal setting for computing with probabil-
ities which may be defined by qualitative expressions such
as “likely”, or “nearly certain”. As an extension of classi-
cal probabilities, linguistic probabilities can represent every-
thing from a complete lack of knowledge about the chance
of some event’s ocurring (every probability is judged equally
appropriate) to precise (perhaps experimentally determined)
knowledge (e.g. the probability of event X is 0.43452561).

Specifying probabilities qualitatively can facilitate the no-
toriously time-consuming and error-prone knowledge acquis-
tion process. Moreover, whilst the experts are likely to be
statistically sophisticated enough to understand numbers,
the classical approach does not allow them to express any
uncertainty they may have2. In other words, experts are
usually capable of producing accurate probability estimates,
but not precise ones. Therefore, the issue of using BNs with
subjective probabilities is not due to doubts about the ac-
curacy of the results, but a concern for the false impression
of precision that this approach implies.

Finally, the greater interpretability of linguistic probabil-
ities carries through to the results of computations. This
has obvious promises in a legal context where derived prob-
abilistic information must be presented in a form that is
intelligible and persuasive.

The remainder of the paper is organised as follows. The
following section introduces the application of Bayesian in-
ference in forensic statistics and presents a detailed and re-
alistic example scenario which will be used throughout to
provide a common basis for evaluating the proposed exten-
sion of classical probability theory. [It closes with motiva-
tion.] Section Two begins with a brief introduction to fuzzy
set theory and recapitulation of classical probability theory
before showing how these may be combined to yield LPT.
Section Three develops the two applications and exhibits
the related sample computations. Section Four concludes
the paper and indicates areas for future work.

2. THE ROLE OF BAYESIAN INFERENCE
IN FORENSIC STATISTICS

Bayesian Networks (BNs) are an effective tool in forensic
statistics to help determine to what extent forensic evidence
support the claims of the prosecution (defense) vs. those of
the defense (prosecution). This section describes how BNs

2A second-order Bayesian approach would be better
equipped to handle such uncertainties, but is semantically
problematic and typically computationally intractable.

LR Support of evidence to prosecution
claim over defense claim

1 to 10 limited
10 to 100 moderate
100 to 1,000 moderately strong
1,000 to 10,000 strong
> 10,000 very strong

Table 1: Interpretation of the likelihood ratio

are used to that end and illustrates how they are constructed
by means of a representative example (QS: Make clear that
we’re not talking about KA or Learning.). Then, the dif-
ficulty of obtaining point estimates of probabilities in such
BNs will be discussed to demonstrate the need for linguistic
BNs. Note that a detailed description of BNs is beyond the
scope of this paper and the reader is referred to [15] for a
more detailed discussion.

2.1 Background
Forensic statistics is a discipline that is mainly concerned

with the experimental design of forensic examinations and
the analysis of the obtained results. The issues it studies in-
clude hypothesis formulation, deciding on minimal sample
sizes when studying populations of similar units of evidence
and determining the statistical significance of the outcome
of tests. Recently, the discipline has been branching out to
the study of the statistical implications of forensic exami-
nations on defense and prosecution positions during crime
investigation and criminal court proceedings.

In [5], a method is proposed to assess the impact of a cer-
tain piece of forensic evidence on a given case. This method
is the result of a significant research effort by the Forensic
Science Service (FSS), the largest provider of forensic science
services in England and Wales. It involves 1) formalising the
respective claims of the prosecution and the defense [4, 8], 2)
computing the probability that the evidence is found given
that the claim of the prosecution is true and the probability
that the evidence is found given that the claim of the de-
fense is true, and 3) dividing the former probability by the
latter to determine the likelihood ratio [2]:

LR =
P (E | Cp)

P (E | Cd)

where LR is the likelihood ratio, E, Cp, Cd respectively
represent the evidence, the prosecution claim and the de-
fense claim, and P (E | C) is the probability that evidence
E is found if claim C is true. The likelihood ratio is a nu-
merical evaluation of the extent to which the evidence sup-
ports the prosecution claim over the defense claim. It has
two important application. Firstly, expected improvement
of the likelihood ratio due to a, potentially expensive and
resource intensive, forensic examination represents the ben-
efits of this examination. As such, the likelihood ratio can
help the decision making by police forces when considering
purchasing forensic services. Secondly, the likelihood ratio
can be used to justify the testimonies of forensic experts
during the court proceedings. To that end, a verbal scale to
help forensic experts interprete LR is suggested by the FSS
in [9] and reproduced in table 1.

The likelihood ratio method is, of course, crucially depen-
dent upon a means to compute the probabilities P (E | Cp)



Event Domain
qt quantity of transferred fragments {none,few,many}
qp quantity of persisted fragments {none,few,many}
ql quantity of lifted fragments {none,few,many}
tc type of contact {none,some}
ps proportion of shedded fragments {none,small,large}
pl proportion of lifted fragments {some,most,all}

Table 2: Variables in the one-way transfer case

tc qt qp

ps pl

ql

Figure 1: Bayesian network of a one-way transfer

case

and P (E | Cd). As shown in [1, 6, 7], Bayesian Networks
(BNs) are particularly suitable determine such probabilities.
They are an effective means of acquiring and representing
the knowledge required to compute these probabilities and
they enable the use of efficient algorithms to calculate them.

A BN is directed graph in which events are denoted as
nodes and causal relations are denoted as arcs from cause
to effect. The lack of a path from one node to another
represents conditional independence. This enables BNs to
be used as a tool for knowledge acquisition and probabil-
ity calculations. An example may best illustrate the use of
Bayesian networks in this context.

Consider the following scenario.

A burglar smashes the window of a shop, steals
some money from the cash registry and flees the
scene of the crime. A bystander witnessed this
event and reports a description of the perpetrator
to the police who arrest a man, matching the
description of the witness half an hour after the
event. The suspect, Mr. Blue, denies having
been near the shop. However, ql glass fragments,
matching the type of glass of the shop’s window,
are retrieved from Mr. Blue’s clothes.

Let E be the retrieval of ql glass fragments from the clothes
of Mr. Blue and let Cp be the assumption that Mr. Blue
was the person who smashed the window of the shop.

In this case, figure 1 shows a BN for computing the prob-
ability P (E | Cp), where E is the retrieval of ql glass frag-
ments from the garment of Mr. Blue in the forensic labo-
ratory and Cp is a presumed type of contact between Mr.
Blue and the shop’s window. This BN represents the fol-
lowing forensic knowledge. The number of glass fragments
ql that are retrieved from Mr. Blue’s clothes depends on
the number of glass fragments that have persisted in the
clothes qp and on the effectiveness of the retrieval technique
pl, where pl represents the proportion of glass fragments
lifted from the garments under examination. The number
of glass fragments qp that have persisted in the clothes until
the time of the exampination, in turn, is dependent upon
the number of glass fragments qt that were transferred in
the first place and the proportion of fragments ps that were
shedded between the time of transfer and the time of the
examination. Finally, the number of transferred fragments

ps P(ps)
none 0.1
small 0.4
large 0.5

tc P(tc)
none 0.6
some 0.4

pl P(pl)
none 0.1
few 0.3
many 0.6

Table 3: Classical prior probabilities for P(ps), P(tc)
and P(pl).

qt depends on the type of contact tc. The BN of figure 1
can now be described mathematically by the following equa-
tions:

P (qt) =
∑

tc

P (qt | tc)P (tc)

P (qp) =
∑

qt

∑

ps

P (qp | qt, ps)P (qt)P (ps)

P (ql) =
∑

qp

∑

pl

P (ql | qp, pl)P (qp)P (pl)

For given values of tc, BNs can collapse the computation the
conditional probability P (ql | tc) of retrieving ql fibres from
the clothes of Mr. Blue given a type of contact tc to:

P (ql | tc) =

P (tc)
∑

pl

P (pl)
∑

qp

P (ql | qp, pl)

∑

qt

P (qt | tc)
∑

ps

P (qt | qp, ps)P (ps)

P (tc)
(1)

Because P (ql | tc) equals P (E | Cp), the latter equation
enables the computation of the required information of the
probability of obtaining a given piece of evidence assuming
that the prosecution claim is true.

2.2 Motivation
It follows from (1) that the calculation of P (ql | tc) re-

quires numeric estimates for P (pl), P (ql | qp, pl), P (tc),
P (qt | tc), P (qt | qp, ps), and P (ps) for all possible val-
ues of pl, ps, ql, qp, qt and tc. Such values can be obtained
through experimentation. For example, P (qt | tc) can be de-
termined by smashing a representative population of glass
panels of the same make and materials as the shop window
with a piece of fabric similar to that of the garment worn by
the suspect. Then, the distribution of the number of glass
fragments transferred to the pieces of fabric throughout the
experiment may provide a reasonable estimate for P (qt | tc).

Such experiments are obviously very expensive. There-
fore, it is often necessary to rely on estimates provided by
experts.

Suppose that the prosecution case is that the defendent
has had full or partial contact with the window in question
and that a forensic procedure which is known to retrieve
most fragments of glass from a garment has yielded a few

matching fragments.
The probabilies required to evaluate the likelihood ratio

are provided in Tables 4, 5 and 6. Note that the prior dis-
tribution of pl is not required as these terms cancel in the
calculation.

3. LINGUISTIC PROBABILITY THEORY
There have been a number of attempts to provide a the-

ory of fuzzy probabilities ([17], [12]). For technical reasons,



tc P(qt = none | tc) P(qt = few | tc) P(qt = many | tc)
light 0.2 0.6 0.2
medium 0.1 0.4 0.5
heavy 0.02 0.28 0.7

Table 4: Classical conditional probabilities of P (qt | tc).

qt ps P(qp = none | qt, ps) P(qp = few | qt, ps) P(qp = many | qt, ps)
none none 1 0 0

small 1 0 0
large 1 0 0

few none 0.01 0.99 0
small 0.2 0.8 0
large 0.5 0.5 0

many none 0 0.01 0.99
small 0.01 0.14 0.85
large 0.1 0.45 0.45

Table 5: Classical conditional probabilities of P (qp | qt, ps).

however, these exististing formalisms are incapable of ex-
pressing the fuzzy models for qualitative probabilities ob-
tained in the psychometric literature cited in Section 13 .
Linguistic Probability Theory represents a new approach to
a qualitive probability theory centered on fuzzy numbers
which overcomes these limitations.

A considerable amount of background material is required
to explain and motivate Linguistic Probability Theory. While
it is assumed that the reader will have a passing familiar-
ity with at least some of this material, the basic concepts
and definitions are rehearsed below. In the following section
fuzzy sets and logic are introduced as a prelude to the formal
definition of fuzzy numbers and their associated arithmetic
operators and partial orderings. Section 3.3 then briefly re-
capitulates the entities and axioms of classical probability
theory. With these preliminaries in place the final section
presents Linguistic Probability Theory itself.

3.1 A brief introduction to fuzzy sets, logic and
numbers

Fuzzy sets were introduced as a means of capturing the
vagueness of everyday concepts. Consider the concept of
redness. Certain objects, such as postboxes and strawber-
ries are indisputably red. Conversely, there are things such
as this sheet of paper that are certainly not red4. There are
however many things that are merely somewhat red: claret,
the human tongue and auburn tresses. In these cases, clas-
sical logic with its binary concept of set membership5 forces
a kind of universal judgement call, requiring us to decide yes
or no whether, for example, auburn tresses are as red as a
tomato or not-red as coal.

By contrast, fuzzy sets admit partial degrees of member-
ship modelled as a function from the universe of discourse

3Neither Zadeh’s “fuzzy probabilities” nor Jain and
Agogino’s “Bayesian Fuzzy Probabilities” allow the mem-
bership function of a probability term to tail off smoothly
to the left. These and other objections are raised and dis-
cussed in [11]
4Although we hope it will be read.
5That the world is divided exlusively and exhaustively into
two by any predicate is ensured by The Law of the Excluded
Middle (nothing is both P and not-P) and The Principle of
Bivalence (everything is either P or not-P).

to the unit interval6, termed its membership function. The
membership function of a fuzzy set X will be denoted µX .
So for example we might have:

µred(postbox) = 1

µred(snow) = 0

µred(claret) = 0.7

3.1.1 Fuzzy logic
In the fuzzy as in the classical case, set theory is intimately

related to logic. If fuzzy sets are identified (as above) with
the extensions of predicates, it becomes natural to ask how
these atomic sentences should be combined with basic sen-
tential connectives ∧ (and), ∨ (or) and ¬ (not). The classic
(cite Zadeh) response is as follows:

µtrue(A ∧ B) = min(µtrue(A), µtrue(B))

µtrue(A ∨ B) = max(µtrue(A), µtrue(B))

µtrue(¬A) = 1 − µtrue(A)

So, for example, the sentence “The claret is red and so
is the postbox” is evaluated has having a truth value of
min(0.7, 1) = 0.7.

3.1.2 Alphacuts
An equivalent7 and often convenient representation is to

consider the α-cuts of the set in question. The α-cut of a
fuzzy set Y at x, Y�x, is the set of all elements of the universe
of discourse whose membership of Y is greater than or equal
to x, i.e.

Y�x = {y | µY (y) ≥ x}

Following the example above and assuming a limited uni-
verse of discourse, red�0.7 = {claret, postbox}. α-cuts are
especially useful in the context of fuzzy numbers which are
be introduced in the following section.

6The set of real numbers between 0 and 1.
7The α-cut function fully determines the membership func-
tion and vice-versa.



qp pl Pf (ql = none | qp, pl) Pf (ql = few | qp, pl) Pf (ql = many | qp, pl)
none some 1 0 0

most 1 0 0
all 1 0 0

few some 0.5 0.5 0
most 0.25 0.75 0
all 0.01 0.99 0

many some 0.1 0.4 0.5
most 0.01 0.14 0.85
all 0 0.1 0.99

Table 6: Classical conditional probabilites of P (ql | qp, pl).
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Figure 2: The linguisitic probabilites used in the worked example.

3.2 Fuzzy numbers
A fuzzy numbers are simply fuzzy sets of real numbers

with a sensible shape. More formally,

Definition 1 (Fuzzy number) A fuzzy number is a fuzzy
set of real numbers, X, whose membership function is:

a) normal i.e. ∃x ∈ R such that µX(x) = 1;
b) convex i.e. ∀x, y, z ∈ R if x ≤ y ≤ z then µX(y) ≥

min(µX(x), µX(z)); and
c) has a bounded support i.e. ∃N ∈ R such that ∀x ∈ R

if |x| ≥ N then µX(x) = 0.

Note that this also covers “fuzzy intervals”. Examples of
fuzzy numbers can be found in Figure 2 which defines the
linguistic probabilities that will used in the worked example.

3.2.1 Fuzzy arithmetic
The Extension Principle identifies a natural way to extend

maps on classical sets to maps on their fuzzy counterparts.
The underlying intuition is that a point belongs to the image

of a set, A under the extended map, to the extent that its
inverse

Definition 2 (Extension Principle) Given a map f : A → B

it’s fuzzy counterpart f̃ : Ã → B̃ is defined by:

µf̃(ã)(y) = sup
x∈A

{µa(x) | f(x) = y}

In other words the possibility of y being in the image of a
fuzzy set under an extended funtion is the maximum of the
membership values that would have been mapped to it by
the original function.

A more palatable explanation? The extension principle
may be used to define fuzzy counterparts of standard arith-
metic operators. If the standard arithmetic operators are
considered as maps from R

2 → R

µa⊕b(z) = sup
x+y=z

min(µa(x), µb(y))

µa⊗b(z) = sup
xy=z

min(µa(x), µb(y))



3.2.2 Ordering fuzzy numbers
It is also possible to use the Extension Principle to induce

a partial order on the fuzzy reals. This proceeds from the
observation that (in the standard reals) a ≤ b if and only if
a = min(a, b). Now define

a 4 b iff µa(z) = sup
min(x,y)=z

min(µa(x), µb(y)) ∀z ∈ R

This can be unpacked as:

∀y ∃x such that x ≤ y and µb(y) ≤ µa(x)

Another partial order is generated by the fuzzy subset
relation. Because it is confusing to talk of one fuzzy number
being a superset of another we prefer to say that the former
subsumes the latter. One number subsumes another if is in
effect a kind of less precise version of it. Note that since
not all fuzzy numbers are comparable (in the sense of the
trichotomy law) under either relation, neither constitutes a
total order.

A key property of the subsumption relation is that it car-
ries over the arithmetic operators derived using the Exten-
sion Principle in the sense of the following Lemma:

Lemma 1 Given an operator ∗ : R
n → R and fuzzy num-

bers, a1, a2 . . . an, b1, b2 . . . bn such that ai ⊆ bi for all 1 ≤
i ≤ n then

~(a1, a2 . . . an) ⊆ ~(b1, b2 . . . bn)

where ~ is the fuzzy operator derived from ∗ by the Exten-
sion Principle.

Proof. By the Extension Principle

~(a1, a2 . . . an)(x) = sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

ai(xi)}

≤ sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

bi(xi)}

= ~(b1, b2 . . . bn)(x)

This result allows complex calculations (such as the Bayesian
sum of products expression for joint probability distribution)
to be rearranged and computed from partial results.

3.3 Foundations of Probability Theory
The predominant formalisation of probability theory is

that provided by Kolmogorov. The standard axioms of prob-
ability theory may be found in any introductory text (e.g.
[10]) but these are rehearsed below in order to introduce the
notation that will be used throughout.

Given an experiment or trial, such as rolling a die, the set
of all possible outcomes or sample space will be denoted Ω.
So, in the die example Ω = {1, 2, 3, 4, 5, 6}. Clearly various
questions may be asked about the outcome of a trial. Some
of these will be elementary, of the form “Was the outcome
ω?”, but others will be about groups of states. Returning
to the die example, one might enquire “Was the outcome
an odd number?” That we are not typically interested in
individual outcomes, but instead in properties shared by a
number of these is captured in the notion of an event space.

Definition 3 (Event space) A set E is termed an event
space on a set Ω of possible outcomes iff

a) E ⊆ P(Ω)
b) E is non-empty.

c) If A ∈ E then Ac , Ω \ A ∈ E
d) If A, B ∈ E then A ∪ B ∈ E

Event spaces are also sometimes called sigma algebras, sigma
fields or borel fields.

Note that if A, B ∈ E then A ∩ B ∈ E since A ∩ B =
(Ac ∪ Bc)c, and that this result generalises (by induction)
to countable intersections. That an event space is closed
under union, intersection and complementation (as implied
by conditions c and d) and corresponds to the intuition that
if we are interested whether properties P and Q obtain of
an outcome, we might also reasonably enquire whether they
obtain, conjunctively, disjunctively or not at all. Finally,
observe that b entails that both Ω and ∅ are elements of E
since (A ∪ Ac) = Ω.

With the notion of an event space in place it is possible
to define the central concept of a probability measure.

Definition 4 (Probability measure) A mapping P : E → R

is termed a probability measure on (Ω, E) iff

(CP1) P(A) ≥ 0 for all A ∈ E
(CP2) P(Ω) = 1
(CP3) If A, B are disjoint events in E (i.e. A∩B = ∅) then

P(A) + P(B) = P(A ∪ B)

Where P is a probability measure on (Ω, E), the tuple (Ω, E , P)
is termed a probability space.

3.4 Linguistic Probability Theory
Linguistic Probability Theory extends classical probabil-

ity theory by providing analogues for each of the classical
axioms. The advantage of this foundational approach is that
the familiar constructs of probability theory such as random
variables and distribution functions have natural analogues
in the extended theory.

As in the classical case as set of outcomes, Ω, and event
algebra, E , are assumed to be given. The concepts of linguis-
tic probability measure measure and linguistic probability
space are then defined as follows:

Definition 5 (Linguistic probability measure) A function
Pf : E → F(R) is termed a linguistic probability measure
on (Ω, E) iff

(LP1) 0χ 4 Pf (A) 4 1χ for all A ∈ E
(LP2) Pf (Ω) = 1χ and Pf (∅) = 0χ

(LP3) If A, B are disjoint events in E (i.e. A ∩ B = ∅) then
Pf (A) ⊕ Pf (B) ⊇ Pf (A ∪ B)

Where Pf is a linguistic probability measure on (Ω, E), the
tuple (Ω, E , Pf ) is termed a linguistic probability space.

Like the first two axioms of classical probability theory
LP1 and LP2 are essentially arbitrary stipulations. LP1 es-
tablishes asserts that, in accordance with intention behind
the construction, linguistic probabilities have zero member-
ship outside the chosen quantity space of the unit interval.
With the quantity space established, LP2 determines the
limit cases, indirectly asserting the completeness of the set
of outcomes. Note that whilst the corresponding classical
axiom need only specify one of P(∅) or P(Ω) with CP3 de-
termining the other, for reasons discussed below Pf (∅) and
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(Even chance+Even chance)

Figure 3: Pf ({Heads}) ⊕ Pf ({Tails})

Pf (Ω) are only loosely coupled by LP3 and must be specified
in full.

Whilst the first two axioms are obvious and intuitive,LP3
requires more analysis and justification. The underlying in-
tuition is that computed probabilities are less precise ver-
sions of an underlying probability (which, of course, may
be fuzzy itself). To see this heuristically, consider the sim-
ple case of tossing a coin which is known to be slightly bi-
ased. Suppose that, taking the known bias into account,
each of the two possible events is assigned a linguistic proba-
bility of “even chance” (see Figure 2). Now, Pf ({Heads})⊕
Pf ({Tails}), which is graphed in Figure 3, is not even a
linguistic probability! Nevertheless, it is evident that its
membership function must dominate that Pf (ω) = 1χ.

Finally, note that Linguistic Probability Theory extends
classical probability theory. Where a given linguistic proba-
bility measure’s range consists solely of embedded real num-
bers these numbers are in accordance with the classical ax-
ioms. A proof of this result and more details about the
theory can be found in [11].

4. ILLUSTRATIVE RESULTS
Returning to the This section discusses the results ob-

tained by applying Bayesian Network(s) of section 2 with
those obtained by applying the same networks with linguis-
tic probabilities.

4.1 Linguistic network
The linguisitic probabilities used in the specification of

the qualitative network are presented in Figure 2, whilst the
prior and conditional probabilities specifying the network
can be found in Tables LP1, LP2 and LP3.

5. CONCLUSION AND FUTURE WORK
Future work: Translation back into language (cite Javier?)
Note about ability to express a total lack of knowledge.
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