
A Model Based Reasoning Approach for Generating
Plausible Crime Scenarios from Evidence

Jeroen Keppens
Centre for Forensic Statistics and Legal Reasoning

The University of Edinburgh

Appleton Tower, Crichton Street

Edinburgh, EH8 9LE, UK

jeroen@inf.ed.ac.uk

John Zeleznikow
Centre for Forensic Statistics and Legal Reasoning

The University of Edinburgh

Old College, South Bridge

Edinburgh, EH8 9YL, UK

john.zeleznikow@ed.ac.uk

ABSTRACT
Robust decision support systems (DSSs) for crime investi-
gation are difficult to construct because of the almost in-
finite variation of plausible crime scenarios. Thus existing
approaches avoid any explicit reasoning about crime scenar-
ios. They focus on problems such as intelligence analysis and
profiling. This paper introduces a novel model based reason-
ing technique that enables DSSs to automatically construct
representations of crime scenarios. It achieves this by stor-
ing the component events of the scenarios instead of entire
scenarios and by providing an algorithm that can instan-
tiate and compose these component events into useful sce-
narios. This approach is more adaptable to unanticipated
cases than one that represents scenarios explicitly because
it allows component events to match the case under inves-
tigation in many different ways. The approach presented
herein is applied to and illustrated with examples from an
application of the differentiation between homicidal, suici-
dal, accidental and natural death.

Keywords
Model Based Reasoning, Abductive Reasoning, Decision Sup-
port Systems, Crime Investigation

1. INTRODUCTION
Two of the most difficult, yet crucial, tasks in crime inves-

tigation are hypothesis formulation and evidence collection.
Hypothesis formulation is the postulation of plausible prop-
erties of the crime under investigation, such as the perpetra-
tor of the crime and his modus operandi. Evidence collection
involves the accumulation of observable consequences of the
events constituting or surrounding the crime in an effort to
prove which of the postulated hypotheses is correct.

These tasks are crucial because failure to consider certain
hypotheses or pieces of evidence can cause miscarriages of
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justice in any subsequent legal proceedings. They are dif-
ficult because an investigator’s knowledge about what sce-
narios might, hypothetically speaking, have produced the
available evidence is inevitably incomplete. By extension,
it is also hard to foresee what evidence collection strategy
is most likely to reduce the set of plausible scenarios. Hu-
man agents, in particular find it difficult to consider multiple
alternative hypotheses simultaneously and tend to try and
confirm a single hypothesis instead.

Decision support systems (DSSs) may be able to assist
crime investigators in this effort. But, as argued in [15],
conventional DSS approaches are not particularly suitable
for solving this problem due to their lack of robustness (i.e.
the flexibility to deal with unforeseen cases). Each major
crime scenario potentially consists of a unique set of cir-
cumstances whilst many conventional AI techniques have
difficulties in handling previously unseen problem settings.
Approaches devised to be adaptable to new situations, such
as case based reasoning, tend to work on the assumptions
that at least knowledge about settings of a similar specifi-
cation and with a similar solution to the unseen case are
available. This is not the case in major crime investigation.
Firstly, certain types of major crimes, e.g. homicides, are
extremely rare compared to the occurence of other crimes
and other scenarios, e.g. accidental deaths and suicides, that
potentially produce similar sets of evidence. Secondly, cer-
tain combinations of subtle differences between cases, e.g.
the type of relationship between a witness and a suspect,
can have a significant impact on a particular case.

This paper aims to be a first step in the development
of a DSS to aid crime investigators in hypothesis formula-
tion and evidence collection. A novel model based reasoning
technique, derived from the existing technology of compo-
sitional modelling [8, 14], to automatically generate crime
scenarios from the available evidence will be presented. Con-
sistent with existing work on reasoning about evidence [18,
16], the method presented herein employs abductive reason-
ing. That is, the scenarios are modelled as the causes of
evidence and they are inferred based on the evidence they
may have produced.

The approach also uses the notion that unique scenarios
consist of more regularly recurring component events that
are combined in a unique way. It works by selecting and
instantiating generic formal descriptions of such component
events, called scenario fragments, from a knowledge base,
based on a given set of available evidence, and composing



them into plausible scenarios. This approach addresses the
robustness issue because it does not require a formal repre-
sentation of all or a subset of the possible scenarios that the
system can encounter. Instead, only a formal representation
of the possible component events is required. Because a set
of events can be composed in an exponentially large number
of combinations to form a scenario, it should be much easier
to construct a knowledge base of relevant component events
instead of one describing all relevant scenarios.

The remainder of this paper is organised as follows. First,
the domain of decision support in crime investigation is sur-
veyed. Then, the decision problem addressed here is for-
malised. Next, section 4 describes the proposed model based
reasoning approach and illustrates it by means of an exam-
ple. Section 5 discusses the advantages and disadvantages
of the proposed approach and shows how it will be used as
part of a larger decision support system to be developed in
future work. Finally, the paper is concluded in section 6.

2. BACKGROUND
Crime investigation is a complex problem, involving the

collection and maintenance of large amounts of data and ex-
pert knowledge. As a result, a significant body of research
has focused on the development of decision support systems
(DSSs) to aid law enforcement agencies in this task. Al-
though a detailed literature review is beyond the scope of
this paper, this section presents a brief overview of the do-
main.

One group of DSSs formalise expert knowledge in the form
of a conventional expert system [19]. For example, AREST
[1] is an expert system designed for profiling suspects of
armed robberies. InvestigAide B&E [22] is an expert sys-
tems designed to support the processing and investigation
of breaking and entering cases. It supports activities such
as gathering and recording case data and provides useful in-
formation such as suspect characteristics and similar cases.

Another group of DSSs apply knowledge discovery and
data mining techniques to databases containing past cases,
police reports and intelligence data. The approaches em-
ployed range from data visualisation [10] to the use of more
formal statistical analysis [6]. Good examples of mature ap-
plications in this area include the COPLINK suite of tools [3,
11] and RECAP [2]. COPLINK is a tool aimed at providing
an information extraction facility that integrates data from
multiple police forces. RECAP (REgional Crime Analysis
Program) is a tool that seeks out patterns of similar modus
operandi in an effort to identify organised crimes.

A third group of systems employ Case Based Reasoning
(CBR) methods to help investigators discover similar past
cases and solution methods that correspond to those past
cases. In the context of crime investigation, CBR systems
usually perform analysis tasks by means of predefined sets of
information. Typical tasks include the categorisation of the
risk of electronic commerce transactions [12], the categori-
sation of crimes and retrieval of cases with similar profiles in
burglary [20], and the differentiation between hostile intru-
sions of computer systems and other anomalous transactions
[7].

These systems cover a wide range of problems and employ
many different types of inference procedures: including de-
ductive, inductive and abductive ones. However, it can be
noted that the vast majority of research into DSSs in the
domain of crime investigation existing approaches mainly

provide support for analysis of intelligence data and the for-
malisation of best police procedures. They have avoided
the important problem of hypothesis formulation and the
overall management of the investigation process. This is
understandable (but clearly not desirable) as conventional
knowledge based systems, which underlie the existing work,
lack the robustness needed to cope with the variety of cir-
cumstances that may be encountered during investigation.

Generally speaking, systems are said to be robust if they
remain operational in circumstances for which they were not
designed. In the context of crime investigation systems, ro-
bustness requires an adaptability to unforeseen crime sce-
narios. This objective is difficult to achieve because low
volume major crimes tend to be virtually unique.

The problem of finding and reasoning with theories with
respect to evidence has been the topic of important existing
work within the Artificial Intelligence and Law community.
A detailed survey of forms of evidential reasoning is pre-
sented in [21]. Recent work, such as [17] and [23], has ad-
vanced this field by devising knowledge representations and
mechanisms to accurately represent and reason with legal
arguments.

The main goal of this work is the construction of an in-
telligent agent that aids in crime investigation efforts by
constructing and analysing a space of alternative theories
with only limited user intervention. Therefore, this paper
will employ a representational framework that is far less so-
phisticated than the ones developed in the aforementioned
work on evidential reasoning, whilst concentrating on the
construction of algorithms that provide the functionality re-
quired to meet the challenges that were set out in the intro-
duction.

3. THE DECISION PROBLEM
In crime investigation, it is natural to reason about crime

scenarios: a description of states and events, changing those
states, that may have happened in the real world. The ul-
timate aim of a crime investigation is to discover the truth
or falsehood of certain important properties of the crime
scenarios, called hypotheses herein. The hypotheses include
the possible types of crime (e.g. homicide vs. suicide) or
the plausible perpetrators. In order to discover whether
certain hypotheses are plausible, crime investigators collect
evidence. Pieces of evidence are consequences of a crime
scenario that are either directly observable, or observable
via certain examinations (e.g. forensic tests).

The goal of the DSS described in this paper is to find the
set of hypotheses that follow from scenarios that support
the entire set of available evidence. This set of hypotheses
can be defined as:

HE = {h ∈ H | ∃S ∈ S, (∀e ∈ E, (S ` e)) ∧ (S ` h)}

where H is the set of all hypotheses, S is the set of all
consistent crime scenarios and E is the set of all collected
pieces of evidence.

As described in [15], such information can be employed to
search for suitable evidence collection strategies. However, a
detailed description of this topic is beyond the scope of this
paper. Instead, this paper will present a method to generate
the set of all consistent crime scenarios S and how it is used
to constructed the set HE of hypotheses supported by the
available evidence.
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Figure 1: Basic architecture of the model based rea-

soner for crime investigation

4. CRIME SCENARIO ABDUCTION
Figure 1 shows the basic architecture of the proposed

model based reasoning DSS. The central component of this
architecture is an assumption based truth maintenance sys-
tem (ATMS). An ATMS is an inference engine that enables
a problem solver to reason about multiple possible worlds.
Each possible world describes a specific set of circumstances,
a crime scenario in this particular application, under which
certain events and states are true and other events and states
are false. What is true in one possible world, may be false in
another. The task of the ATMS is to maintain what is true
in each possible world. The way in which an ATMS works
will be described in more detail in section 4.1

The ATMS is employed by two separate problem solvers.
First, the scenario instantiator constructs the space of pos-
sible worlds. Given a knowledge base that contains a set
of generic reusable components of a crime scenario and a
set of pieces of evidence, the scenario instantiator builds a
space of all the plausible crime scenarios, called the scenario
space, that may have produced the complete set of pieces of
evidence. The algorithm that implements the scenario in-
stantiator is presented and illustrated in section 4.2.

Once the scenario space is constructed, it can be anal-
ysed by the query handler. The query handler can provide
answers to the following questions:

• Which hypotheses are supported by the available evi-
dence?

• What additional pieces of evidence can be found if a
certain scenario/hypothesis is true?

• What pieces or sets of additional evidence can differ-
entiate between two hypotheses?

This will be discussed in section 4.3.

4.1 Assumption Based Truth Maintenance
An ATMS is mechanism that maintains how each piece of

inferred information depends on presumed information and
facts and how inconsistencies arise. This section summarises
the functionality of an ATMS as it is employed by this work.
For more details, the reader is referred to the original papers
[4, 5].

In an ATMS, each piece of information of relevance to
the problem solver is stored as a node. Some pieces of in-
formation are not known to be true and cannot be inferred
from other pieces of information. The plausibility of these
is determined through the inferences made from them. In
the ATMS, they are represented by a special type of node,
called assumption.

Inferences between pieces of information are maintained
within the ATMS as inferences between the corresponding
nodes. In its extended form (see [5] or [13]), the ATMS can
take inferences, called justifications of the form ni∧. . .∧nj∧
¬nk ∧ . . . ∧ ¬nl → nm, where ni, . . . , nj , nk, . . . , nl, nm are
nodes (and assumptions) representing things that the prob-
lem solver is interested in. An ATMS can also take justifica-
tions, called nogoods that have lead to an inconsistency, i.e.
justifications of the form ni∧ . . .∧nj ∧¬nk ∧ . . .∧¬nl → ⊥.
The latter nogood implies that at least one of the statements
in {ni, . . . , nj ,¬nk, . . . ,¬nl} must be false.

Based on the given justifications and nogoods, the ATMS
computes a label for each (non-assumption) node. A label is
a set of environments and an environment is a set of assump-
tions. An environment E depicts a possible world where all
the assumptions in E are true. The label L(n) of a node
n describes all possible worlds in which n can be true. For
reasons of efficiency and effectiveness, the label computation
algorithm guarantees that each label is:

• Sound : Presuming that all assumptions in an environ-
ment from the label of a node are is true is a sufficient
condition to derive that node. Formally, L(n) is sound
if

∀E ∈ L(n), [(∧ni∈Eni) ∧ (∧¬ni∈E¬ni)] ` n

• Consistent : No environment in the label of a node
describes an impossible world (i.e. a world from which
⊥ logically follows). Formally, L(n) is consistent if

∀E ∈ L(n), [(∧ni∈Eni) ∧ (∧¬ni∈E¬ni)] 0 ⊥

• Complete: The label describes all possible worlds. For-
mally, a label is complete if

∀E, ∃E′ ∈ L(n),

[(∧ni∈Eni) ∧ (∧¬ni∈E¬ni) ` n]→ (E′ ⊆ E)

• Minimal : The label does not contain possible worlds
that are less general than one of the other possible
worlds it contains (i.e. environments that are supersets
of other environments in the label). Formally, a label
is minimal if

∀E ∈ L(n)@E′,

[(∧ni∈E′ni) ∧ (∧¬ni∈E′¬ni) ` n] ∧ E′ ⊆ E

4.2 Scenario Instantiation
This subsection presents a novel algorithm that has been

devised for scenario generation. First, the knowledge rep-
resentation formalism employed to construct the knowledge
base is discussed, followed by a presentation of the actual
algorithm that instantiates the knowledge base into a set of
scenarios (the scenario space).

The theory is illustrated by examples taken from the do-
main of the differentiation between homicidal, suicidal, ac-
cidental and natural death. The case considered herein in-



volves homicidal or accident death of babies due to a sub-
dural haemorrhage. A subdural haemorrhage is a leakage
of blood from vessels on the underside of the dura, one of
the membranes covering the brain. It is a common cause
of death of abused babies (the so-called shaken baby syn-
drome), but the injury may also be due to a number of
non-homicidal causes, such as complications at birth, early
childhood illnesses and certain medical procedures.

4.2.1 Knowledge Representation
In this work, it is presumed that the states and events

constituting a scenario can be represented as predicates or
relations. Although future work will expand on this basic
representation formalism, this description is sufficient for
dealing with many types of complex scenarios.

Naturally, states and events do not exist in isolation from
one another. Certain states or events may be consequences
of combinations of other states and events. For example,
if a person is being assaulted and capable of self-defence,
then (s)he will probably engage in some form of defensive
action. Such knowledge is represented by means of scenario
fragments.

Definition 1 (Scenario Fragment) A scenario fragment µ
is a tuple 〈V, V s, V t, Φs, Φt, A〉 where

• V = {v1, . . . , vl}, V s(µ) = {ps
1, . . . p

s
m} and V t(µ) =

{vt
1, . . . , v

t
n} are sets of variables,

• Φs(µ) = {φs
1, . . . , φ

s
v} is a set of relations, called pre-

conditions, whose free variables are elements of V s ∪
V t,

• Φt(µ) = {φt
1, . . . , φ

t
w} is a set of relations, called post-

conditions, whose free variables are elements of P t,

and

• A(µ) = {a1, . . . , at} is a set of relations, called assump-
tions

such that for i = 1, . . . , w:

∀v1, . . . , ∀vl, ∀v
s
1, . . . , ∀v

s
m, ∃vt

1, . . . , ∃v
t
n φs

1 ∧ . . . ∧ φs
v →

(a1 ∧ . . . ∧ at → φt
i)

To illustrate the concept of scenario fragment, consider
the example below:

if {

doctor(D), person(B)

subdural-haemorrhage(B)

} assuming {

cause-of-death(B,subdural-haemorrhage),

correct-diagnosis(D,cause-of-death(B))

} then {

medical-report(D,cause-of-death(B),

subdural-haemorrhage)

}

This scenario fragment states the following: given a per-
son B, a doctor D and the fact that B suffered a subdural
haemorrhage; and assuming that the cause of death of B is
the subdural haemorrhage and that D makes a correct di-
agnosis of that cause of death; then a medical report must

Evidence Inconsistencies

Initialisation
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Forward
Propagation

Phase
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Figure 2: Overview of the inference mechanism

exist, written by D, stating that the cause of death of B is a
subdural haemorrhage. It matches definition 1 as follows:

V s = {}

V t = {}

V = {B, D}

Φs = {doctor(D), person(B),

subdural-haemorrhage(B)}

A = {cause-of-death(B,subdural-haemorrhage),

correct-diagnosis(D,cause-of-death(B))

Φt = {medical-report(D,cause-of-death(B),

subdural-haemorrhage)}

Some states and events are inconsistent with one another.
For example, a terminal illness and a fatal injection of in-
sulin cannot both be the cause of death of a person. Such
knowledge is represented by means of inconsistencies.

Definition 2 (Inconsistency) An inconsistency is a tuple

〈V, Φ〉 where V = {v1, . . . vl} is a set of variables and Φ =
{φ1, . . . , φv} is a set of relations, whose free variables are

elements of P , such that:

∀v1, . . . , ∀vl, (∧φi∈Φφi)→ ⊥

In this work, the states describing hypotheses and evi-
dence are presumed to be consequences of other states and
events. This presumptions quite naturally fits the original
definition of section 3 quite naturally. Hypotheses are prop-
erties of scenarios, and hence, they should logically follow
from a subset of the scenario. Similarly, pieces of evidence
were defined as “observable consequences”.

4.2.2 Inference Mechanism
The goal of the scenario instantiator is to construct a

space of plausible crime scenario by instantiating the knowl-
edge base of scenario fragments and inconsistencies into an
ATMS. A novel algorithm generateScenarioSpace(O,S, I)
where O is a set of evidence, S is a set of scenario fragments
and I is a set of inconsistencies has been devised for this
purpose. This algorithm expands on an existing compo-
sition modelling algorithm devised for the automated con-
struction of ecological models [13]. As illustrated in figure
2, it consists of four phases:
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1. Initialisation phase: Here, an ATMS θ is created and
initialised by adding a node for each given piece of
evidence.

2. Backward chaining phase: All combinations of possi-
ble events and states that can possible produce the
given pieces of available evidence O are reconstructed.
That is, for each scenario fragment whose postcondi-
tions match relations in the ATMS θ (that is, the sce-
nario fragments 〈V, V s, V t, Φs, Φt, A〉 for which a sub-
stitution σ exist that maps the postconditions Φt to
relations referred to by nodes in the ATMS), a new set
of nodes and justifications is added to the ATMS as
follows:

• A node m is added to θ denoting the applica-
tion of the scenario fragment. Each node n to
which the scenario fragment was matched (i.e.
each node η(σφ) with φ ∈ Φt) is justified in the
ATMS by n← m.

• For each variable v ∈ V s a new constant c is cre-
ated and the substitution {v/c} is added to σ.

• A node denoting σφ is added for each precondi-
tion φ ∈ Φs and an assumption denoting σa is
added for each assumption a ∈ A. The conjunc-
tion of these newly created nodes is added as a
justification of node m (the node denoting the in-
stantiation of the scenario fragment).

The resulting nodes and justifications are shown graph-
ically in figure 3. Initially, θ is only populated with the
pieces of evidence given in O and the algorithm works
its way backwards to determine the potential sources
of those pieces of evidence as described in the knowl-
edge base of scenario fragments S.

3. Forward chaining phase: All the pieces of evidence
and hypotheses that can be consequences of plausible
scenarios generated in the backward chaining phase
are extrapolated. For each scenario fragment whose
preconditions match relations in the ATMS θ (i.e each
scenario fragments 〈V, V s, V t, Φs, Φt, A〉 for which a
substitution σ exist that maps the postconditions in
Φs to relations referred to by nodes in the ATMS),
a new set of nodes and justifications is added to the
ATMS as follows:

• For each variable v ∈ V t a new constant c is cre-
ated and the substitution {v/c} is added to σ.

• A node denoting σφ is added for each postcon-
dition φ ∈ Φt and an assumption denoting σa is
added for each assumption a ∈ A.

• A node m is added to θ denoting the application
of the scenario fragment. This new node is jus-
tified by the conjunction of the instances of the
relations in Φs and A:

m← [(∧φ∈Φsσφ) ∧ (∧a∈Aσa)]

Each postcondition instance is justified by the
new node m.

The resulting nodes and justifications are also shown
graphically in figure 3.

4. Consistency phase: In the final stage, the inconsis-
tencies are instantiated and reported to the ATMS θ.
More specifically, for each inconsistency whose rela-
tions match relations in the ATMS θ (that is, each
inconsistency 〈V, Φ〉 for which a substitution σ exist
that maps the relations in Φ to relations referred to
by nodes in the ATMS), a nogood ⊥ ← (∧φ ∈ Φσφ) is
created.

A formal representation of the algorithm is given below:
Algorithm 4.1: generateScenarioSpace(O, S, I)

comment: Initialisation phase:

θ ← new ATMS;
for each e ∈ O, add-node(θ, e);
comment: Backward chaining phase:

for each 〈V, V s, V t, Φs, Φt, A〉 ∈ S,∃σ, match(〈V ∪ V t, Φt〉, θ, σ)

do































































J ← ∅;
for each v ∈ V s, σ ← σ ∪ {v/gensym()};
for each φ ∈ Φs

do

{

n← addNode(()θ, (σφ));
J ← J ∪ {n};

for each a ∈ A

do

{

n← addAssumption(()θ, (σa));
J ← J ∪ {n};

m← addNode(()θ, (σ〈V, V s, V t, Φs, Φt, A〉));
addJustification(()θ, m, J);
for each φ ∈ Φt, addJustification(()θ, η(σφ), {m});

comment: Forward chaining phase:

for each 〈V, V s, V t, Φs, Φt, A〉 ∈ S,∃σ, match(〈V ∪ V s, Φs〉, θ, σ)

do































































J ← ∅;
for each φ ∈ Φs, J ← J ∪ {(σφ)};
for each a ∈ A

do

{

n← addAssumption(()θ, (σa));
J ← J ∪ {n};

m← addNode(()θ, (σ〈V, V s, V t, Φs, Φt, A〉));
addJustification(()θ, m, J);
for each v ∈ V t, σ ← σ ∪ {v/gensym()};
for each φ ∈ Φt

do

{

n← addNode(()θ, (σφ));
addJustification(()θ, n, {m});

comment: Consistency phase:

for each 〈V, Φ〉 ∈ I, ∃σ, match(()〈V, Φ〉, θ, σ)

do

{

J ← ∅;
for each φ ∈ Φ, J ← J ∪ {(σφ)};
addNogood(()θ, J);

The scenario instantiation algorithm employs a function
match(〈V, Φ〉, θ, σ) to find instances of the relations in the
scenario fragments and inconsistencies. The function takes
the following arguments: 1) a set of free variables V , 2) a
set of relations Φ whose free variables are elements of V , 3)
the ATMS under construction θ and a substitution σ. The
substitution σ maps each variable in v ∈ V to a constant σv



and each relation φ ∈ Φ to a grounded relation σφ where
the variables are substituted by constants.

The function is true if for each relation φ ∈ Φ, a node
exists in the ATMS θ that denotes the grounded relation
σφ. Formally, match(〈V, Φ〉, θ, σ) is deemed true if

(V = {v1, . . . , vp}) ∧ (σ = {v1/o1, . . . , vp/op)∧

(∀φj ∈ Φ, η(σφj) ∈ θ)

where η is the function that maps grounded relations of in-
terest to our problem solver (the crime scenario instantiator)
to nodes and assumptions in ATMS.

An example of a partial scenario space, in the sample ap-
plication domain, that can be constructed in this way is
presented in figure 4. This scenario space contains 13 in-
stances of scenario fragments computed based on two pieces
of evidence: 1) a medical report stating that the cause of
death of a baby b is a subdural haemorrhage and 2) the
observation that the child has bruises on his/her body.

The top half of the figure depicts the scenario fragments
that have been instantiated in the backward chaining phase.
During this phase, all possible causes (as far as they are
included in the knowledge base) of the two pieces of evidence
are generated. In this case, two sets of events and states (i.e.
scenarios) can be distinguished. In the first scenario, baby
b died due to a subdural haemorrhage caused by abuse by
a person p. In the second scenario, baby b died due to
inadequate collagen synthesis. The lack of collagen could
have caused a weakened blood vessel, which in turn led to
a subdural haemorrhage, as well as weakened bones, which
explains the bruises.

The bottom half of the figure contains the scenario frag-
ments that have been instantiated in the forward chaining
phase. During this phase, hypotheses and additional sources
of evidence are generated. In this case, the first scenario (the
one suggesting abuse) would prove the homicide hypothesis
and the second scenario describes an accidental death. Po-
tential additional sources of evidence are an exploration of
bruises or an examination of the collagen synthesis function
in the baby.

Note that the scenario space accommodates for the pos-
sibility that certain pieces of evidence may be misleading.
Indeed, most pieces of evidence are dependent upon an as-
sumption denoting the presumption that no mistakes were
made in the interpretations or observations that lead to the
evidence. These assumptions allow for the possibility of al-
ternative explanations, say, in case the evidence is seemingly
inconsistent.

4.3 Decision Making
The ATMS θ constructed by the algorithm described in

section 4.2.2 contains a space of all scenarios that can be
constructed with the knowledge base and that produce the
given set of evidence O. This section shows how the informa-
tion contained in this ATMS can be exploited to answer the
aforementioned three types of query. The approach taken
herein involves translating queries into formal ATMS nodes
and justifications, thus enabling the existing ATMS label
propagation to answer the queries of interest.

Formally, any consistent conjunction of assumptions that
entails all pieces of evidence (in θ) constitutes a possible
world for the case under investigation. Any set of assump-

tion W such that

[(∧a∈W a), θ 0 ⊥] ∧ [∀e ∈ O, (∧a∈W a), θ ` e]

and the consequences of those assumptions describe a plau-
sible crime scenario. Therefore, all the scenarios contained
in the ATMS can retrieved by computing the label for the
conjunction of the pieces of evidence in O. Let nO be an
additional node added to θ and justified as:

nO ← (∧e∈Oη(e))

Then, the label L(nO) contains all the environments from
which plausible scenarios can be produced. This knowledge
enables the decision support system to answer the following
questions:

• Which hypotheses are supported by the available evi-
dence? Every hypothesis that follows from a plausible
scenario is supported by the available evidence. That
is, a hypotheses h is supported by the evidence if it
follows from an environment of the label of nO:

∃W ∈ L(nO), (∧a∈W η(a)), θ ` η(h)

where η(e) refers to the node that denotes e in θ. Thus,
if the label of h is not empty, then that hypothesis is
supported by the available evidence.

It the scenario space of figure 4, there are two envi-
ronments that support the available (two pieces of)
evidence:

O1 = {lack-of-collagen(b),

accidental-subdural-blood-vessel-rupture(b),

cause-of-death(b,subdural-haemorrhage),

correct-diagnosis(d,cause-of-death(b))}

O2 = {abuse(p,b),

subdural-blood-vessel-rupture-due-to-abuse(b),

cause-of-death(b,subdural-haemorrhage),

correct-diagnosis(d,cause-of-death(b))}

In the possible world described by environment O1,
accident(b) is true and in the one described by O2,
homicide(b) is true. Therefore, it follows that both
hypotheses are supported by the available evidence.

• What additional pieces of evidence can be found if a
certain scenario/hypothesis is true? All the states and
events, including pieces of evidence, that are logical
consequence states and events in plausible scenarios
are generated in the forward chaining phase of the al-
gorithm. Therefore, θ will contain nodes representing
pieces of evidence that are produced in certain scenar-
ios but were not collected in O. As with the hypothe-
ses, the labels of these nodes describe the environments
(and hence, the scenarios) under which these pieces of
evidence are expected.

A piece of evidence e can be found under a given hy-
pothesis h if a possible world exists that supports both
the evidence and the hypothesis. This is the case if an
environment in the label of the evidence entails an en-
vironment in the label of the hypothesis:

∃Wh ∈ (η(h)), ∃We ∈ (η(e)), Wh ⊆We
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Figure 4: Sample partial scenario space

Continuing with the ongoing example, in the scenario
space of figure 4, a piece of evidence e that consists of a
medical report documenting reduced collagen synthe-
sis in b, medical-report(d, reduced-collagen-synthesis(b)),
is generated under the environment:

O3 = {lack-of-collagen(b),

accidental-subdural-blood-vessel-rupture(b),

cause-of-death(b,subdural-haemorrhage),

correct-diagnosis(d,cause-of-death(b)),

test(d,test-collagen-synthesis(b))}

Because O1 ⊂ O3, it follows that under the accident(b)
hypothesis, evidence e may be found.

• What pieces or sets of additional evidence can differ-
entiate between two hypotheses? Let h1 and h2 be two
hypotheses, then any set of pieces of evidence O′ that
can be found if h1 is true, but are inconsistent with h2

can differentiate between the two hypotheses. As re-
ported in [15], this idea will be extended in future work
to compute the degree to which evidence differentiates
between the relative probability of hypotheses. For
example, it follows from the above discussion that the
piece of evidence medical-report(d, reduced-collagen-
synthesis(b)) may help to differentiate between the
two hypotheses, accident(b) and homicide(b). This
information suggests to a social worker or police offi-
cer examining the case that ordering a test for reduced
collagen synthesis would be useful.

5. DISCUSSION AND FUTURE WORK
The main advantage of the approach presented herein is

its robustness. The scenario space generation algorithm can
compose combinations of events and states that produce a
given set evidence from a knowledge base of generic sce-
nario fragments and inconsistencies. Therefore, the crime
scenarios that the system will be confronted with need not
be anticipated during the knowledge acquisition phase.

Of course, crime investigation DSSs employing the ap-
proach presented herein still require a significant knowledge
acquisition effort to construct a knowledge base describing
how the events and states are related to one another and
which sets of events and states are inconsistent. But, it can
be argued that the events and states constituting the sce-
narios recur much more frequently than the scenarios them-
selves. For example, there are a finite number of causes a
subdural haemorrhage, such as a trivial fall or a blow to
the head. However, such injuries can occur in a wide vari-
ety of circumstances ranging from child abuse to alcoholism.
Each of these circumstances can also be described by a set
of events and states that are not restricted to causes of sub-
dural haemorrhages. Therefore, these events and states are
far more common than the specific scenarios in which they
occur.

The approach presented herein aids crime investigators
by reasoning about multiple scenarios simultaneously. Gen-
erally speaking, humans tend to focus on one or a small
number of scenarios and they search for evidence that con-
firms a single scenario or differentiates between a few sce-
narios. This can be a problem in complex cases because



miscarriages are often a consequence of ignoring a plausible
scenario and inadequate evidence collection to differentiate
between plausible scenarios. The DSS presented herein aims
to alleviate these issues by complementing the skills of the
human investigator.

For the DSS to work optimally, the set of scenario frag-
ments S and the set of inconsistencies I that are employed to
construct θ should be both sound and complete. The knowl-
edge bases are said to be sound if every scenario fragment de-
scribes a real-world cause and effect relation between events
and states and if every inconsistency contains a set of states
and events that is physically impossible. The knowledge
bases are said to be complete if every possible real-world
cause and effect relation between events and states and ev-
ery source of inconsistency is represented in the knowledge
bases. Obviously, it is very difficult to achieve complete-
ness in practice since the knowledge of any group of human
experts on crime investigation, from which the knowledge
bases are constructed, is inevitably incomplete. However, if
the DSS employs a knowledge base that is more complete
than the knowledge of the user, then the DSS is able to
consider scenarios that human investigators overlook.

In future work, the method presented herein will be ex-
panded upon. Firstly, the representation formalisms em-
ployed to describe states and events in crime scenarios will
be elaborated. As described earlier, the sets of states and
events that constitute a scenario are restricted by the consis-
tency requirements. This paper introduced a generic means
to represent when inconsistencies occur and to prevent in-
consistent scenarios from being considered when hypothe-
ses are generated and evidence collection strategies are con-
structed. When reasoning about related events that take
place over time and space, temporal and spatial constraints
are an important source of such inconsistencies. To avoid
overcomplicating this paper, the important issues of tempo-
ral and spatial reasoning were not considered, but will be
addressed in future work.

Secondly, methods are under development to assess the
relative likelihoods of alternative scenarios. In [15], several
methods to expand the entropy based decision making tech-
niques employed by model based diagnosis techniques [9]
were presented. The application of these methods requires
a means of generating a space of alternative scenarios and
a way of computing the relative probabilities of alternative
scenarios. The former has been introduced in this paper and
the latter will be presented in a future paper.

Thirdly, an extensive knowledge base will be developed to
enable the deployment of this system. Currently, a proto-
type implementing the algorithms described herein has been
developed. This has enabled the validation of the theory and
the example used in this paper. However, it is clear that a
proper evaluation of the approach requires its application to
a real-world domain problem.

6. CONCLUSIONS
In this paper, an algorithm has been presented that is ca-

pable of automatically generating a space of crime scenarios
that can explain a given set of available evidence. It employs
a knowledge base of formal descriptions of component events
that recur in different combinations in crime scenarios, and
it instantiates and composes them to form relevant instances
of such scenarios. The main advantage of this approach lies
in its robustness: because there are far fewer component

events than possible combinations of such events, this sys-
tem is more likely to be able to handle previously unseen
cases than an similar system that employs a knowledge base
of full scenario descriptions.

The paper has also discussed how an automatically con-
structed space of plausible crime scenarios can help crime in-
vestigators to formulate hypotheses about the case at hand
and help them in the collection of further evidence. As such,
this work is a first step in the development of a decision
support system for crime investigation. Yet, it is recognised
that, despite the robustness of the proposed approach, any
formalisation of a large body of real-world knowledge such a
plausible crime scenarios is prohibitively expensive. There-
fore, future applications of this work will focus on complex,
but suitably restricted subproblems in major crime investi-
gation, such as the differentiation between homicidal, sui-
cidal, accidental and natural deaths in well-defined circum-
stances.
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Prototype Software
The ideas presented in this paper have been successfully
implemented in a small prototype system. This system is
freely available for download at:

http://homepages.inf.ed.ac.uk/jeroen/mbdss/download.html
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