Agent Based Simulation to Evaluate Adaptive
Caching in Distributed Databases

Santhilata Kuppili Venkata', Jeroen Keppens' and Katarzyna Musial?

! Department of Informatics, King’s College London, London, UK
{santhilata.kuppili_venkata, jeroen.keppens}@kcl.ac.uk
2 Faculty of Science and Technology, Bournemouth University, Poole, UK
kmusialgabrys@bournemouth.ac.uk

Abstract. Caching frequently used data is a common practice to im-
prove query performance in database systems. But traditional algorithms
used for cache management prove to be insufficient in distributed en-
vironment where groups of users require similar or related data from
multiple databases. Repeated data transfers can become a bottleneck
leading to long query response time and high resource utilization. Our
work focuses on adaptive algorithms to decide on optimal grain of data
to be cached and cache refreshment techniques to reduce data transfers.
In this paper, we present agent based simulation to investigate and in
consequence improve cache management in the distributed database en-
vironment. Dynamic grain size and decisions on cache refreshment are
made as a result of coordination and interaction between agents. Initial
results show better response time and higher data availability compared
to traditional caching techniques.

Keywords: Cache management, Distributed databases, Agent based
simulation

1 Introduction

Nowadays, large volumes of data are inseparably connected with scientific and
commercial applications. Common query interface provides uniform access and
allows a client to interact with multiple data stores seamlessly. Often user queries
tend to get repeated when groups of users working on related projects, send their
queries to multiple databases. Repeated queries need same data to be retrieved
and processed several times causing repeated data transfers, high bandwidth
utilisation and thus delayed responses.

The main focus of our research is to investigate the effectiveness of adaptive
caching with sub-query fragmentation technique [1]. This work aims to reduce
average query response time and reduction in data transfers. Adaptive caching in
distributed cache system works on the aggregated information across groups of
users related by a specified work-flow and need information at various stages of
their work repeatedly from different locations. It is observed that when users are
distributed, often their queries are not repeated fully but overlap only partially.



2 Santhilata Kuppili Venkata, Jeroen Keppens and Katarzyna Musial

We utilise this feature to develop sub-query data caching based on the query
information collected from multiple groups of users. Cache collects data needed
across users and adapts itself to common data usage patterns.

Adaptive caching works by collaborating the knowledge gathered by indepen-
dent cache units in the system. We have developed a query analysis tool (QA
tool) to support distributed query decomposition in the distributed database en-
vironment. Each cache unit supply information about the query origination and
usage of data locally. QA tool then analyzes the information to find associations
between queries and finds patterns. QA tool predicts future requirements and
takes a decision about the best way to cache data across multiple cache units.

It was expensive to obtain a dedicated real life distributed system to eval-
uate our cache techniques and their suitability. Adaptive cache system requires
independent autonomous cache units to collect data about queries and forward
information about their current and predicted needs. Hence the nature of this
application makes an ideal model for agent based simulation. Our simulation has
active agents such as users, cache units, query analyzer(s) that work together
and coordinate their actions with static agents such as databases. This paper
mainly is focused on two goals (i) reduction in response time, (ii) efficient cached
data management as a result of cache grain modification and cache refreshment.

This paper is organised as follows: A brief context of caching in databases,
adaptive caching is given in section 2. A detailed application of the multi-agent
system and implementation of agents for the successful cache maintenance is
explained in Section 3. Evaluation of simulation and analysis of the results are
presented in Section 4.

2 Background

A general background about caching in distributed database environment and a
brief introduction to sub-query fragmentation is explained in this section.

Caching in Databases: Data caching is used to improve the performance
of the database management system to achieve reduced query response time
and thus lessen the burden of processing resources. The effectiveness of a cache
depends on three important cache management techniques: cache granularity,
cache refreshment and cache coherence. In client-server systems cache refresh-
ment uses time based algorithms such as LRU (Least Recently Used), MRU
(Most Recently Used), frequency based algorithms e.g. LFU (Least Frequently
Used) or the combination of both [2]. Cache effectiveness is measured in terms
of number of cache hits.

A distributed database environment consists of data distributed over multiple
data stores across the globe. Distributed caching systems also need to consider
the resource utilization such as network bandwidth, processing time at data
servers and the heterogeneity of the data from multiple databases. Usually user
queries are fragmented into smaller segments according to the data source from
where the data can be retrieved to achieve query optimization [3]. Proxy caches



Adaptive Caching in Distributed Databases 3

are installed to improve optimization of network and processor resource utiliza-
tion. General practice in the distributed caching is to cache all the data that
comes from a single source and reuse for the future queries [5].

The usual grain of cache is a page/table/attribute in applications that query
relational databases [2]. In web applications, queries are sent to retrieve infor-
mation from text documents that reside in web servers. Hence, the grain for
cache is often independent data item such as a frequently visited web page, an
image or a multimedia item [6]. Extending any of these caching methods to
distributed databases is difficult, as applications need to integrate data from
multiple databases. Large data transfers, work loads at servers, network limi-
tations and limited cache storage size are the general issues to consider while
designing a cache [4].

Sub-query Fragmentation: A sub-query within a query is the smallest inde-
pendent thread of execution generated as a part of the overall query plan [1]. For
example, a join between tables or a standalone nested query is a sub-query. other
words, a sub-query (gx) of a query (Q) is defined as the atomic query segment
that stores an independent data block such that @ = ¢, Ug. U..Ugq, = UZ:1 Q-
Here ‘U’ represents aggregation such as join between two tables.

Adaptive cache learns data access patterns and finds the longest sub-query
of common interest. Sub-query caching tool aids the data localization phase
in distributed query processing. We define cache grain as the longest sequence
of sub-queries accessed frequently together. Initially, a grain may be of the size
equivalent to the smallest query segment recognized by the query optimizer. But
the grain size can be refined depending on the user queries. Hence it is possible
to store bigger patterns (sequences of sub-queries) as a whole as a single grain
in the cache. Similarly, infrequent sub-queries are removed from the grain.

3 Multi-Agent System for Adaptive Caching

Multi-Agent system (MAS) modelling is a widely used approach to solve com-
plex learning, planning, and decision making problems in distributed systems.
Autonomous processing nodes (agents) contribute, communicate and coordinate
to achieve common goals. For e.g, multi-agent system models developed for
distributed health, power [7-9]. To develop a multi-agent system for adaptive
caching, we follow an approach consisting of a flexible and generic MAS archi-
tecture that can use decision making (with the help of machine learning) and
information gathering techniques. In our system, we have identified four main
types of agents as shown in Fig. 1. Each of these agents is defined with one
or many attributes (A) from the tuple: Object O, States S, Communication C,
Domain knowledge K, Heuristics H.

Hence, A = < O,S, C, K, H >

User Agents (UA) are the instigators of the querying process. Main respon-
sibility for a user agent is to monitor the query response time.



4 Santhilata Kuppili Venkata, Jeroen Keppens and Katarzyna Musial

<0S8CK~> <0S,CKH> Resource Agent
. 1 1 *
| Query Analysis Database
USHAQQ“@‘ v Agent @ M ") Agent @
k R
1
b+
Cache
© Agent *
<0,SCKH>

Fig. 1. Agent architecture with related agents

User Agent A= <0 8 C, K >

0= the query, 1. Coordinate with global clock time
S ={send, suspend, wait}, 2. Set the query start time S;

C= Communication with Query Analysis|3. t = send(Query, QAA )

Agent (QAA), 4. Set receive time (R) =t

K = Domain knowledge 5. Response time = R-S;

Cache Agents (CA) manage the query pattern store at local level. They have
the responsibility to share knowledge with QAA by recommending optimal place
for the cached data unit.

Cache Agent A= <0 8 C, K, H >

0 = set of sub-queries, 1. Receive request for a sub-query
S = {search, acquire, cluster, 2. search & update the frequency for
contribute }, sub-query

C = {Contribute to QAA, acquire from|3. Apply association rules

Database agent}, 4. Contribute to QAA knowledge base
K = Local knowledge about patterns, |5. If data not available, acquire

H = set of association rules to data from database

modify cache grain

Query Analysis Agent (QAA) is a central coordinating agent at the highest
level to implement the decision making layer in the system. It plans the execution
module and periodically gathers queried data patterns from all cache agents and
user agents. QAA then consolidates information to perform cache refreshment.
Database agents (DA) are resource (static) agents. They understand database
load characteristics of the data usage and periodically submits this information
to QAA. For this paper, we have not implemented any functionality for this
agent.

3.1 Taskl: Cache Grain Modification

is a part of periodical cache management. Deciding an optimal grain is achieved
by sequence of interactions between user agents, query analysis agent and cache



Adaptive Caching in Distributed Databases 5

Query Analysis Agent A= <0 8 C, K, H>

0 = set of sub-queries, 1. Receive request for a query

S = {send, update, maintain }, 2. fragment and send query to CA

C = {communicate to UA, CA and 3. send or receive data requests to
Database agent}, databases

K = Global knowledge (query 4. Update knowledge base

patterns),

H = association rules to modify

cache grain, cache data mobility

@ Useragent @Quew analysis agent © cache aent
1ln 1 1n
Query ey © cateagn @Quewma\yswsaqem

ragmentation

Sub-queries Search)

cache [Data access frequency, dala size
>

- cache
Longest sequences presentin cache epil)

\
o
\\\\z«\\
o
W9

Update cache grain )
with ather cache >

units X R

Updated grain information

(a) Communication between agents to update (b) Communication between
cache grain using sequence diagram agents for cache refreshment
using sequence diagram

Fig. 2. Communication between agents to perform adaptive caching activities

agents. From time to time, query analysis agent actively collects data access
patterns across all groups of users (user agents) and then decides on the longest
sequences that are queried frequently. Similarly, a grain is shrunk when a contain-
ing sub-query is accessed less frequently. Sequence diagram to achieve optimal
grain is shown in Fig. 2(a).

3.2 Task2: Cache Refreshment

a.k.a. cache eviction. Periodically, the query analysis agent collects data access
frequency and the cached data size from cache agents. Less needed queries are
removed from the cache. Owing to the distributed nature of caching we pro-
pose two distributed caching algorithms: (i) Distributed Least Recently Used
(DLRU), (ii) Distributed Least Frequently Used (DLFU). Both these algorithms
are based on the metadata about each cached grain indexed in the query index
for the current period of time and it’s historical information. A decision is made
for each of the cached grain to store, delete or relocate from the current lo-
cation to new location dynamically by collecting information from distributed
cache units. Typical interactions between query analysis agent and cache agents
is shown in Fig. 2(b).



6 Santhilata Kuppili Venkata, Jeroen Keppens and Katarzyna Musial

4 Evaluation

In order to evaluate the efficiency of decisions taken by agents, we have imple-
mented a discrete time step agent simulator using Java (JDK-1.7) programming
language. A centralized common time thread (global clock) was implemented to
run in an infinite loop of time steps that forwards itself by one tick with every it-
eration of the loop. Network elements, database servers, cache servers, and users
were defined with a unit of work to be completed within one clock tick.
Experimental Setup: We generated input query traces using TPC-H bench-
mark® composite queries (Query number: 5, 7, 10). In order to measure and
compare, we have generated synthetic workloads using known statistical distri-
butions. Each experiment was repeated with identical query traces for multiple
number of times. We made following assumptions: (i) maximum data size for
each query is fixed (since our aim is to estimate the percentage of data transfer
reductions, this assumption would not hamper any observation); (ii) transmis-
sion networks are congestion free (hence the data transfer delay consists of only
transmission time over the network); and (iii) all tabulations show time in terms
of number of ticks elapsed by the global clock. Goals to be achieved by the tasks
above was divided into two distinct cases.

Case 1: Observation of Average Query Response Time Comparison of
average response time between different caching strategies is plotted in Fig. 3(a).
We have compared average response time when (i) no cache is used, (ii) cache
that stores only full query results as a whole is used, and (iii) cache with sub-
query caching with grain modification is used.

~ wumKonm Subquery_L e e bee e Subquery 2
g 5 e No CaCHE e SUD-query_3rsrsrae Sub-query 4
2 s Cache_FUIQUeTY 725 — 1)Uy 5
E w00 9 000 Subquery cache 2
: 2
24 g
x 8
% 3 515
5 z
¢, £
b s
E b
s ]
i 2 05
fol e - ———— ¢
H
4
FEESELEL PSSP L SIS SS ;
ARV SR VRV S VR VYN SR VAV VN VYV 2500 5000 7500 10000

Number of Queries
Noaof queries_No.of Sub-queries

(a) Average response time comparison (b) Average response time for queries
for different cache techniques varying complexity

Fig. 3. Evaluation using average response time

To investigate the effectiveness of sub-query fragmentation for partially repeated
data, we created query trace where sub-queries within the queries repeat in 40%

3 http://www.tpc.org/tpch/



Adaptive Caching in Distributed Databases 7

of cases. For a standard time window of cache refreshment, it is observed that
sub-query caching with modified grain has considerably lower response times
compared to the response time with no cache or cache that stores only full
query results. Sub-query caching seems to be better as the complexity of queries
increase. (The label “3_2500” on x-axis represents a query trace of 2,500 queries
with each of these queries having three sub-queries). Fig. 3(b) compares average
query response time with sub-query caching with growing complexity. This figure
compares two caching techniques: (i) full query result caching and (ii) sub-query
caching for queries with two joins (2 sub-queries) and three joins (3 sub-queries).
Case 2: Observation of Average Data Transfers

The volume of data needed for a query is proportional to the amount of resources
required. Fig. 4 compares volume of data found within cache when user queries
were repeated only partially.

254
W Average Data Found 21.79
Average Data Not Found

204

151 13.28

12.14

7

SubQueries_2 SubQueries_2 SubQueries_3 SubQueries_3

104

Volume of data

AN\

Fig. 4. Comparison of average data found in cache for full query search and sub-query
search techniques

Test input consists of four traces of 10,000 queries each with varying query
complexity. The first two sets of columns on the left-hand side represent the
volume of data found (in black) in the cache and volume of data needed (in
checkered) to be brought from remote databases. Volume of data found within
the cache and volume of data to be brought for full query caching is shown on the
left hand side and sub-query caching on the right. Average data size found using
sub-query caching technique is found 1.6 to 1.8 times more than the full query
cache, suggesting less resource utilization and hence reduction in data transfers.

5 Conclusion and Future work

This work is a part of research on mobile adaptive caching for distributed
databases when query load consists of partially repeated queries from groups
of users. Adaptive caching is aimed at resource optimization by coordinating



8 Santhilata Kuppili Venkata, Jeroen Keppens and Katarzyna Musial

needs from users in the distributed environment. We have developed sub-query
caching technique to be able to maximize the benefit of cached data, using sub-
queries as cache grains. In this paper, we presented the evaluation of adaptive
caching in comparison with full query caching using agent based simulation. As
of now, we have checked the potency of our strategy for read-only queries. We
need to extend this work for concurrent read-write queries.Also we intend to
develop exchange of cached data with other cache units with the help of demand
assessing mobile agents using sub-queries in future.

References

1. Kuppili Venkata, S., Keppens, J., Musial, K.: Adaptive Caching Using Sub-query
Fragmentation for Reduction in Data Transfers from Distributed Databases, ADASS
XXV, ASP Conf, Ser., vol. TBD, pp. TBD (2016)

2. Elmasri, R., Navathe, S., Fundamentals of Database Systems (6th ed.). Addison-
Wesley Publishing Company, USA (2010).

3. Ozsu, M. T., Principles of Distributed Database Systems (3rd ed.). Prentice Hall
Press, Upper Saddle River, USA (2007).

4. Silberschatz, A., Korth, H.F., Sudarshan, S., Database System concepts (6th ed.).
McGraw-Hill (2010)

5. Wang, X., Malik, T., Burns, R. C., Papadomanolakis, S., Ailamaki, A. : A Workload-
Driven Unit of Cache Replacement for Mid-Tier Database Caching., In : DASFAA,
K. Ramamohanarao, P. R. Krishna, M. K. Mohania, E. Nantajeewarawat (eds.),
pp-374-385, (2007)

6. Zhu, H., Yang, T.: Class-based Cache Management for Dynamic Web Content., in:
INFOCOM , IEEE, pp.1215-1224 (2001)

7. Mahmoud, S., Tyson, G., Miles, S., Taweel, A., Staa, A.,Tjeerd, V., Luck, M., and
Delaney, B.: Multi-agent system for recruiting patients for clinical trials, In: pro-
ceedings of International conference on AAMAS ’14, France, pp.5-9 (2014)

8. Chuan-Jun,S., and Chia-Ying, W. : JADE Implemented Mobile Multi-agent Based,
Distributed Information Platform for Pervasive Health Care Monitoring., in: Appl.
Soft Comput. pp.315-325 (2011)

9. Zhong, Z., McCalley, J.D., Vishwanathan, V., Honavar, V. : Multiagent system
solutions for distributed computing, communications, and data integration needs
in the power industry, In: Power Engineering Society General Meeting, 2004. IEEE
(2004)



