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Abstract 

A crucial concern in the evaluation of evidence related to a major crime is 
the formulation of sufficient alternative plausible scenarios that can explain 
the available evidence. However, software aimed at assisting human crime 
investigators by automatically constructing crime scenarios from evidence is 
difficult to develop because of the almost infinite variation of plausible crime 
scenarios. This paper introduces a novel knowledge driven methodology for 
crime scenario construction and it presents a decision support system based 
on it. The approach works by storing the component events of the scenarios 
instead of entire scenarios and by providing an algorithm that can instantiate 
and compose these component events into useful scenarios. The scenario 
composition approach is highly adaptable to unanticipated cases because it 
allows component events to match the case under investigation in many 
different ways. Given a description of the available evidence, it generates a 
network of plausible scenarios that can then be analysed to devise effective 
evidence collection strategies. The applicability of the ideas presented here 
are demonstrated by means of a realistic example and prototype decision 
support software.  

1  Introduction 
Methodologies for evaluating physical evidence in a major crime investigation and for 
determining effective strategies to proceed with the investigation rely on the formulation 
of hypothetical crime scenarios that can explain the available evidence. Ultimately, 
crime investigators and forensic scientists aim to discover what scenario has actually 
taken place. Therefore, their effectiveness is crucially dependent upon the investigator’s 
ability to hypothesise plausible scenarios and to undertake investigative actions that are 
suitable for differentiating between them. 

As humans are relatively poor at hypothetical reasoning, decision support systems 
(DSSs) may provide a useful means of assisting human investigators in constructing 
plausible scenarios and analysing them objectively. While existing work has tackled 
many of the issues involved in evidence collection and interpretation, research into 
generating the plausible underlying scenarios has focussed on appropriate argument 
structures [36], recalling similar instances of volume crime [45] and methodologies for 



human scenario generation [23]. At present, no knowledge driven approaches for 
automatically generating crime scenarios from evidence have been devised yet. 

This paper addresses this lack by presenting a novel compositional modelling method 
and shows how it can aid human crime investigators. Compositional modellers [17, 26] 
aim at capturing a domain’s first principles, i.e. fundamental theories describing the 
behaviours and mechanisms that occur in the domain of interest, by means of small, 
generic and reusable rules, called model fragments. The compositional modelling 
paradigm is adapted to the crime investigation domain by employing causal rules 
describing how combinations of assumed states and events lead to new states and events 
in plausible crime scenarios. A novel model composition algorithm that can abductively 
construct a space of plausible scenarios by means of such first principles is conceived. 
To demonstrate its usefulness, the paper also introduces some methods for analysing the 
resulting scenario space. 

The remainder of this paper is organised as follows. First, Section 2 elaborates on the 
motivations underlying this work. Section 3 then presents an overview of the software 
system proposed. Sections 4 and 5 describe the knowledge presentation and inference 
mechanisms of the DSS respectively. The ideas expressed in the course of these 
theoretical discussions are illustrated by applying them to a small yet realistic example. 
The feasibility of the approach is shown by describing in Section 6 a prototype DSS 
available for free. Finally, Section 7 presents some important related work and Section 8 
concludes this paper. 

2  Motivation 
As described in the introduction, this paper aims to present a decision support system for 
crime investigators to synthesise automatically plausible scenarios from available 
evidence and to analyse interactively the synthesised scenarios. This raises two 
questions: why would such a software system be useful and how does it work. This 
section aims to answer the former question while the remainder of this paper answers the 
latter. 

2.1  Miscarriages of Justice 
In the late 80s, a string of high profile miscarriages of justice shook the foundations of 
the British legal system [49]. In 1991, the Runciman Commission was established with 
the following term of reference:  

“To examine the effectiveness of the criminal justice system in England and Wales 
in securing the convictions of those guilty of criminal offences and the acquittal of 
those who are innocent having regard to the efficient use of resources, and in 
particular to consider whether changes are needed in:  

1. The conduct of police investigations,  
2. The role of the prosecutor,  
3. The role of experts,  
4. The arrangements for the defence,  
5. The opportunities for an accused person to state his position,  
6. The power of the courts in directing proceedings,  
7. The role of the court of appeal,  



8. The arrangements for considering and investigating miscarriages of justice.”  
The system proposed here intends to deal in particular with points 1 and 3. In the 

wake of the Runciman commission, a significant body of knowledge has been produced 
analysing the potential for errors in criminal investigations and prosecutions. Later on, 
the establishment of the Criminal Cases Review Commissions in England and Scotland 
provided extensive case studies in addition to the investigations into the high profile 
cases of wrongful convictions such as the Birmingham Six or the Guildford Four. 

One recurrent theme in these studies is the problem of premature case theories. 
Instead of establishing in a neutral fashion what has happened, police officers tend to 
decide at a very early stage of an investigation on the most likely suspects, and from 
then on investigate against them [43]. Or in the words of David Dixon [14]:  

“If any factor in investigative practice had to be nominated as most responsible for 
leading to miscarriages of justice, it would have to be the tendency for investigators 
to commit themselves to belief in a suspect’s guilt in a way that blinds them to 
other possibilities”  

The use of this sort of “case theories” is probably inevitable [32]. The problem is 
therefore not the fact that case theories are used at all, but rather the premature 
convergence to a single theory without proper consideration of alternatives. As Greer 
argues [19]:  

“[...] no criminal justice system could work without them. The dangers stem 
instead from the highly charged atmosphere surrounding an investigation, the haste 
with which the theory has been formed and the tenacity with which the police have 
clung to their original view in spite of strong countervailing evidence.”  

2.2  Limitations of human investigators 
The miscarriages of justice described above are not due to any limitations that are 
specific to crime investigators. They are due to limitations of all human decision makers 
facing complex problems. 

The crucial problem of premature convergence to a particular theory to explain the 
available evidence in an investigation can be attributed to the phenomenon of cognitive 
dissonance. Cognitive dissonance [18] is a bias of human decision makers in favour of 
learning information that confirms their preconceptions over information that contradicts 
them. 

These problems are reinforced by the professional culture of the police service. Work 
is done properly, and a case solved, if a suspect gets convicted. This orientation towards 
positive results favours an “inductivist” ethos, where those pieces of evidence that point 
towards the guilt of the main suspect are seen as more valuable than those that would 
“falsify” the leading hypothesis. While the police service might pay lip service to a 
falsificationist model of rationality (“asking witnesses to come forward to eliminate 
them from the inquiry”) existing reward structures make it difficult to implement this in 
practice. Our proposed system accounts for this by combining a “backchaining” 
abductivist model of reasoning with a “forward chaining” model that is based on the idea 
of indirect proof, sidestepping the issue of falsification and induction in a universe with 
only finitely many alternatives. 



2.3  Towards methodologies for crime investigation 
Irving and Dunningham address possible solutions to the problem identified above [22]. 
They argue for the need to improve officer’s reasoning and decision-making by 
challenging the “common sense” about criminals and crimes and the detective’s crafts 
“working rules about causation, about suspicion and guilt, about patterns of behaviour 
and behavioural signatures.” 

Although there is no consensus within the wider community of crime investigators as 
to what constitutes an appropriate crime investigation methodology to accomplish these 
improvements, researchers within the forensic science community increasingly argue for 
the adoption of a hypothetico-deductive method, which is commonly employed in 
scientific research [23]. 
 

 
Figure 1:  The hypothetico-deductive method 

This method, depicted in Figure 1, is designed to formulate theories to explain 
complex behaviour in the real world. Based on observations of the behaviour of interest, 
theories explaining them are hypothesised. With such theories, predictions that should be 
observable if the hypothesised theory is true can be deduced. If the predictions based on 
a theory do not match the observations, that theory is disproved. If the predictions match 
the observations sufficiently closely, the plausibility of the theory is confirmed (and, it 
can then be further refined). As centuries of scientific practice have shown, the 
hypothetico-deductive method is a paradigm to help subjective humans study the world 
objectively. It achieves this by providing a self-correction mechanism whereby false 
hypothesis and viewpoints should eventually be exposed and only true ones remain. 

The way in which this paradigm fits with crime investigations is obvious. The 
relevant part of the real world consists of the crime related locations, people, objects and 
events. The observations correspond to evidence, the theories are plausible scenarios and 
the predictions are related to possible additional evidence (or absence of evidence). 
However, the application of the hypothetico-deductive method is not straightforward. 



The formulation of hypothetical scenarios and the deduction of new evidence to test 
these theories require both experience and careful formal analysis. 

2.4  A case for computer aided crime investigation 
Although the hypothetico-deductive and similar methodologies may certainly improve 
the accuracy of crime investigations, they fail to address a number of concerns raised in 
Section 2.2. First, any proper application of the hypothetico-deductive methodology 
requires significant discipline that can not be proceduralised or taught easily. Second, it 
implicitly relies on a large body of knowledge and experience that is only available to 
senior investigators. And finally, the methodology does not account for any human bias 
due to institutional reward systems or the emotional commitment of the “chase”. 

Decision support systems, however, are very effective in analysing information 
systematically and objectively. They can employ substantial bodies of expert knowledge. 
And, they are unaffected by institutional or emotional bias. Therefore, a novel type of 
decision support system has been devised to support the activities of human crime 
investigators. This system is capable of synthesising case theories, or so-called 
scenarios, to explain the available evidence, and it provides a means of visualising and 
comparing these scenarios. 

3  System Overview 

3.1  Objectives and methodology 
The main goal of this work is the construction of a DSS that aids in crime investigation 
efforts by constructing and analysing a space of alternative theories with only limited 
user intervention. Specifically, the decision support system is devised to find:  

• The set of all scenarios that explain a given set of available evidence. Scenarios 
are descriptions of a combination of situations and events. An example of a 
scenario is shown in Figure 3, which describes how a suicidal person kills himself 
by hanging and what evidence the associated events generate.  

• The hypotheses supported by scenarios that explain the available evidence. 
Hypotheses are important features of a presumed crime, such as type of death and 
characteristics of the perpetrator. The aforementioned scenario, for instance, 
entails the “suicide” hypothesis.  

• Additional pieces of evidence that could be found if a certain scenario/hypothesis 
is true. For example, in the aforementioned scenario, a further examination into 
the state of mind of the victim before his death by a psychologist (e.g. by reading 
through the victim’s diary and talking with relatives) can help confirm a particular 
scenario.  

• Additional investigative actions by means of which evidence can uncovered that 
may help differentiate between two or more hypotheses.  

This work employs an abductive diagnosis approach to achieve the objectives set out 
above. Abductive diagnosers determine the conditions of a physical system or world 
under investigation by comparing observations predicted by models with observations 
extracted from the real-world [8]. 



The models generated by an abductive diagnoser are synthesised by means of a 
knowledge base of first principles. As opposed to the heuristic rules (of thumb) normally 
found in expert systems, first principles are generally applicable domain rules that are 
independent from the decision procedure in which they are used. In this work, the first 
principles are expressed by means of causal rules describing how some states and events 
are triggered by other known or assumed states and events. 

The possible causes of a given set of available evidence are inferred by means of an 
abductive inference procedure. These causes form the hypothetical scenarios describing 
plausible crimes. Potential additional evidence that may confirm or contradict these 
scenarios is then deduced using the same causal rules. 

This abductive, first-principles based approach recognises that while the individual 
scenarios encountered in a major crime investigation may be virtually unique and vary 
widely, the underlying domain knowledge on evidence and the types of events that 
create it are not. It also encourages a principled hypothetico-deductive investigative 
methodology because it hypotheses all (known) possible causes of the available 
evidence, composes these causes into plausible scenarios and deduces additional 
evidence from the plausible scenario. This promotes consideration of many scenarios, 
instead of individual ones, in deciding on future investigative actions. Finally, the 
approach also allows making expert domain knowledge available to less experienced 
investigators. As such, the system described in this paper provides a useful means to 
help address the specific complexities of investigating major (non-volume) crimes 
outlined in Section 2. 

3.2  Architecture 

 

 
Figure 2:  System architecture 

The overall architecture of the DSS is show in Figure 2. The central inference 
mechanism in this architecture is an assumption based truth maintenance system 
(ATMS). An ATMS is a mechanism that enables a problem solver to make inferences 



under different hypothetical conditions by maintaining the assumptions that each piece 
of information and each inference depends on [10]. 

The ATMS is employed to maintain a scenario space. The scenario space is a concise 
data structure that contains all possible scenarios that explain the available evidence. It is 
initially constructed from the initial set of given facts and evidence by means of a 
knowledge base.  

Once constructed, the scenario space is analysed through a series of queries. Queries 
are questions about the scenario space. Their answers are computed by extracting 
relevant parts from the scenario space and reported back in an understandable format. To 
interface between the human and scenario space, a query analyser translates standard 
types of user queries into a specification of ATMS nodes of interest, and a report 
generator provides the means to represent a partial scenario space back to the user.  

The next two sections describe the inner workings of this architecture. 

4  Knowledge Representation 

4.1  Scenarios 
Scenarios describe events and situations that may have occurred in the real-world. They 
form possible explanations for the evidence that is available to the crime investigator 
and support certain hypotheses under consideration.  

 



 
Figure 3:  Sample scenario: suicide by hanging 

Within the DSS, scenarios are represented by means of predicates denoting events 
and states, and causal relations between these events and states. The causal relations, 
which enable the scenarios to explain evidence and support hypotheses, are represented 
by hyperarcs between nodes containing the predicates. The causal hypergraphs shown in 
Figure 3 represents a sample scenario of a suicide by hanging. This scenario contains 
five pieces of evidence:  

• n1: A hanging corpse of a person identified as johndoe has been found.  

• n11: A report by a psychologist identified as frasier (n15) stating that johndoe may 
have been suicidal prior to his death.  

• n14: The observation of suicide trial marks on the body of johndoe.  

• n16: The body of johndoe exhibits signs of petechiae1 .  

• n20: A report by a medical examiner identified as quincy (n7) stating that the cause 
of death of johndoe was asphyxiation.  

There are many possible combinations of events and states that may lead to this set of 
evidence, and the scenario of Figure 3 shows one of them. It demonstrates how the first 
three pieces of evidence may be explained by suicide by hanging. The hanging corpse 
(n1) and the assumed cause of death (n20) are the consequents of johndoe’s hanging (n5), 

                                                             
1Petechiae are small red to purple spots on the eyes or skin. Petechiae may be caused by certain diseases 
and asphyxiation. 



which he was unable (unwilling) to end (n4). The petechiae is caused by asphyxiation 
(n15) resulting from the hanging. johndoe’s suicide by hanging requires that johndoe is 
suicidal (n7) and the last two pieces of evidence are a consequence of his suicidal state. 

Generally speaking, all scenarios considered in this work are represented by means of 
a hypergraph such as the one presented in Figure 3. Thus, scenarios are formally defined 
as follows:  
Definition 1 A scenario is a directed acyclic hypergraph 〈V,E〉, where V is a set of 
events and states, and E is a set of directed hyperarcs. Each hyperarc in E connects a set 
of events and states from V to another event/state in V.  

4.2  Types of information 
In an abductive reasoner, different types of information are employed. Some information 
is certain, i.e. known to be true, whereas other information is uncertain, i.e. merely 
presumed to be true. Some information is explicable, i.e. causes for its truth can be 
inferred, whereas other information is inexplicable, i.e. causes for its truth can not be 
inferred or their explanations are irrelevant. This section describes the types of 
information considered in this paper and their role in the abductive reasoner, following 
as much as possible the terminology proposed by Poole [35] 

 

Table 1:  Certainty and explicability of information 
Explicability Certainty 
 Certain Uncertain 
Explicable Fact Hypothesis and 

inferred events and 
states 

Inexplicable Evidence Assumption 

  

As shown in Table 1, four different types of information can be identified on the 
basis of these two distinctions. 

Facts are pieces of inexplicable, certain information. Typical examples include nodes 
n2 and n3 in the scenario of Figure 3, which denote that frasier is a psychologist and 
quincy is a medical examiner. These pieces of information are deemed basic truths that 
need not be explained further. Note that Investigative actions performed by an 
investigator are a special type of fact. They refer to activities by the investigator(s) 
aimed at collecting additional evidence 

Evidence is information that is certain and explicable. Typical examples include 
nodes n1 and n16 in the scenario of Figure 3, which denote that the hanging corpse of 
johndoe has been found and that it exhibits petechiae. Evidence is deemed certain 
because it can be observed by the human user and it is explicable because its possible 
causes are of interest to the user. 



Assumptions are uncertain and inexplicable information. Typical examples include 
nodes n19 (quincy determines the cause of death of johndoe), n18 (quincy makes the 
correct diagnosis of the cause of death of johndoe) and n7 (johndoe was suicidal). 
Generally speaking, it is not possible to rely solely on facts when speculating about the 
plausible causes of the available evidence. Ultimately, the investigator has to presume 
that certain information at the end of the causal paths is true, and such pieces of 
information are called assumptions. In this work, three types of assumptions are 
distinguished:  

• Default assumptions describe information that is normally presumed to be true. In 
theory, the number of plausible scenarios that explain a set of available evidence is 
virtually infinite, but many of these scenarios are based on very unlikely 
presumptions. Default assumptions aid in the differentiation between such 
scenarios by expressing the most likely features of events and states in a scenario. 
A typical example of a default assumption is the presumption that a doctor’s 
diagnosis of the cause of death of person is correct (e.g. n18).  

• Conjectures are the unknown causes of certain feasible scenarios (e.g. n7). Unlike 
default assumptions, conjectures are not employed to differentiate between the 
relative likelihood of scenarios.  

• Uncommitted investigative actions, i.e. possible but not yet performed activities 
aimed at collecting additional evidence, are also treated as assumptions. At any 
given stage in the investigation, it is uncertain which of the remaining 
uncommitted investigative actions will be performed. The reasoning required to 
perform such an action involves looking at its consequences instead of its causes, 
and therefore they are not (causally) explicable. As such, investigative actions 
assume a similar role as default assumptions and conjectures: i.e. they are 
employed to speculate about the plausible (observable) consequences of a 
hypothetical scenario.  

The information in the remaining category is uncertain and explicable. It includes 
uncertain states, such as n4 (johndoe was unable to end his hanging), uncertain events, 
such as n15 in Figure 3 (johndoe asphyxiated) and hypotheses, such as n21 (johndoe’s 
death was suicidal). 

4.3  Scenario fragments 
The objective of this work is to automatically generate scenarios that could have caused 
the available evidence in an investigation. This is a difficult task since there may be 
many, potentially rare, scenarios that can explain the unique circumstances of an 
individual case.  

The approach proposed here is based on the observation that the constituent parts of 
the scenarios are not normally unique to that scenario. The scenario of Figure 3, for 
instance, describes that the asphyxiation of johndoe causes petechiae on the body of 
johndoe. This causal relation applies to most humans, irrespective of whether the 
asphyxiation occurs in the context of a hanging or a suicide. Thus, the causal rule,  

 
))(()( PP eyespetechiaeonasphyxiati !  



is generally applicable and can be instantiated in all scenarios involving evidence of 
petechiae or possible asphyxiation of person. 

Thus, the knowledge base consists of a set of such causal rules, called scenario 
fragments. For example, the rule  
 
if { 
  suffers(P,C), 
  cause-of-death(C,P), 
  medical-examiner(E) 
} assuming { 
  determine(E,cause-of-death(P)), 
  correct-diagnosis(E,cause-of-death(P)) 
} then { 
  cod-report(E,P,C) 
} 
 
states that if a person P suffers from ailment or injury C, C is the cause of death of P, and 
there is a medical examiner E, and assuming that E determines the cause of death of P 
and makes the correct diagnosis, then there will be a piece of evidence in the form of a 
cause of death report indicating that according to E, the cause of death of P is C.  

The causal relations between assumptions, states and events are formalised in 
scenario fragments. 

Definition 2 A scenario fragment µ is a tuple AVVV
tsts
,,,,, !!  where  

• },...,{ 1 lvvV = , },...{)(
1

s
m

ss
ppmV =  and },...,{)(

1
t
n

tt
vvmV =  are sets of variables,  

• },...,{)(
1

s

v

ss
m !!="  is a set of relations, called preconditions, whose free 

variables are elements of V� Vs,  

• },...,{)(
1

t

w

tt
m !!="  is a set of relations, called postconditions, whose free 

variables are elements of V� Vt, and  
• },...,{)( 1 taamA =  is a set of relations, called assumptions  

such that for i=1,...,w:  

 ( )( )tit
s
v

st
n

ts
m

s
l aavvvvvv !!! "##"##$$%%%% KKKKK 11111 ,,,,,,,  

Hence, the aforementioned sample model fragment matches this definition 4.3 as 
follows:  
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=!
t  {cod-report(E,P,C)} 



 

4.4  Inconsistencies 
Some states and events are inconsistent with one another. For example, a person can not 
kill himself both with such an intention (i.e. in a suicide) and without this intention (i.e. 
in an accidental self-killing). Such knowledge is represented by means of 
inconsistencies. 

For instance, the following inconsistency states that a person P can not both commit 
suicide and be hanged by someone else:  
 
inconsistent { 
    suicide-action(hanging,P), 
    is-hanged(P)} 
 
Similarly, the following inconsistency states that a person P can not commit an action A 
to kill him/herself and as an autoerotic activity:  
 
inconsistent { 
    suicide-action(A,P), 
    autoerotic-action(A,P)} 
 

Formally, inconsistencies are defined as follows:  
Definition 3 An inconsistency is a tuple 〈V,Φ〉 where },...{ 1 lvvV =  is a set of variables 
and },...,{ 1 v!!="  is a set of relations, whose free variables are elements of P, such 
that:  
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4.5  Knowledge base 
The knowledge base in the system’s architecture of Figure 2 consists, at least, of the 
following constructs:  

• Property definitions describe which types of predicate correspond to a symptom, 
fact, hypothesis or investigative action.  

• A set of scenario fragments describing reusable component causal relations from 
which the scenarios are composed.  

• A set of inconsistencies describing which combinations of states and events are 
impossible.  

It is assumed that the set of scenario fragments does not contain any cycles as these 
may lead to perpetual creation of new instances of the same predicates. Within the 
domain of major crime investigations, this is a realistic assumption as there are usually 
identifiable causes for the available physical evidence. Consequently, existing work on 
evidence evaluation tends to use acyclic structures, such as Bayesian Networks and 
argument trees. 



5  Inference mechanisms 
The DSS employs two types of inference. One inference mechanism generates plausible 
crime scenarios from evidence. Once these crime scenarios are available, a set of 
inference mechanisms analyses them to help the investigator decide on the course of the 
investigation.  

Since there are potentially many scenarios that produce the same evidence, and 
because many of these scenarios are minor variations of one another, an efficient means 
of storing and reasoning with them is both necessary and feasible. An assumption based 
truth maintenance system (ATMS) is employed in this paper to store the scenarios and 
the conditions under which they are valid. A summary of the functionality of the ATMS 
is presented in Section 5.1. 

5.1  Assumption based truth maintenance 
An ATMS is a mechanism that maintains how each piece of inferred information 
depends on presumed information and facts, and how inconsistencies arise. This section 
summarises the functionality of an ATMS as it is employed in this work. For more 
details, the reader is referred to the original papers [10, 11]. 

 

 

3n  victim’s body shows signs of petechiae 

1n  victim asphyxiated 

2n  victim suffered poisoning 

1a  perpetrator employed strangulation 

2a  perpetrator attempted to kill victim 

3a  perpetrator employed poisoning 

4a  victim consumed excessive dose 

5a  victim medicated self 

Figure 4:  Sample ATMS 

In an ATMS, each piece of information of relevance to the problem solver is stored 
as a node. Some pieces of information are not known to be true and cannot be inferred 
from other pieces of information. The plausibility of these is determined through the 
inferences made from them. In the ATMS, they are represented by a special type of 
node, called assumption.  Figure 4a is a graphical representation of a sample ATMS with 
3 nodes ),,( 321 nnn  and 5 assumptions ),...,( 51 aa  and Figure 4b shows a sample 
interpretation of the nodes in this ATMS. 

Inferences between pieces of information are maintained within the ATMS as 
inferences between the corresponding nodes. In its extended form (see [11] or [25]), the 
ATMS can take inferences, called justifications of the form 

mlkji nnnnn !¬""¬""" KK , where mlkji nnnnn ,,...,,,...,  are nodes (and 



assumptions) representing things that the problem solver is interested in. The sample 
ATMS of Figure 4 contains the following justifications: 

121 naa !"  31 nn !  

232 naa !"  32 nn !  

254 naa !"   

An ATMS can also take justifications, called nogoods that have lead to an 
inconsistency, i.e. justifications of the form !"¬##¬### lkji nnnn KK . The 
latter nogood implies that at least one of the statements in },...,,,...,{ lkji nnnn ¬¬  must 
be false. The sample ATMS of Figure 4 contains the following nogood:  

!"5a . 

Based on the given justifications and nogoods, the ATMS computes a label for each 
(non-assumption) node. A label is a set of environments and an environment is a set of 
assumptions. An environment A depicts a possible world where all the assumptions in A 
are true. The label L(n) of a node n describes all possible worlds in which n can be true. 
For reasons of efficiency and effectiveness, the label computation algorithm of the 
ATMS guarantees that each label is:  

• Sound: Each environment describes a possible world that logically entails the 
node. In other words, the presumption that all assumptions in an environment 
from the label of a node are true is a sufficient condition to derive that node. 
Formally, L(n) is sound if  

( ) ( )( ),
i i

i in E n E
E L n n n n! ¬ !

" #$ ! % ¬& '( )% % ?  

• Consistent: No environment in the label of a node describes an impossible world 
(i.e. a world from which ⊥ logically follows). Formally, L(n) is consistent if  

( ) ( )( ),
i i

i in E n E
E L n n n! ¬ !

" #$ ! % ¬ &' () *% % –  

• Complete: The label describes all possible worlds. In other words, if there is a 
consistent conjunction of assumptions that entail the node, then the set of those 
assumptions or a subset is included in the label of the node. Formally, a label is 
complete if  

( ) ( ) ( ), ' ( ), '
i i

i in E n E
E E L n n n n E E! ¬ !

" #$ % ! & ¬ ' () *+ ,& & ?  

• Minimal: The label does not contain possible worlds that are less general than one 
of the other possible worlds it contains (i.e. environments that are supersets of 
other environments in the label). Formally, a label is minimal if  

( ) ( ) ( )' '( ), ', '
i i

i in E n E
E L n E n n n E E! ¬ !

" #$ ! ¬% & ¬ & '( )* +& & ?  

In the sample ATMS of Figure 4, the labels of the nodes are as follows:  
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The concepts of soundness, consistency, completeness and minimality can be illustrated 
by means of the the label of n3:  

• L(n3)  is sound because it can be shown that n3 follows from both environments:  

1 2 1 3

2 3 2 3

a a n n

a a n n

! " "

! " "
 

• L(n3)  is consistent because neither {a1,a2} nor {a2,a3} entails ⊥.  

• n3 is entailed by each of the following consistent environments:  
 1 2 2 3 1 2 3 1 2 4 2 3 4 1 2 3 4{ , },{ , },{ , , },{ , , },{ , , },{ , , , }a a a a a a a a a a a a a a a a a  

Note that 5{ }a  is an inconsistent environment because 5{ } ( )a L! " . Therefore, 
environments that entail n3 but include a5, such as 4 5{ , }a a  are excluded from the 
above list of environments. Because each of environments in the above list is a 
superset of one of the environments in 3( )L n , 3( )L n  is said to be complete.  

• Finally, 3( )L n  is minimal because 1 2 2 3{ , } { , }a a a a!  and 2 3 1 2{ , } { , }a a a a! .  

5.2  Synthesis of the scenario space 

5.2.1  Intuition 
The goal of the scenario space builder is to construct plausible crime scenarios by 
instantiating the knowledge base of scenario fragments and inconsistencies into an 
ATMS. This is accomplished in four phases:  

1. Initialisation phase: An ATMS that contains one node per piece of available 
evidence is created.  

2. Backward chaining phase: The ATMS is extended by adding all plausible causes 
of the available evidence. For each possible unification of a consequent of a model 
fragment with a node already in the ATMS,  

• the antecedents and assumptions of that model fragment are instantiated,  
• a node is added to the ATMS for each antecedent instance that does not 

already have one,  
• an assumption node is added to the ATMS for each assumption instance that 

does not already have one,  
• a justification is added to the ATMS, from the nodes corresponding to the 

antecedent and the assumption nodes corresponding to the assumptions, to 
the node corresponding to the consequent.  

This process is repeated until all possible unifications of individual model 
fragment consequents with nodes in the ATMS are exhausted. After the backward 



chaining phase, all plausible scenarios explaining the available evidence are 
instantiated in the ATMS.  

3. Forward chaining phase: The ATMS is then extended by adding all possible 
consequences of the plausible scenarios. For each possible unification of the set of 
antecedents of a model fragment with a set of nodes already in the ATMS,  

• the assumptions and consequents of that model fragment are instantiated,  
• an assumption node is added to the ATMS for each assumption instance that 

does not already have one,  
• a node is added to the ATMS for each consequent instance that does not 

already have one,  
• for each consequent instance, a justification is added to the ATMS, from the 

nodes corresponding to the antecedent and the assumption nodes 
corresponding to the assumptions, to the node corresponding to the 
consequent instance.  

This process is repeated until all unifications of model fragment antecedents with 
sets of nodes in the ATMS are exhausted. After the forward chaining phase, all 
possible consequences of plausible scenarios, including potential evidence and 
hypotheses, are instantiated in the ATMS.  

4. Consistency phase: In this final phase, inconsistent combination of states and 
events are denoted as nogoods. This involves instantiating the inconsistencies 
from the knowledge base based on information in the ATMS and marking them as 
justifications for the nogood node.  

5.2.2  Formal algorithm 
This approach is formalised by algorithm 5.1. The algorithm, 
generateScenarioSpace(O,F,S,I) takes a set of evidence O, a set of facts F and a 
knowledge base containing a set of scenario fragments S and a set of inconsistencies I as 
its inputs. It expands on an existing composition modelling algorithm devised for the 
automated construction of ecological models [28]. 
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The algorithm works as follows: 

 



 
Figure 5:  Scenario fragment instantiation in the ATMS 

1. Initialisation phase: Here, an ATMS θ is created and initialised by adding a node 
for each given piece of evidence in O and one for each given fact in F. Each node 
corresponding to a fact is justified by the empty set, thus indicating that they are 
true under all circumstances.  

2. Backward chaining phase: All combinations of possible events and states that can 
possible produce the given pieces of available evidence O are reconstructed. That 
is, for each scenario fragment whose postconditions match relations in the ATMS 
θ (that is, the scenario fragments , , , , ,

s t s t
V V V A! !  for which a substitution σ 

exist that maps the postconditions Φt to relations referred to by nodes in the 
ATMS), a new set of nodes and justifications is added to the ATMS as follows:  

• A node m is added to θ denoting the application of the scenario fragment. 
Each node n to which the scenario fragment was matched (i.e. each node 
η(σφ) with t! "# ) is justified in the ATMS by n m! .  

• For each variable s
v V!  a new constant c is created and the substitution 

{v/c} is added to σ.  

• A node denoting σφ is added for each precondition s! "#  and an 
assumption denoting σa is added for each assumption a∈A. The conjunction 
of these newly created nodes is added as a justification of node m (the node 
denoting the instantiation of the scenario fragment).  

The resulting nodes and justifications are shown graphically in Figure 5. Initially, 
θ is only populated with the pieces of evidence given in O and the algorithm 
works its way backwards to determine the potential sources of those pieces of 
evidence as described in the knowledge base of scenario fragments S.  

3. Forward chaining phase: All the pieces of evidence and hypotheses that can be 
consequences of plausible scenarios generated in the backward chaining phase are 
extrapolated. For each scenario fragment whose preconditions match relations in 
the ATMS θ (i.e each scenario fragments , , , , ,

s t s t
V V V A! !  for which a 

substitution σ exist that maps the postconditions in Φs to relations referred to by 
nodes in the ATMS), a new set of nodes and justifications is added to the ATMS 
as follows:  



• For each variable t
v V!  a new constant c is created and the substitution 

{v/c} is added to σ.  

• A node denoting σφ is added for each postcondition t! "#  and an 
assumption denoting σa is added for each assumption a∈A.  

• A node m is added to θ denoting the application of the scenario fragment. 
This new node is justified by the conjunction of the instances of the 
relations in Φs and A:  

( ) ( )( ) ( )s

a A
m a! "! "#$ #

% &' () *+ ,( (  

Each postcondition instance is justified by the new node m.  
The resulting nodes and justifications are also shown graphically in Figure 5.  

4. Consistency phase: In the final stage, the inconsistencies are instantiated and 
reported to the ATMS θ. More specifically, for each inconsistency whose relations 
match relations in the ATMS θ (that is, each inconsistency 〈V,Φ〉 for which a 
substitution σ exist that maps the relations in Φ to relations referred to by nodes in 
the ATMS), a nogood ( )( )! "!#$%& '  is created.  

The scenario instantiation algorithm employs a function MATCH(〈V,Φ〉,θ,σ) to find 
instances of the relations in the scenario fragments and inconsistencies. The function 
takes the following arguments: 1) a set of free variables V, 2) a set of relations Φ whose 
free variables are elements of V, 3) the ATMS under construction θ and a substitution σ. 
The substitution σ maps each variable in v∈V to a constant σv and each relation φ∈Φ to 
a grounded relation σφ where the variables are substituted by constants. 

The function is true if for each relation φ∈Φ, a node exists in the ATMS θ that 
denotes the grounded relation σφ. Formally, MATCH(〈V,Φ〉,θ,σ) is deemed true if  

{ }( ) ( )( ) ( )( )1 1 1, , / , , / ,p p p j jV v v v o v o! " # !" $= % = % & '( 'K K  

where η is the function that maps grounded relations of interest to our problem solver 
(the crime scenario instantiator) to nodes and assumptions in ATMS. 

The scenario space generation algorithm can be illustrated by showing how it can be 
employed to reconstruct the scenario introduced in Figure 3. Assume that the system is 
given one piece of evidence observe(hanging-dead-body(johndoe)) and two facts 
psychologist(frasier) and medical-examiner(quincy). The initialisation phase of the 
algorithm will simply create an ATMS with nodes corresponding to that piece of 
evidence and those two facts. As the facts are justified by the empty set, they are deemed 
true in all possible worlds. The result of the initialisation phase is shown in Figure 6. 

 

 
Figure 6:  Scenario space generation: initialisation phase 



The backward chaining phase then expands this initial scenario space by generating 
plausible causes of the available evidence by instantiating the antecedents and 
assumptions of scenario fragments whose consequences match nodes already in the 
scenario space. For example, the consequent of scenario fragment 
 
if   { hanging(P), 
       impossible(end(hanging(P))) } 
then { observe(hanging-dead-body(P)) } 
 

matches the piece of evidence already in the scenario space, and this allows the 
creation of new nodes corresponding to hanging(johndoe) and 
impossible(end(hanging(johndoe))) and a justification from the latter two nodes to 
the former. The result of the backward chaining phase is shown in Figure 7. 

 

 
Figure 7:  Scenario space generation: backward chaining phase 

The forward chaining phase expands the scenarios created during the backward 
chaining phase with additional evidence that can be produced by them and the 
hypotheses they entail. The result of the forward chaining phase is shown in Figure 8. 

 



 
Figure 8:  Scenario space generation: forward chaining phase 

 



 
Figure 9:  Overview of the scenario space 

The scenario space as a whole is to large to display here. Therefore, Figure 9 presents 
an informal overview of the information contained in the scenario space. The blocks on 
the lefthand side of the figure represent sets of nodes and justifications between them 
that correspond to a sufficient explanation for a death by hanging. Note that, although 
these blocks appear to be separated, they do have a number of nodes and justification in 
common. Therefore, the scenario space does not only contain the 6 primitive scenarios 
described in Figure 9, but also combinations of them. The middle and righthand columns 
for Figure 9 show the possible pieces of evidence that may follow from certain scenario 
and the hypotheses that logically follow from scenarios. This information will be 
employed in the analysis phase of the application to generate useful decision support 
information for the human crime investigator. 

5.2.3  Outline analysis of complexity 
The synthesis of a scenario space of plausible crime scenarios is an important feature 
that makes this approach unique and enables it to answer important queries. However, 
the generation of a space of all scenarios that may explain the available evidence also 
raises concerns regarding the time and space complexity of the approach. A formal 
analysis of the complexity of this type of algorithm is rather sophisticated because its 
performance is dependent upon a substantial number of structural features of both the 
knowledge base and the initial set of evidence. Therefore, an outline discussion of the 



time and space complexity of the scenario space generation algorithm is presented 
instead. 

The algorithm essentially performs a fixed sequence of instructions and produces a 
small set of nodes and justifications for each match of a scenario fragment. Therefore, its 
time and space requirements are proportional to the number of matches of scenario 
fragments, and its complexity arises from two factors: the discovery of matches of 
scenario fragments, and the processing of the application of scenario fragments with 
respect to a particular match. 

Because the set of model fragments is assumed not to contain cycles, the pattern 
matching procedure can be organised by traversing an ordered list of model fragments, 
thereby processing all the instantiations of each model fragment in one go without the 
need for a conflict resolution mechanism. If there are m model fragments and n sets of 
participants and relations matching the source-participants and structural conditions, the 
time complexity of the backward and forward chaining iterations is O(m×n). Note that n 
is very hard to establish, but in general, it depends on the number of similar objects and 
relations in the given scenario and the degree of reusability of model fragments, which 
are both domain dependent. 

The actual application of scenario fragments involves creating new nodes and adding 
justifications for the new and some existing nodes. Although the creation of new nodes 
requires negligible effort, the addition of justifications to nodes necessitates an update of 
their label, and of the nodes that they justify, in order to ensure that all labels remain 
sound, complete, consistent and minimal (as explained in Section 5.1). As argued in [25, 
28], the dominant factor driving the computational effort required by label propagation 
in this case is the depth of the scenario space (i.e. the length of the longest path from an 
assumption or fact to a piece of evidence or hypothesis it entails), and the time 
complexity of scenario space synthesis is exponential with regard to this factor. 

In order to determine whether this issue is a serious one, a significant number of case 
studies would have to be performed. However, discussions with crime investigators and 
forensic scientists, as well as the ongoing development of a sample knowledge base, 
indicate that crime scenarios tend to be explainable with causal arguments of 
manageable lengths (i.e. one or two digit numbers). 

Storing the space of all possible scenarios may impose significant storage 
requirements. However, when compared to other approaches that store a space of models 
such as the Graph of Models [1], the approach presented here is far more economical. 
Because only scenario fragments are instantiated rather than entire scenarios, the 
common parts of different scenarios need only be stored once. In theory, if a scenario 
space represents m different scenarios that have c% in common, and each model has a 
space requirement of s, then the space complexity can be as low as O(c×s+(1-c)×m×s), 
rather than O(m×s) when all modes are stored explicitly. For large values of m and when 
c is not too close to 0, c×s+(1-c)×m×s<<m×s. 

5.3  Analysis of the scenario space 
The ATMS θ constructed by the algorithm described in Section 5.2 contains a space of 
all scenarios that can be constructed with the knowledge base and that produce the given 
set of evidence O. This section shows how the information contained in this ATMS can 
be exploited to answer the first three types of query mentioned in Section 3.1. The 



approach taken herein involves translating queries into formal ATMS nodes and 
justifications, thus enabling the existing ATMS label propagation to answer the queries 
of interest. 

Formally, any consistent conjunction of assumptions that entails all pieces of 
evidence (in θ) constitutes a possible world for the case under investigation. Any set of 
assumption W such that  

( ) ( ), ,
a W a W

a a e! !" "
# $ # $% &
' ( ' (& &–?  

and the consequences of those assumptions describe a plausible crime scenario. 
Therefore, all the scenarios contained in the ATMS can be retrieved by computing the 
label for the conjunction of the pieces of evidence in O. Let On  be an additional node 
added to θ and justified as:  

( ) ( )O e O
n e!"#$  

Then, the label ( )OL n  contains all the environments from which plausible scenarios can 
be produced. This knowledge enables the decision support system to answer the 
following questions:  

• Which hypotheses are supported by the available evidence?  Every hypothesis that 
follows from a plausible scenario is supported by the available evidence. That is, a 
hypotheses h is supported by the evidence if it follows from an environment of the 
label of nO:  

 ( )( ), , ( )O a W
W L n a h! "#$ # % ?  Eq. 1 

where η(e) refers to the node that denotes e in θ. Thus, if the label of h is not 
empty, then that hypothesis is supported by the available evidence. 
For instance, in the scenario space generated for the ongoing example, the labels 
of both n0 and the node η(suicidal-death(johndoe) (i.e. the node representing the 
hypothesis that the death of johndoe was suicidal) include the following 
environment:  

( ) ( ){ }suicide , ,suicidal johndoe suicide-action hanging johndoeW =  

According to Eq. 1 it therefore follows that the suicidal death hypothesis is 
supported in this case. 

• What additional pieces of evidence can be found if a certain scenario/hypothesis 
is true?  All the states and events, including pieces of evidence, that are logical 
consequence states and events in plausible scenarios are generated in the forward 
chaining phase of the algorithm. Therefore, θ will contain nodes representing 
pieces of evidence that are produced in certain scenarios but were not collected in 
O. As with the hypotheses, the labels of these nodes describe the environments 
(and hence, the scenarios) under which these pieces of evidence are expected. 
Unlike hypotheses, evidence can not be considered a logical consequence of a 
plausible scenario. Indeed, evidence is normally the result of an investigative 
action as well as an interpretation by a human investigator, some laboratory 
equipment or a combination of both. The former is represented by an investigative 
action assumptions whereas the latter is described by one or more default 
assumptions. In order to incorporate these considerations in the analysis, let I

θ
 



denote the set of all investigative actions in the scenario space θ and let D denote 
the set of all default assumptions in the scenario space θ. 
Consider an environment W in θ that corresponds to a particular scenario in the 
scenario space. A piece of evidence e can then be expected in the scenario 
corresponding to W if a if a possible world We exist that supports the evidence and 
where We consists only of assumptions from W, investigative action assumptions 
and default assumptions:  

 ( ) ( )( ) , /e e hW L e W W!" # $ %I D  Eq. 2 
This definition can be extended to discover whether a piece of evidence can be 
expected given a hypothesis h if W is an environment taken from the label of h:  

 ( ) ( ) ( )( ) , ( ) , /h e e hW L h W L e W W! !" # " # $ %I D  

In the ongoing example, this technique can establish that in the suicide scenario, 
the investigator can expect that a forensic psychological evaluation by a given 
forensic psychologist, say frasier, will determine that johndoe has had a suicidal 
state of mind prior to his death. Formally, this new piece of evidence is 
represented by the predicate psychological-
evaluation(frasier,suicidal(johndoe)) and its label is  

( )
( )( )

( )( )

{{ ,

, ,

, }}

suicidal johndoe

   psychological-examination frasier state-of-mind johndoe

   correct-diagnosis frasier state-of-mind johndoe

 

The sole environment in this label consists of one conjecture suicidal(johndoe), 
which is also in suicidalW , one investigative action assumption psychological-
examination(frasier,state-of-mind(johndoe)) and one default assumption 
correct-diagnosis(frasier,state-of-mind(johndoe)). Following Eq. 2Eq. 2Eq. 2, 
this implies that the new piece of evidence can be found should the scenario 
entailed by the environment suicideW  be true. 

• What pieces or sets of additional evidence can differentiate between two 
scenario/hypotheses?  Let W1 and W2 be two environments each entailing a 
scenario, and let h1 and h2 be two hypotheses. Then any set of pieces of evidence 
O' that can be found if W1 (or h1) is true, but are inconsistent with W2 (or h2) can 
differentiate between the two scenarios (hypotheses). However, because evidence 
are the observable consequences of particular scenarios, hard inconsistencies 
between a scenario and a piece of evidence is very rare. 
An alternative method, and more relaxed, approach to establish evidence 
collection strategies consists of search for sets of pieces of evidence that logically 
follow from a given environment W1 and which do not logically follow from W2 
or any of its consistent supersets. 
In the sample knowledge base devised for this paper, for instance, a medical 
examination of the body of the victim johndoe may uncover defensive injuries of 
johndoe. In the current (incomplete) version of the knowledge base, defensive 
injuries can only be explained by attempts by another person to overpower 
johndoe in order to murder him. An examination of the eyes of johndoe may 



reveal that johndoe has petechiae. However, petechiae is a consequence of 
asphyxiation and can be explained under scenarios describing suicidal, homicidal 
and accidental deaths. Therefore, it is possible to determine that a search for 
defensive injuries on the body of the victim is a more effective evidence collection 
strategy than an examination of the eyes of the victim. 
But, although this approach for generating evidence collection strategies can be 
useful, it is crucially dependent on complete knowledge of all possible 
(reasonable) causes of plausible states and events. There are two important 
problems with this approach. Firstly, it provides no means of assessing the quality 
of the available evidence. Secondly, it provides no means of measuring the 
relative benefit of investigative actions that is part of an evidence collection 
strategy that meets the criterion. 
In order to deal with these limitations, ongoing research is devising methods to 
extend the approach described in the paper with a means to measure the quality of 
the available evidence and the impact of additional investigative actions. The 
current focus is on the generation of Bayesian Networks to calculate the 
probability of plausible states and events in the scenario space and the use of 
information theory to compute entropy in the scenario space as an assessment of 
quality of evidence before or after evidence collection efforts [27].  

6  Application 
The theoretical ideas presented in the previous two sections have been developed into a 
prototype decision support software. This section briefly discusses how this prototype is 
employed. 

6.1  User input 
After the initial set up of the application, which involves choosing a knowledge base and 
starting a new session, the user/investigator must specify which facts and evidence are 
available in the given case. As it is not reasonable to assume that the user can specify 
these by means of formal predicates matching those in the knowledge base, the 
knowledge base contains one or more taxonomies for both facts and evidence.  

 



 
Figure 10:  Interface for entering facts/evidence 

For ease of reference, multiple taxonomies may organise the same set of facts or 
evidence according to different perspectives. Within each taxonomy, evidence is 
organised according to various distinctive attributes, such as the type of object that 
constitutes the evidence or the evaluation method that generated it. Once the user has 
found an item that corresponds to the appropriate piece of evidence, (s)he is required to 
enter some further details to help to uniquely identify the people and objects involved in 
the piece of evidence. Figure 10 shows a screenshot of the application as a user enters 
the details of a particular piece of evidence. 

6.2  System output 
Once all the available evidence and facts have been entered into the system, the user 
may choose to generate the scenario space. Once entered, three types of analysis become 
available. 

First, the system can display the hypotheses consistent with the available evidence, 
and which plausible scenarios support them. Figure 11 shows a screenshot of the 
application where the hypotheses are displayed in a taxonomy. As indicated, the 
software has identified three hypotheses that are consistent with the evidence: suicidal 
death, homicidal death and accidental death. Clicking on a hypothesis causes the 
interface to display the minimal scenarios that support the selected hypothesis, and 
clicking on one of the displayed scenarios causes that scenario to be shown 



 

 
Figure 11:  Navigating scenarios according to hypotheses 

Currently, scenarios can be visualised in two different ways. The default approach 
summarises the scenarios by listing the assumptions they are based on and the 
hypotheses they support. This is a good representation to quickly identify the distinctive 
features of a scenarios, as it hides the underlying causal reasoning. Another view of a 
scenario represents a causal hypergraph, similar to the one shown in Figure 3. Causal 
hypergraphs are particularly suitable for describing causal reasoning, and therefore they 
are a useful tool to explain a scenario to the user. 

 



 
Figure 12:  Querying the scenario space 

Secondly, the user can query the system for scenarios that produce certain evidence 
and support certain hypotheses. This is a useful facility for what-if analysis. For 
example, the investigator might note that a “cutting instrument”, say a knife, has been 
recovered from the crime scene and wonders whether this rules out accidental death. As 
Figure 12 demonstrates, the system can answer this type of question by requesting it to 
search for a scenario that supports the available evidence, the discovery of a knife near 
the body and the accidental death hypothesis. In response, the system generates such a 
scenario by suggesting that the victim may have engaged in autoerotic activities and 
aimed to use the knife to cut the rope. 

 



 
Figure 13:  Additional plausible investigative actions 

Finally, the decision support system can suggest additional pieces of evidence that 
may be collected if a given scenario were true. Whenever the user has selected a 
scenario generated by the system (using one of the aforementioned two facilities), (s)he 
may request additional evidence that could be discovered if the selected scenario were 
true. In response, it will display the dialog box shown in Figure 13, which shows the 
additional evidence and the investigative actions required to uncover it. 

7  Related work 
Section 2 has highlighted some of the difficulties of major crime investigation. 
Generally speaking, crime detection and investigation is a complex problem, involving 
the collection and maintenance of large amounts of data and expert knowledge. As a 
result, a significant body of research has focused on the development of decision support 
systems (DSSs) to aid law enforcement agencies in this task. Although a detailed 
literature review is beyond the scope of this paper, this section presents a brief overview 
of related work. 

7.1  Evidence Evaluation 
A number of different strands of research has focused on reasoning about evidence (see 
[42] for a detailed survey).  

Argumentation research has devised methods [46, 51] and tools [7, 30, 48] to model 
legal reasoning. This has allowed recent studies into the representation and 
categorisation of forms of legal arguments about evidence [50] and its relation to logics 
for defeasible argumentation [36]. While the system presented here automatically 
generates relatively simple representations of scenarios that are not necessarily suitable 
for use in the courtroom, these causal models, which describe how hypothetical 



scenarios are related to evidence, may form a useful input in the construction of valid 
legal arguments. 

Probabilistic expert systems employ Bayesian inference to compare two alternative 
hypotheses, typically a theory suggested the prosecution with one proposed by the 
defence, based on the available evidence [9]. As such systems rely on prespecified 
Bayesian Networks [34], they are used to evaluate individual pieces of evidence in terms 
of how well they support one proposition over another. Typical applications of such 
systems include the analysis of possible cross-transfer of DNA material [2], and the 
profiling of mixtures of DNA material [33]. Recently developed methods for 
compositional modelling of Bayesian Networks [28] will enable the integration of such 
probabilistic knowledge into this work. 

Other important research concerns the validity of evidence rather than its 
implications. ADVOCATE, for instance, is a expert system designed to evaluate the 
credibility of eye-witness statements based on the conditions in which their observations 
were made [4]. 

7.2  Decision Support Systems in Crime Investigation 
In addition to systems that reason about evidence, a number other types of DSS for 
crime investigation have been developed. 

One group of DSSs formalise expert knowledge in the form of a conventional expert 
system [37]. For example, AREST [3] is an expert system designed for profiling 
suspects of armed robberies. InvestigAide B&E [47] is an expert systems designed to 
support the processing and investigation of breaking and entering cases. It supports 
activities such as gathering and recording case data and provides useful information such 
as suspect characteristics and similar cases. 

Another group of DSSs apply knowledge discovery and data mining techniques to 
databases containing past cases, police reports and intelligence data. The approaches 
employed range from data visualisation [20] to the use of more formal statistical analysis 
[15]. Good examples of mature applications in this area include the COPLINK suite of 
tools [6, 21] and RECAP [5]. COPLINK is a tool aimed at providing an information 
extraction facility that integrates data from multiple police forces. RECAP (REgional 
Crime Analysis Program) is a tool that seeks out patterns of similar modus operandi in 
an effort to identify organised crimes. 

A final group of systems employ Case Based Reasoning (CBR) methods to help 
investigators discover similar past cases and solution methods that correspond to those 
past cases. In the context of crime investigation, CBR systems usually perform analysis 
tasks by means of predefined sets of information. They are particularly suitable for 
analysing volume crime and repeat victimisation [38, 39]. Typical applications include 
the categorisation of the risk of electronic commerce transactions [24], the categorisation 
of crimes and retrieval of cases with similar profiles in burglary [40], the differentiation 
between hostile intrusions of computer systems and other anomalous transactions [16] 
and identification of crimes with similar modus operandi and potential repeat offenders 
[45]. 



8  Conclusion and future work 
This paper has introduced a novel type of decision support system for crime 
investigation, one capable of generating hypothetical crime scenarios from evidence and 
supporting the creation of evidence collection strategies. It tackles the problem by means 
of a knowledge base that captures the first principles underlying human understanding of 
how events can generate certain pieces of evidence. An algorithm has been presented 
that employs this knowledge base to abductively create plausible causes of individual 
pieces of evidence and compose them into a network that represents a space of plausible 
scenarios. The paper has also described a number of techniques to analyse a generated 
scenario space to support the formulation of evidence collection strategies. 

The work presented here has some limitations that must be addressed in future work. 
Most importantly, the DSS is not yet able to produce evidence collection strategies. 
Evidence collection strategies are effective if they are able to reduce the number and 
diversity of most likely scenarios. As such, this feature requires a means of measuring 
the likelihood of scenario, which is not present yet in the existing work. 

A number of different approaches are possible. The conventional approach, based on 
Shannon’s information theory [44], is the maximal entropy reduction technique, 
amongst others, applied to classifying faults in the model based diagnosis literature [12]. 
This approach requires that the likelihood is measured by probabilities and this can be 
accomplished by extending the existing approach with a compositional modeller for 
generating Bayesian Networks, such as the one presented in [27].  

The use of Bayesian inference methods not only allows a straightforward extension 
of the work presented here, it is also very similar to the evidence evaluation 
methodology favoured by the forensics statistics community and some major forensic 
laboratories such as the Forensic Science Service [9]. However, it is also rather 
controversial [41]. Therefore, symbolic reasoning methods, such as symbolic preference 
handling methods [13], can be employed as alternative method of measuring the 
likelihood of scenarios. However, new methodologies for evaluating the effectiveness of 
evidence collection strategies must be developed if the likelihood of scenarios is 
assessed by a symbolic approach. 

Another important extension involves the representation of events and states in time 
and space. Although the discussion in this paper has avoided these issues, the presumed 
spatial and temporal location in which hypothetical states and events occur can have a 
significant effect on the likelihood of scenarios. In order to incorporate such 
considerations in the present work, the existing DSS will have to be extended with 
representational formalisms that can describe qualitatively distinct locations of objects 
and events in time and space, as well as corresponding inference mechanisms. Event 
calculus [29] and situational calculus [31] are examples of potential approaches to 
implement this feature. 

Finally, it should be pointed out that while the example knowledge base employed to 
illustrate the ideas in the paper contains some realistic and original example, it is by no 
means complete. In future work, this example will be extended substantially and a tool 
will be developed to do edit, verify and validate this and other knowledge bases. 
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