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Abstract

The General Diagnostic Engine (GDE) postulates
plausible faults from given measurements by making
extensive use of an Assumption based Truth Main-
tenance System (ATMS). However, it relies upon an
entropy-based uncertainty calculus, separate from the
ATMS, to compute optimal locations for measurements
gathering. The practical usability of GDE is thus re-
stricted by the statistical information required and by
the strong assumptions necessary for making subse-
quent simplifications. In this paper, a simple numeric
certainty calculus is integrated with the ATMS. The
integrated ATMS, capable of handling uncertain as-
sumptions, is employed as the unified basis upon which
to guide the measurements gathering process of the de-
pendent diagnostic engine. This enables finding faults
in uncertain environments, while reducing restrictive
assumptions on component failures.

Introduction

The General Diagnostic Engine (GDE) (de Kleer, J.
& Williams, B.C. 1987) is a typical system for model-
based multiple fault diagnosis of real-world artefacts.
It makes extensive use of an Assumption-based Truth
Maintenance System (ATMS) (de Kleer 1986) to gen-
erate a minimal set of fault hypotheses. Additionally,
GDE employs a measurement proposer to choose loca-
tions in the artefact being diagnosed to acquire further
information, in order to discriminate between the gen-
erated fault hypotheses. As the original version of the
ATMS is not able to cope with varying degrees of cer-
tainty of the assumptions, a separate numeric uncer-
tainty calculus based on the entropy theory is used to
construct this measurement proposer. However, this
uncertainty calculus limits the practical applicability
of the GDE because, in its general version, it requires
a good amount of statistical information and its sim-
plifications are relied upon strong assumptions such as
faults occurring independently and with an equal small
probability.

An ATMS enables a problem solver, such as a diag-
nostic engine to keep track of the assumptions under-
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lying the inferences it makes and to explore the conse-
quences of changes in these assumptions. In the stan-
dard ATMS, assumptions are deemed to be either true
or false. Yet, integrating a numeric uncertainty han-
dling mechanism into the ATMS can significantly ex-
tend its capabilities. For example, sets of assumptions
supporting inferences can then be ranked, thereby pro-
viding a means of grading the fault hypotheses in a
diagnostic system. Several alternative versions of such
an extended ATMS have been suggested, but some of
them are unsuitable for GDE-style diagnosis, whilst the
others involve computationally costly calculations.

In this paper, a basic certainty factor calculus
(Buchanan, B. & Shortliffe, E.H. 1984) is incorporated
into the ATMS, resulting in a simple certainty factor
based ATMS, named CF-ATMS. An alternative mea-
surement proposer is then suggested that directly uses
the numeric information provided by the CF-ATMS for
measurements gathering. The paper is arranged as fol-
lows. After briefly describing the notations of the stan-
dard ATMS upon which the present extension is based,
the next section presents the formulisation of the CF-
ATMS. In the third section, the role of the ATMS and
that of the measurement proposer in the original GDE
are given and, then, a novel measurement proposer that
utilises the numeric certainty information provided by
the CF-ATMS is presented. The fourth section illus-
trates how this measurement proposer can help a GDE-
style system in finding faults without involving complex
calculations. Conclusions of the work are provided in
the final section.

A Certainty Factor Based ATMS
Assumption-based TMS

The task of the ATMS is to maintain a database of jus-
tifications for a problem solver, say a constraint propa-
gator in a GDE-style diagnostic engine. To this end, it
stores each datum 2 in which the problem solver is in-
terested as a node n,. The actual problem-solver datum
may be utilised to identify the node, but is of no interest
to the ATMS. Certain nodes are registered as assump-
tions, representing the primitive data, upon which the
problem solver makes inferences.



The problem solver incrementally presents the ATMS
with justifications. A justification is a material im-
plication in which the antecedent is a conjunction of
non-negated nodes and the consequent is a non-negated
node: ny Ans A ... ANy, — Ne

The problem solver also informs the ATMS of the
sets of nodes which cannot be true at the same time.
Such sets are called no-goods. A no-good represents
an inconsistent conjunction of nodes, a conjunction of
nodes from which false can be derived. For this reason,
it is stored as a justification of the specific node n
which represents false.

An environment E is a set of conjunctively joint as-
sumptions {ai,as,...,ar}. A node n is said to hold in
an environment F if its truth can be derived from FE
given the set of justification J stored in the ATMS. We
write: E,J Fn

An environment is said to be inconsistent if false can
be derived from it. Consequently, within the ATMS, an
environment F is said to be inconsistent if: E, 7 Fn

For each node n, the ATMS computes a label £(n). A
label £(n) is a set of (disjunctively joint) environments
{E1, Es, ..., E;} which has the following properties:

e A label is consistent: VE; € L(n) : E;, J ¥ ny

e A label is sound: VE; € L(n) : E;, T Fn

e A label is complete: VE',3E; € L(n) : E',J Fn =
E, CE

A label is minimal: VE;,E; € L(n) : E; # E; =
E; ¢ Ej

Requirements of an uncertainty calculus
for fault diagnosis

The extended ATMS proposed in this paper is to
be utilised in conjunction with a GDE-style problem
solver. While this problem solver propagates the avail-
able data on an artefact through the modelled con-
straints, the ATMS maintains a number of plausible
states of each connection in the artefact and the en-
vironments under which these are true. Given the
involvement of uncertain assumptions, the extension
must provide a method for numeric evaluation of the
certainties of those environments.

Any certainty calculus that is employed for such a
purpose should possess a number of desirable prop-
erties. First, it should not increase the complexity
of what is already a computationally demanding algo-
rithm. Second, an certainty factor of a node (label)
should not only depend upon the certainties of the in-
dividual assumptions that support (are contained in)
it, it should also depend upon the number of compos-
ite assumptions. This requirement is justified as long
as the system is supposed to model a significant de-
gree of independence between component failures, as is
commonly assumed in GDE style systems. This latter
property can be formalised as follows, under the as-
sumption that a certainty factor expresses a degree of
truth (an assumption from which later discussions will
deviate):

e A numeric evaluation () of the degree of truth of a
conjunction should tend to decrease with the num-
ber of conjuncts involved, except when dealing with
absolute certainties:

Yai,as,...yGp, Gpi,
Y(ar Aaz Ao Aap) > 0AY(ap+1) < 1
U (1)
Y(ar ANaz A A ay) >
v(ay Aag A oo Ay A apgr)

e Similar to the previous issue, a numeric evaluation
(7) of the degree of truth of a disjunction should tend
to increase with the number of disjuncts involved,
except when dealing with absolute certainties:

Yai,as,...,an, Gpti,
y(a1 Vas V...Vap) <1Avy(apt1) >0

U (2)
v(ay Vas V..Vay,) <
v(ay Vas V...Va,Vani)

Several versions of an ATMS with an integrated
numeric uncertainty calculus have already been de-
vised. Dubois, Lang and Prade (Dubois, H., Lang, J.,
& Prade, H. 1990) have redefined the ATMS within
the framework of their possibilistic logic. Bernasconi,
Rivoira and Termini have outlined a similar definition
(Bernasconi, C., Rivoira, S., & Termini, S. 1990). Both
approaches use the conventional min/max operators in
fuzzy logic for the interpretation of conjunctions and
disjunctions. The problem with these operators is that
they model a strong dependence between component
failures because the certainty value of a conjunction
(disjunction) is not decreased (increased) for the possi-
bility that one of the conjuncts (disjuncts) is true while
the others are not.

Other approaches are those of Laskey and Lehner
(Laskey, K.B. & Lehner, P.E. 1988), Pearl (Pearl 1988)
and Provan (Provan 1988) who have independently in-
tegrated the ATMS with the Dempster-Shafer theory
of belief functions, and that of Srinivas (Srinivas 1994)
who has extended the ATMS with Bayesian probabil-
ity theory. Srinivas’ probabilistic ATMS can be ex-
tended for modelling correlated certainty values (prob-
abilities) between assumptions whereas the approaches
based on the Dempster-Shafer theory assume indepen-
dent assumptions. However, in the probabilistic ATMS
complex Bayesian networks must be constructed for ex-
pensive probability propagation, and the calculation of
beliefs in the Dempster-Shafer theory also demands a
high computational cost.

Integration of certainty factor calculus
with ATMS

The requirements of an uncertainty calculus for fault
diagnosis as discussed above can be satisfied, however.
To deal with uncertain assumptions, similar to all other



hybrid ATMSs mentioned earlier, every assumption a
within the CF-ATMS proposed herein is assigned a nu-
meric certainty value: a certainty factor C'F(a) € [0, 1].
These certainty factors are then propagated to all other
nodes and their labels (or sets of environments). As ar-
gued below, different from the other hybrid ATMSs, the
present method for propagating certainty factors does
not increase the order of complexity of the overall ex-
tended ATMS.

A justification-based approach to certainty factor
propagation traces the chains of inferences by means of
the set of justifications {Jn,, Jn,,..., Jn,} stored with
each node n. This set of justifications represents the
disjunction of the justifications J,, V Jp, V...V .J,, and,
therefore, the certainty factor of the associated node
CF(n,) equals opy(CF(Ju,), CF(Jn,), s CF(Jo)).
Each justification .J,,; represents a conjunction of nodes
ny A nay A .. A ng. Consequently, each justifica-
tion’s certainty factor CF(J,,) equals opa(CF(ny),
CF(ns),...,CF(ny))>.

However, this algorithm must be improved in order
a) to avoid double-counting separate but overlapping
disjuncts, and b) to account for inconsistent subsets of
justifications. This is because most instances of the
operators opy and opa other than maz and min do not
automatically check for these.

Logically, the justification-based approach traces
back the labels of the nodes by means of the justi-
fications. A label-based approach to certainty factor
propagation, on the other hand, computes a node’s
certainty factor relying solely on the label maintained
by the ATMS. When given a node n with as label
Ln) = {{ai; | 7 € {1,2,..,0e}} | i € {1,2,..,k}},
the label-based approach calculates its certainty factor
as CF(n) = opy¥_ (opalf, (CF(as;))). Because the ap-
plication of the laws of distributivity for the logical ’and’
and ’or’ connectives is equivalent to that for the alge-
braic 'min’ and 'max’ operators, the justification-based
and label-based approaches produce the same certainty
factors for nodes, if opy and op, are interpreted using
the operators 'max’ and 'min’ respectively.

Unfortunately, as indicated earlier, the traditional
min and mazx combination operators for logical expres-
sions are not useful for the present purposes. The cer-
tainty factors computed with these operators discard a
large amount of uncertainty information. In order to
remedy this situation, other operators for op, and opy
should be used. The following alternative operators
(which are commonly utilised in fuzzy logics (Smith,
F.S. & Shen, Q. 1997)) have been experimented with:

e Conjunction operators:
Algebraic product opa(z,y) = zy

Lopy is the operator utilised to compute the certainty fac-
tor of a disjunction. In the original certainty factor calculus
opv = maz.

2op is the operator utilised to compute the certainty fac-
tor of a conjunction. In the original certainty factor calculus
opan = min.

Bounded product opa(z,y) = maz(0,z +y — 1)

z y=1
Drastic product opa(z,y) =< vy z=1
0 z,y<l1

e Disjunction operators:
Algebraic sum opy(z,y) =z +y — xy
Bounded sum opy (z,y) = min(l,z + y)

z y=0
Drastic sum opy(z,y) =< y =0
1 z,y>0

where z,y € [0,1]

It can easily be verified that the algebraic product
and sum and the drastic product and sum always meet
the requirements of 1 and 2. Bounded product meets
these requirements for sufficiently high certainty values
and bounded sum meets these requirements for suffi-
ciently low values, because otherwise, the certainty val-
ues are always truncated to 0 and 1 respectively.

The disadvantage of these alternative certainty fac-
tor calculi, which employ a combination of the operators
defined above, is that when they are utilised to compute
the certainty factors of the ATMS nodes, label-based
and justification-based computations are not guaran-
teed to produce the same results. Nevertheless, GDE
requires a numeric uncertainty calculus for computing
certainty factors attached to the candidates (straight-
forwardly derived from inconsistent environment sets)
in order to discriminate between them. Consequently,
the CF-ATMS implemented in the present work utilises
the label-based computation method.

In contrast with the other numeric extensions of the
ATMS, the CF-ATMS’ label-based computation of cer-
tainty factors does not increase the computational com-
plexity of the original ATMS implementation. An ef-
ficient ATMS implementation maintains a unique data
structure for each environment (de Kleer 1986). This
allows for the number of applications of the conjunction
operator in computing certainty factors to be reduced
to once per environment and per change of an assump-
tion’s certainty factor. Given that there are A assump-
tions in a CF-ATMS, there are 2* environments and 24
associated applications of the conjunction operator to
a set of assumptions while initialising the ATMS. Only
when the certainty factor of an assumption changes,
must 2(4~1) conjunctions be recalculated. However, in
applications for supporting model-based diagnosis, the
certainty factors of the assumptions given a priori do
not change during the diagnostic process. Similarly,
the corresponding disjunction operator needs to be ap-
plied only once per addition of a justification to a node.
Each such addition of a justification implies that the
disjunction operator is applied to a set of pre-calculated
environment certainty factors in addition to the set-
operations required for updating the label of that node.

Besides, the actual calculations necessary for cer-
tainty factor propagation are straightforward. This
presents a main advantage of CF-ATMS in assisting the
problem solver which makes use of it to minimise the



computational efforts involved. In the next section, it is
shown how the certainty factors produced by this CF-
ATMS are useful within the framework of a GDE-style
diagnostic system (though the CF-ATMS may also be
used in conjunction with other types of problem-solving
tasks).

Fault Diagnosis with CF-ATMS
The General Diagnostic Engine

GDE is a system for model-based diagnosis of multiple
faults. An artefact which is diagnosed by it is mod-
elled by means of components and connections between
these components. The description of a component for-
malises the relationship between the respective contents
of the connections attached to the component. Within
a diagnostic session the content or value of a connec-
tion must not change with respect to the same inputs
to the artefact, as GDE is not designed to cope with
time-varying behaviours.

In general, a diagnostic session in GDE consists of
an iteration of steps. At each step, an additional value
of a connection is measured. GDE’s constraint prop-
agator utilises this value to derive possible values for
the unmeasured connections. The constraints are those
formal relationships between connections stored in the
description of the components, representing the model
of the artefact. All possible candidate-explanations for
observed faulty behaviour are then generated. Next,
the measurement proposer calculates the likelihood of
each candidate and computes which of all possible next
measurements differentiates best between the available
candidates.

At each iteration of a diagnostic session, candidate-
explanations are easily computed with the help of an
ATMS. The role of the ATMS in GDE consists of
discriminating between the consistent and inconsistent
sets of assumptions underlying the inferences made
when propagating measurements through the modelled
constraints. To this end, for each component in the
model of the artefact, an ATMS-assumption is created
which represents the presumption that the component
behaves correctly with respect to its design intention.
For each plausible value in a connection, an ATMS-node
is maintained. Naturally, each couple of different values
for the same connection corresponds with an ATMS-
nogood. Additionally, every inference made through
constraint propagation is passed on to the ATMS by
means of justifications. This information is utilised by
the ATMS to compute a consistent, sound, complete
and minimal label for every node.

A label now represents which configurations of cor-
rectly functioning components suffice to explain the
value of the associated node for the relevant connec-
tion. The label of the no-good node n represents the
sets of those components which cannot behave prop-
erly at the same time. These sets are called con-
flicts and are used to form candidates. A candidate
is a set of components representing a hypothesis of

each such component being faulty, which is sufficient
to explain the observations in the artefact. Given that
L(ny)={En,1,En, 2, ..., En, p} acomplete set, C'S, of
candidates can be specified by:

CS = {{01,02, ...,Cp} |
c1 € Ep 1,60 € By o,.cp € By}

From this set only the minimal candidates are main-
tained as these are sufficient to completely specify all
candidates. That is, VC; € CS, C; is removed from CS
if 30] e CS,C; C Cj, where i # j.

GDE’s measurement, proposer suggests which con-
nection to measure next in order to discriminate be-
tween fault candidates, while minimising the total num-
ber of measurements required. For this purpose, GDE
utilises an entropy-based one-step look-ahead strategy.
It chooses the connection x; which will result in a min-
imised expected entropy H(x;). Given that the con-
straint propagator takes into account m; values v;1, vi2,
..y Uim,; for a connection z;, the expected entropy asso-
ciated with that connection is computed by:

He(zi) = ip(wi = vie) H (z; = vir,)
k=1

This method is critically dependent on the availabil-
ity of failure probabilities for system components. Ad-
ditionally, this method can be computationally very ex-
pensive if there are many connections with a substan-
tial number of plausible values to consider. An alterna-
tive version of this method exists which simplifies the
computation of H.(z;), yet it assumes that all compo-
nents fail independently with an equally small probabil-
ity. Obviously, these assumptions are rather restrictive
for many real applications.

The overall design of the following certainty factor
based GDE-style diagnostic system is similar to that of
the GDE described above. However, the two systems
differ in terms of the numeric uncertainty calculus un-
derlying the measurement proposer.

Additional information gained using
CF-ATMS

Given that each assumption is assigned a certainty fac-
tor or degree of belief, the certainty factor computed
for the label of a node expresses the certainty degree of
which for at least one of the environments supporting
that node all assumptions are true simultaneously.

For the purpose of diagnosis, certainty factors as-
signed to candidates must be computed. The degree
of belief in a candidate equals that in which all com-
ponents in the candidate are malfunctioning simulta-
neously. If each assumption A; is assigned a degree
of belief that the associated component is faulty cf; =
CF(~ a;), then the certainty factor of a candidate can
be calculated by means of the label-based computation
as explained before: CF(candidate:{ai,as,...,am}) =



CF(~ a1\ ~ as N\ ..\ ~ ap,) = opa(cfi,cfa, .y Cfm).
This is why label-based calculus is used herein.

It is worth pointing out that a candidate’s certainty
factor would also be computable if degrees of belief in
the truth of the assumptions were assigned. For exam-
ple, if opy = max and opn = min (however unsuit-
able these operators actually are), then CF(~ ajA ~
as N .. N ~ an) = CF(~ (a1 Vaz V ... Vap)) =
—CF(a1VasV...Van). Nevertheless, as the present in-
terest is in the determination of component failure, the
certainty factor of a candidate should express belief in
the falsehood of the associated assumptions of correctly
functioning components.

Certainty factor based measurement
proposer

As with GDE’s measurement proposer, for each unmea-
sured connection (or variable), z;, the diagnostic sys-
tem’s constraint propagator computes a set of feasible
values V; = {v;1, via, .., Uim; } and the conditions (la-
bels) under which they are true. V; is made exhaustive
by including an allowed value in it, representing all val-
ues which were not predicted by the constraint propa-
gator. If one of these values v;; is true, the union of
those labels supporting all other values are conflicts:

m;

T; = V55 & (Uk:I k#jﬁ(xi = 'Uik) = nl)

Each of these potential conflict sets (one for each antic-
ipated value of the variable) is then transformed into a
set of minimal candidates. For each resulting candidate
Cix a certainty factor CF(Cy) is calculated using the
method previously described.

The question is now how to make an informed pro-
posal for the location of the next measurement, such
that the largest part of the search space of potential
faults can be eliminated. If working with probabilities,
entropy theory would solve the problem as GDE’s mea-
surement proposer does. Yet, it is imperative to recog-
nise that probabilities are not used and that different
decision rules apply.

A heuristic underlying the present approach is that
the average of beliefs in found faults tends to increase
if the certainty factors attached to the candidate sets
that are associated with a given connection are all high.
Also, the number of candidate sets eliminated by a sin-
gle measurement should be in proportion to the number
of possible measurement outcomes to consider. In this
way, the measurement chosen will, by finding one value,
eliminate many other values and their corresponding
plausible candidates, thus reducing the search space to
a substantial extent. The idea behind the entropy the-
ory based method that is used by the GDE is in fact
very similar.

The implementation of these heuristics consists of the
use of a metric in proportion to the expected total belief
of all the candidate sets which will be eliminated by
taking a measurement of the associated connection or
variable:

m

i1
F(C,
2 CF(Cw) (3)
That is, the best location for getting the next measure-
ment is at the connection which maximises the above
metric. However, occasionally, all plausible candidates
may be associated with the outcome of one measure-
ment at a certain connection, and it is possible that
this outcome is the actual value contained in the con-
nection. Obviously, measuring such a connection is not
likely to refine the diagnosis effectively. Yet, the single
high CF(Cj) may be sufficient to cause this connec-
tion’s total belief to get the highest rank. Therefore,
the following weighted average should be used as the
metric instead:

m

i1
— > wir.CF(Cy) (4)
tok=1

m

where w;y, is the weight attached to possible value k of
connection or variable .

Each weight appearing in expression (4) should be
in proportion to the degree of certainty that the corre-
sponding value is not to be measured. Since the method
should work by estimating the total certainty factor
mass that will be eliminated by measuring a variable,
values that have a higher chance of being eliminated
from consideration merit a higher weight.

Under the closed world assumption, a node is false
if its label is false. Given that a node’s label equals
{{aij | Jj € {1,2,...,ti}} | 1 € {1,2,...,8}}, then it is
false if:

~ (VA a) BT
or
Vit (~ag) BT

Therefore, the certainty factor for falsehood of a label
can be computed by:

opni=1 0Dy OF (~ aij)

where CF(~ a;j) equals the certainty factor assigned
to the negation of the assumption a;;, i.e. the degree
of certainty of the associated component being faulty.

Sample Runs

In order to test the CF-ATMS and a GDE-style system
that incorporates the CF-ATMS in it, both have been
implemented and applied to a number of representative
problems. Here, the familiar example of Figure 1 is used
to illustrate the functioning of the diagnostic system.
In this example, it is assumed that the certainty fac-
tor attached to the malfunctioning of each component
is 0.1 (though different certainty factors can be assigned
to different components). To illustrate the basic ideas,



222 'Multiplier-1 (M1) | X
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CF=0.1
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Figure 1: A familiar example

suppose that the algebraic product conjunction oper-
ator, the traditional 'maximum’ disjunction operator,
and the heuristic metric given in expression (3) are used
to perform the diagnosis.

Given the available measurements for A, B, C, D, E,
F and @, the constraint propagator computes all pos-
sible values for X, Y and Z and the ATMS maintains
under which sets of assumptions each propagated value
is true. At this stage, the content of the ATMS for the
unmeasured variables looks as follows:
<X =4, label: {{M2, A1}, {M3, A1, A2}}>
<X =6, label: {{Mi}}>
<Y =4, label: {{M1, Al1}}>
<Y =6, label: {{M2}, {M3, A2}}>
<Z =6, label: {{M3}, {M2, A2}}>
<Z =8, label: {{M1, A1, A2}}>

For each possible value of each variable, the system
generates the conflict set associated with that value
and translates it into a set of minimal candidates.
For variable X, for example, X = 4, X = 6 and
(X # 4) A (X # 6) are the plausible values consid-
ered. The conflict sets for these potential outcomes
are {{M1}} for X = 4, {{M2, A1}, {M3, A1, A2}}
for X = 6 and {{M1}, {M2, A1}, {M3, A1, A2}} for
(X # 4) A (X # 6). The minimal candidate sets for
X’s potential measurement outcomes are {{M1i}} for
X =4, {{a1}, {M2, A2}, {M2, M3}} for X = 6 and
{{M1, A1}, {M1, A2, A2}, {M1, M2, M3}} for (X #
4) A (X # 6). These minimal candidate sets have 0.1,
0.1 and 0.01 respectively as their corresponding cer-
tainty factors. These certainty factors are then com-
bined into a single heuristic metric value as follows:
SL(OF{{m1}} + CF{{a1}, {M2,A2}, {M2, M3}} +
CF{{M1,A1}, {M1 A2,A2}, {M1,M2,M3}}) = 2(0.1 +
0.1 + 0.01) 0.14,
where for instance CF{{A1},{M2, A2} {M2,M3}} = 0. 1
is calculated such that CF{{A1},{M2,A2},{M2,M3}} =
maz{0.1,0.1 x 0.1,0.1 x 0.1} = 0.1 The metric values
for Y and Z can be computed in the same way and
these are 0.074 and 0.08 respectively. From this, the
next measurement should be made at position X.

This result is interesting because the only single com-
ponent faults that may fully explain the behaviour ex-
hibited in the device of Figure 1 are Multiplier-1 or

Adder-1 being faulty. These two components are con-
nected at X, however. If one of these really fails, mea-
suring X is the only way to distinguish between them.
Measuring Y or Z would only enable us to differentiate
between less certain multiple fault candidate explana-
tions. Since variable X differentiates between the two
single faults, the result has a very intuitive appeal in
that single faults are usually more likely to occur than
multiple faults. It is also important to notice that this
result is the same as a sample run of the original GDE
on the same device (de Kleer, J. & Williams, B.C. 1987)
(where the assumption of components failing indepen-
dently has to be made). Additionally, the computation
effort involved in the present approach is very limited.

Finally, in order to show that the present proposal
works even if device components fail with different
rates, let us examine another diagnostic problem. The
device under this consideration consists of a sequential
construction of components as illustrated in Figure 2.
Given the values in the first and last connections and
different certainty factors attached to different compo-
nents in the sequence, the diagnostic system biases its
selection of measuring positions towards the compo-
nents which are more likely to fail. This permits the
system to reduce the total number of measurements re-
quired to locate a faulty component.

However, when the components which are more likely
to fail appear to function correctly, the diagnostic sys-
tem recovers from its bias and focusses its search to-
wards the faulty sub-sequence of less error-prone com-
ponents. Indeed, such an observation causes the candi-
dates containing the more error-prone components to be
eliminated from consideration. Consequently, the can-
didates causing the bias are no longer involved in the
computation of a variable’s heuristic metric, and this ef-
fectively removes the bias from the diagnostic system’s
future decisions.

Should the certainty factors become equal for all com-
ponents, the system will equivalently perform a binary
search for a faulty component. If the measurement in
the middle of the (sub-)sequence under investigation
differs from both ends, then the system continues its
search in both halves of that (sub-)sequence separately
in order to locate multiple faults.

—Equal-1-Equal-2-Equal-3

I

—

Equal-4|- Equal-5-Equal-6

I

—

Equal-7 -Equal-8 Equal-9—

Figure 2: A sequencial device



Conclusion

This paper has presented an approach to incorporating
a simple certainty factor calculus into the Assumption-
based Truth Maintenance System for handling uncer-
tain assumptions. Different operators useful for the in-
terpretation of the required logic (conjunction and dis-
junction) connectives are provided. The resulting CF-
ATMS has been employed as the dependency recording
tool of a General Diagnostic Engine style system, and a
measurement proposer has been proposed which utilises
the certainty factor information produced by the CF-
ATMS. The main advantage of this system is that it
requires only weak assumptions on component failures.
As demonstrated by experimental results, the new mea-
surement proposer is able to effectively guide the diag-
nostic process in gathering evidence with simple com-
putations, thereby offering the potential for complex
artefacts to be diagnosed.
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