
A Calculus of Partially Ordered Preferences
for Compositional Modelling and Configuration

Jeroen Keppens and Qiang Shen
Centre for Intelligent Systems and their Applications

The University of Edinburgh
{jeroen,qiangs}@dai.ed.ac.uk

Abstract

Preference elicitation to support solving synthesis problems in
certain domains (e.g. automated ecological model construction)
is inhibited by a severe lack of knowledge about the criteria that
motivate decision making. Yet, even in these domains, humans
are able to provide some partial ordering of their preferences,
based on past experience and personal opinion. Working towards
an efficient representation and reasoning mechanism with such
partial preference information, this paper introduces a qualitative
calculus of partially ordered preferences that is rooted in order
of magnitude reasoning. It then integrates this calculus in a dy-
namic constraint satisfaction problem. A solution algorithm for
the resulting dynamic preference constraint satisfaction problem
is also presented. To demonstrate the ideas, the proposed tech-
niques are applied to sample compositional modelling and con-
figuration tasks.

Introduction
Many synthesis problems, such as configuration and compo-
sitional modelling (Falkenhainer, B. & Forbus, K.D. 1991;
Keppens, J. & Shen, Q. 2001) occur in a setting that is both con-
strained by hard requirements and affected by the preferences of
a decision maker. Often, the assembly of an artifact or a model
must obey certain physical/mathematical laws and it must meet
the purpose for which it is being created. In the meantime, the
person who is to use the artifact or model may have personal
preferences with respect to the available artifact/model design
decisions. This must also be considered.

Dynamic constraint satisfaction problems (DCSPs) and the
corresponding solution algorithms (Mittal, S. & Falkenhainer,
B. 1990) are widely used in to solve configuration problems
(Birmingham, W.P., Gupta, A.P., & Siewiorek, D.P. 1992)
and compositional modelling tasks (Falkenhainer, B. & For-
bus, K.D. 1991; Keppens, J. & Shen, Q. 2000). However, ap-
proaches to integrate a DCSP with preferences to form a dy-
namic preference constraint satisfaction problem (DPCSP) are
limited. The ones that do exist rely on idempotent operators
(p ⊕ p = p) to combine preference valuations, thereby ignoring
the additive utilities or preferences derived from independent
features in an artifact or model.

In addition, methods for expressing and comparing prefer-
ence valuations in a way that is suitable for compositional mod-
elling and configuration tasks is an ongoing research issue. In
conventional decision theory, the possible outcomes of deci-
sions are assigned a utility or preference taken from a totally
ordered domain. Then, the decision maker considers the avail-
able options and selects the one that maximises the expected
utility that follows from the corresponding decision (Doyle, J.

Lotka−Volterra
model

Thomson’s
host−parasitoid model

Holling
model

Nicholson−Bailey
host−parasitoid model

Roger’s
host−parasitoid model

<

<

<

<

<

Figure 1: Sample partial preference ordering

& Thomason, H. 1999). Such an approach is desirable when a
prescriptive rational decision maker is to be implemented, for
example in an agent system. However, human decision-making
rarely follows this pattern (Tversky, A. & Thaler, R.H. 1990).

Current research addresses this by devising logics that help
model the decision making process (Delgrande, J.P. & Schaub,
T. 2000; Brewka, G., Benferhat, S., & Le Berre, D. 2002) and
preference elicitation methods (Ha, V. & Haddawy, P. 1997). In
certain domains, however, it is very difficult to derive a rational
reasoning process or to elicit the criteria underlying a person’s
preferences. In such cases, a more direct approach is required to
represent, combine and compare partially ordered preferences.

Consider, for instance, the problem of selecting an approach
to describe the interaction between a host population and a par-
asitoid population in ecological modelling. Knowledge on how
to model this phenomenon is incomplete, and it is difficult to
identify what knowledge is missing. Important approaches,
such as using a causal model that links partial DPCSP solutions
to desirable features (Boutilier, C. et al. 1997), are not appli-
cable in this domain because ecologists are often in disagree-
ment about the primitive features and the initial causal model.
Yet, ecologists may have subjective preference orderings over
the modelling choices that can be made. For example, figure
1 presents a sample preference ordering that some ecologists
may agree with and others may disagree with. As ecologists
have different preference orderings, they tend to build different
models to match these preferences.

In this paper, a preference calculus, rooted in order of magni-
tude reasoning (Raiman 1991), is introduced to conveniently de-
scribe preference orderings and to efficiently compare the pref-
erences. This calculus is then incorporated into the framework
of DPCSP and a basic solution algorithm is presented to solve
such problems. Its use is illustrated by means of sample com-
positional modelling and configuration problems.

Background
A classical hard CSP is specified by

• a set of attributes X = {x1, . . . , xn},

• a set of domains D = {D1, . . . ,Dn} with Di = {di1, . . . , dini }

for each attribute xi, and

• a set of compatibility constraints C, where a compatibility
constraint c over attributes xi, . . . , x j is a relation c : Di ×

. . . × D j → {>,⊥}.

A set of assignments {x1 : d1k1 , . . . , xi : diki , . . . , x j :
d jk j , . . . , xn : dnkn } is said to satisfy this compatibility constraint
c if c(diki , . . . , d jk j) = >.

A DCSP, as defined in (Mittal, S. & Falkenhainer, B. 1990),
is an extension of a hard CSP in which attributes can be ac-
tive and inactive. An attribute xi is said to be active (de-
noted by active(xi)) if and only if it is assigned a value
from its domain. The activity of attributes is governed by a
set of activity constraints A, which are defined via implica-
tions that establish conditions under which certain attributes
become active. A set of assignments {x1 : d1k1 , . . . , xm :
dmkk ,¬active(xm+1), . . . ,¬active(xn)} is said to satisfy an activity
constraint a if the conjunction of assignments is not inconsistent
with a, that is (x1 : d1k1 ∧ . . . ∧ xm : dmkk ,¬active(xm+1) ∧ . . . ∧
¬active(xn)), a 0 ⊥.

Configuration as a DCSP

According to (Mittal, S. & Frayman, F. 1989), a configuration
task is described by a specification of the desired properties of
the configuration and by a set of components, where each com-
ponent is defined by (1) a number of ports that connect it to
other components, (2) a set of constraints at each port restricting
the components that can be connected to it, and (3) other struc-
tural constraints. Such a task can be translated into a DCSP:

• The components normally be grouped in component classes,
such that the components that belong to the same class per-
form a particular function (in a different way) and they have
certain ports in common that connect it to the rest of the
system. As such, in the DCSP, each component class cor-
responds to an attribute xi ∈ X and defines the domain
Di = {di1, . . . , dini } of that attribute.

• The ports that the components connect to may be part of ev-
ery system, or they may become available as they are intro-
duced by other components. Such relations are translated into
activity constraints. For example, in a car configuration prob-
lem, the choice of airconditioner is only active if the car’s
engine can support airconditioning.

• The structural constraints in the system govern the combi-
nations of components that can be connected to certain ports.
Such restrictions are translated into compatibility constraints.

Compositional Modelling as a DCSP

According to (Keppens, J. & Shen, Q. 2001), a compositional
modelling task is described by a scenario, a domain theory and
certain requirements that specify what makes models of the sce-
nario adequate. A scenario is a high level specification of a sys-
tem of interest, such as a component-connection diagram. A
domain theory consists of a set of translation methods, called
model fragments, that turn descriptions of components and pro-
cesses into more detailed descriptions of these components and
processes. A compositional modeller aims to apply a combi-
nation of these model fragments onto the scenario in order to

turn it into a scenario model that meets the adequacy require-
ments. The problem of finding the right combination of model
fragments can be posed as a DCSP:

• The attributes of the DCSP correspond to so-called assump-
tion classes. Assumption class is the overloaded concept
used in compositional modelling to describe exhaustive sets
of mutually exclusive elements on the basis of which mod-
elling decisions are made. In some approaches, assumption
classes contain different model fragments describing alterna-
tive models of the same component or process (Nayak, P.P.
& Joskowicz, L. 1996; Levy, A.Y., Iwasaki, Y., & Fikes, R.
1997). In other approaches, assumption classes are design
decisions that the modeller must make. In this case, the as-
sumption classes are sets of alternative assumptions that may
underpin a model (Falkenhainer, B. & Forbus, K.D. 1991;
Keppens, J. & Shen, Q. 2000). Thus, when translating a com-
positional modelling problem into a DCSP, each assumption
class corresponds to an attribute and the contents of the as-
sumption class form the attribute’s domain.

• Similar to the component classes in the configuration task,
there may be activity constraints that govern the conditions
under which an assumption class is part of the solution to
the compositional modelling task. For example, in a compo-
sitional ecological modelling problem, an attribute denoting
the model for population growth is only active under the con-
ditions where an a variable describing population size exists.

• The model representation formalism and the requirements
imposed upon the adequacy of the scenario model restrict the
combinations of assumptions/model fragments that are con-
sistent. For example, in a systems dynamics model of an
ecological system, two different equations that compute pop-
ulation births in a different way can not be combined in the
same model. Such restrictions are translated into compatibil-
ity constraints.

Dynamic preference constraint satisfaction
The present work enriches the notion of DCSP, allowing the rep-
resentation and thereforth the solution of dynamic preference
constraint satisfaction problems (DPCSPs), by introducing to a
DCSP elements from valued constraint satisfaction (Schiex, T.,
Fargier, H., & Verfaillie, G. 1995). More formally, a DPCSP
extends a DCSP with a preference valuation p(xi : di j) ∈

�
for

each attribute-value assignment xi : di j, where
�

denotes the
domain of preference valuations. The preference of a (partial)
solution {xi : diki , . . . , x j : d jk j } is computed as

p(xi : diki , . . . , x j : d jk j) = p(xi : diki) ⊕ . . . ⊕ p(x j : d jk j)

where ⊕ is a commutative, associative, closed binary operation
on

�
. The preference values in

�
are partially ordered by ≺,

where pi ≺ p j (with pi, p j ∈
�

) is interpreted so that the as-
signment associated with p j has a higher preference over the
assignment associated with pi.

This use of preferences differs from other work employing
a qualitative preference calculus to solve synthesis problems,
such as (Boutilier, C. et al. 1997). In the latter, partial overall
preference orderings stem from preference orderings provided
over different feature attributes. Such an approach is well suited
for a domain where a generally agreed causal model exists, link-
ing attribute value assignments to features. This work focuses
on problems where no such causal model is available.

The solution of such a CSP consists of all sets of assign-
ments {xi : diki , . . . , x j : d jk j } that satisfy all given compatibility
and activity constraints, such that no other sets of assignments
{xp : dpkp , . . . , xq : dqkq } satisfy the compatibility and activity
constraints with p(xi : diki , . . . , x j : d jk j) ≺ p(xp : dpkp , . . . , xq :
dqkq). In the context of configuration and compositional mod-
elling tasks, the preferences describe the utility contributions
of the various components or modelling choices. As such, the
optimal solution to a DPCSP, corresponds to a preferred config-
uration or scenario model of a system.

DPCSPs differ from existing types of CSP in two respects.
Firstly, they integrate the features of dynamic CSPs with those
of valued CSPs, thus providing a richer representational frame-
work. Secondly, unlike the vast majority of valued CSPs, which
are types of so-called semiring-based CSPs (Bistarelli, S., Mon-
tanari, U., & Rossi, F. 1997), the preference combination oper-
ator ⊕ employed in this work is not assumed to be idempotent
(a ⊕ a = a). Idempotent combination operators are commonly
employed in valued CSPs because they enable the use of exist-
ing local consistency algorithms (Schiex, T., Fargier, H., & Ver-
faillie, G. 1995), which are known to be effective and efficient.
However, the semantics of idempotent combination operators
are not always suitable for synthesis problems. In DPCSPs, the
preferences express utility contributions of individual attribute-
value assignments, and each of these utility contributions is pre-
sumed to add to the overall utility (and therefore a ⊕ a should
be preferred over a, rather than a ⊕ a = a).

Order of magnitude preference calculus
In DPCSPs, valuations are attached to individual attribute as-
signments and are combined to obtain a preference value for
an emerging CSP solution. In poorly understood domains, the
knowledge about such valuations is often very limited. In par-
ticular, a direct comparison between preference values is usu-
ally not possible as they are not totally ordered. Therefore, this
work considers partial orderings of preferences, such as the one
shown in figure 1, and priorities amongst the preferences that
need to be optimised.

Order of magnitude reasoning (OMR) (Raiman 1991) pro-
vides a well-established framework for symbolic calculi to rea-
son about qualitative distinctions between quantities at differ-
ent levels of granularity. However, all existing OMR calculi
assume that the underlying domain of quantities is totally or-
dered. Thus, this section introduces a novel OMR calculus to
reason about partially ordered space of quantities.

Theoretical foundation
In this work, it is presumed that the user specifies a space �
of basic preference quantities (BPQs). BPQs are the smallest
units of preference valuation and are partially ordered. BPQs
are related to one another by the “order of magnitude smaller
than” relation �, the “equivalent order of magnitude as” rela-
tion ∼ and by the “smaller than within the same order of mag-
nitude” relation <. Note that the latter relation also implies that
the BPQs have an equivalent order of magnitude. Therefore,
∀p1, p2 ∈ � , p1 < p2 → p1 ∼ p2. Naturally, order of mag-
nitude smaller than relations are shared by all BPQs within the
same order of magnitude. That is,

∀p1, p2, p3 ∈ � , p1 ∼ p2 ∧ p2 � p3 → p1 � p3

∀p1, p2, p3 ∈ � , p1 ∼ p2 ∧ p3 � p2 → p3 � p1

BPQs are combined with one another to form so-called or-
der of magnitude preferences (OMPs). In general, the implicit
value of an OMP P equals the combination p1 ⊕ . . . ⊕ pn of its
constituent BPQs p1, . . . , pn. In what follows, an approach will
be presented to compute a partial ordering relation ≺ over the
OMPs, based on the constituent BPQs of the OMPs. Generally
speaking, the calculus is based on the following assumptions:
• Properties of ⊕: The combination operator ⊕ is assumed to

be commutative, associative and strictly monotonic (P ≺ P⊕
P). The latter assumption is made to better reflect the ideas
underpinning conventional utility calculi.

• Prioritisation: A combination of BPQs is never an order of
magnitude greater than its constituent BPQs. That is, given
the following ordering of BPQs p1 ∼ p2 ∼ . . . ∼ pn � p,
then

p1 ⊕ p2 ⊕ . . . ⊕ pn ≺ p
Also, distinctions at higher orders of magnitude are consid-
ered to be more significant than those at lower orders of mag-
nitude. That is, given an ordering of BPQs p1 ∼ . . . ∼ pm−1 ∼

pm ∼ . . . ∼ pn � pa < pb, then

p1 ⊕ . . . ⊕ pm−1 ⊕ pa ≺ pm ⊕ . . . ⊕ pn ⊕ pb

In terms of OMPs, it means that the DPCSP algorithm will
prioritise the optimisation associated with preferences of
higher order of magnitude.

• Strict monotonicity: Even though distinctions at higher or-
ders of magnitude are more significant, distinctions at lower
orders of magnitude are not negligible. That is, given an or-
dering of BPQs p1 < p2 and an OMP P, then p1⊕P ≺ p2⊕P,
irrespective of the orders of magnitude of the BPQs that con-
stitute P. This is a departure from conventional OMR. If the
OMPs associated with two (partial) DPCSP solutions contain
equal BPQs at a higher order of magnitude, it is usually de-
sirable to compare both solutions further in terms of the (less
important) constituent BPQs at lower orders of magnitude.

• Partial ordering maintenance: Conventional OMR is moti-
vated by the need for abstract descriptions of real-world be-
haviour, whereas the OMP calculus is motivated by incom-
plete information. As opposed to conventional OMR, OMPs
do not map onto the real number line. This implies that,
when the user states, for example, that p1 < p2 < p and that
p3 < p4 < p, the explicit absence of ordering information be-
tween the BPQs in {p1, p2} and those in {p3, p4} means that
the user can not compare them (e.g. because they are entirely
different things). Consequently, p1 ⊕ p2 would be deemed
incomparable to p3 ⊕ p4 (i.e. p1 ⊕ p2?p3 ⊕ p4), rather than
roughly equivalent.
These assumptions can be formalised in a more general defi-

nition of the ordering relation ≺. Let an OMP P = p1 ⊕ . . . ⊕ pn
be defined as a function fP : � → � : p 7→ fP(p) where � is
the set of BPQs, � is the set of natural numbers and fP(p) calcu-
lates the number of occurrences of p in p1, . . . , pn. For example,
given that P = pa⊕ pb⊕ pb, then fP(pa) = 1 and fP(pb) = 2. Let

� (p), p ∈ � , be the subset of � that contains the BPQs of the
same order of magnitude as p, i.e. � (p) = {pi | pi ∈ � , pi ∼ p}.
Then, the constituent BPQs of an OMP P1 that are within the
same order of magnitude as a given BPQ p, are less than or
equal to those of an OMP P2 if ∀pi ∈ � (p):

(fP1 (pi) +
∑

p j∈ � ,pi<p j

fP1 (p j)) ≤ (fP2 (pi) +
∑

p j∈ � ,pi<p j

fP2 (p j))

This is denoted by P1 4p P2. The constituent BPQs of an
OMP P1 that are within the same order of magnitude as a given
BPQ p, are less than but not equal to those of an OMP P2 if
P1 4p P2 ∧ ¬(P2 4p P1). This is denoted by P1 ≺p P2. More
generally, an OMP P1 is less than an OMP P2 if, for each dis-
tinct order of magnitude, either P1 is less than P2 for the BPQs
within this order of magnitude, or there are BPQs at a higher
order of magnitude for which P1 is less than P2:

P1 ≺ P2 ← ∀pa ∈ � , (P1 ≺pa P2) ∨ (∃pb ∈ � , pa � pb ∧ P1 ≺pb P2)

It can be shown that this definition of ≺ results in a partial order-
ing of OMPs that meets the aforementioned assumptions. It al-
lows for the case where two OMPs P1 and P2 are incomparable,
denoted by P1?P2, meaning ¬(P1 ≺ P2) ∧ ¬(P2 ≺ P1) ∧ (P1 ,

P2) holds. Note that P1 = P2 if P1 and P2 are a combination of
the same collection of BPQs.

small �

low �

large�

<< med

�v low high� � v high

� ex large
� big � v big

�ex small

l med h med

Figure 2: Sample OM preference scale

Figure 2 shows a sample set of BPQs and ordering relations
between them. Based on it, the following comparisons can be
made between OMPs:

h med ⊕med ≺ high (1)

h med ⊕med � med ⊕ l-med (2)

high ⊕ large?big ⊕ small (3)

Relation (1) is true because high is an order of magnitude
greater than h med and med. Relation (2) is justified by
(h med > med) and (med > l med). The OMPs in (3) are
incomparable because there is no path between big and high or
between big and large.

Comparison of order of magnitude preferences
To show the decidability of the above theory, this subsection de-
scribes an algorithm to compare two OMPs. First, some further
definitions must be introduced.

• The ordering relations < and�, which are responsible for the
ordering of BPQs are redefined for presentational simplicity
as sets of pairs:

O< = {(p1, p2) | p1 < p2}, O� = {(p1, p2) | p1 � p2}

• A cross-over quantity p with respect to an ordering relation
O ∈ {O<,O�}, which is expressed by co(p,O), is a BPQ for
which O defines at least two BPQs to be greater or smaller
than it. That is:

∀p,∃p1,∃p2, p1 , p2, ((p1, p) ∈ O ∧ (p2, p) ∈ O)∨

((p, p1) ∈ O ∧ (p, p2) ∈ O)→ co(p,O)

In the ongoing example, small and med are the two cross-
over quantities.

• A set of BPQs {p1, p2, . . . , pn} is regarded as a path from
pb to pe with respect to an ordering relation O, denoted by
path(O, pb, pe), if (pb, p1) ∈ O, (p1, p2) ∈ O, . . ., (pn, pe) ∈
O. For example, {med, high} is a path(O�, small, v high).

str(O�,med,med)

str(O�,small,med)str(O�,v low,med)

str(O�,med,v high) str(O�,med,ex large)

str(O�,ex small,small)

str(O<,low-med,high-med) str(O�,small,v big)

≺ ≺

≺ ≺

≺

≺

Figure 3: Ordering of strands

• The distance of a path equals the number of BPQs in it. That
is, the distance d(O, pb, pe) between two BPQs pb and pe with
respect to an ordering relation O equals the largest distance
of any paths between pb and pe. When there is a path from
pe to pb, then d(O, pe, pb) = −d(O, pb, pe). For example,
d(O�, small, v high) = 2.

• The space of BPQs � is partitioned into totally ordered sub-
sets of BPQs. That is, given an ordering relation O, a strand
str(O, p1, p2) is a path(O, p1, p2) such that

(co(p1,O) ∨ @p′ ∈ � , (p′, p1) ∈ O)∧

(co(p2,O) ∨ @p′ ∈ � , (p2, p
′) ∈ O)

and that path(O, p1, p2) does not contain any cross-over
quantities. Additionally, each cross-over quantity pc is said
to be the only member of the strand str(O, pc, pc). It can be
shown that the strands defined by an ordering relation entail
a unique partition of � .
The strands can be compared with one another based on the
BPQs within them. A strand s1 is smaller than a strand s2,
denoted s1 < s2, if:

∀p1, p2 ∈ � , p1 ∈ s1 ∧ p2 ∈ s2 → path(O, p1, p2)

Figure 3 shows the strands in the ongoing example and their
ordering.

Each BPQ p ∈ � can now be uniquely identified by the
strand str(O, p1, p2) of which it is a member and by the distance
d(O, p1, p). The tuple 〈str(O, p1, p2), d(O, p1, p)〉 is said to be
the label L(p,O) of p within O.

Continuing with the example, the following BPQ labels can
be computed:

L(small,O�) = 〈str(O�, small, small), 0〉

L(big,O�) = 〈str(O�, small, v big), 1〉

From this, BPQs can be compared in terms of their labels
with respect to an individual ordering O. Given two BPQ labels
L(p1,O) = 〈s1, d1〉 and L(p2,O) = 〈s2, d2〉, 〈s1, d1〉 ≥ 〈s2, d2〉
if:

(s1 < s2) ∨ (s1 = s2 ∧ d1 ≥ d2)

It can be shown that if L(p1,O) ≥ L(p2,O) a path(O, p1, p2)
exists. For instance, in the ongoing example, L(small,O�) ≤
L(big,O�).

For a given OMP P = p1 ⊕ . . . ⊕ pn, where p1, . . . , pn ∈ � , a
label can be computed by counting the number of each strand-
distance pair in the labels of the constituent BPQs:

L(P,O) = {〈s, d, n〉 | (n =
∑

p∈P,L(p,O)=〈s,d〉

1) ∧ (n ≥ 1)}

Algorithm 1: (P1, P2)

co ←
′=′; O1 ← L(P1,O�); O2 ← L(P2,O�);

while ¬(O1 = ∅ ∨ O2 = ∅)

do



























































































































































































B1 ← {〈s, d, n〉 ∈ Ø1 | @〈s′, d′, n′〉 ∈ O1, 〈s, d〉 < 〈s′, d′〉};
B2 ← {〈s, d, n〉 ∈ Ø2 | @〈s′, d′, n′〉 ∈ O2, 〈s, d〉 < 〈s′, d′〉};
H1 ← {〈s, d, n〉 ∈ B1 | @〈s′, d′, n′〉 ∈ B2, 〈s, d〉 ≤ 〈s′, d′〉};
H2 ← {〈s, d, n〉 ∈ B2 | @〈s′, d′, n′〉 ∈ B1, 〈s, d〉 ≤ 〈s′, d′〉};
if (H1 , ∅) ∧ (H2 , ∅)

then return (′?′);

else



























































if (H1 , ∅)

then
{

cn ←
′�′; E ← B1 − H1;

(O1,H1); (O2,H1);

else



























if (H2 , ∅)

then
{

cn ←
′≺′; E ← B2 − H2;

(O1,H2); (O2,H2);
else cn ←

′=′; E ← H1;
if (co = cn) ∨ (co =

′=′)

then



























(co,H)← -(E, P1, P2,O<, cn);
if co =

′?′

then return (′?′)′;
(O1,H); (O2,H);

else return (′?′);
O1 ← O1 − B1; O2 ← O2 − B2;

return (co);
procedure -(E, P1, P2,O<, co)
H ← {};
for each e ∈ E

do































































































L1 ← L(P1,O<, {e}); L2 ← L(P2,O<, {e});
if ≥value (L1, L2)

then



























if ¬ ≥value (L2, L1)

then



















if co ∈ {
′=′,′ �′}

then co ←
′�′; H ← H ∪ {e};

else return (′?′,H);

else



































if ≥value (L2, L1)

then



















if co ∈ {
′=′,′ ≺′}

then co ←
′≺′; H ← H ∪ {e};

else return (′?′,H);
else return (′?′,H);

return (co,H);

For example,

L(small ⊕ big,O�) = {〈str(O�, small, v big), 1, 1〉,

〈str(O�, small, small), 0, 1〉}

In this way, two labels L(P,O�) and L(P,O<) can be com-
puted for each OMP P. Both labels are related to one another
through the underlying set of BPQs they represent. In particu-
lar, each strand-distance pair 〈s�, d�〉 under O� corresponds to
a set of strand-distance pairs under O< that provide finer grain
distinctions between quantities. Therefore, a label L(P,O<, L)
can be obtained, which contains the subset of L(P,O<) that cor-
responds to a subset L ⊂ L(P,O�), such that:

L(P,O<, L) = {〈s<, d<, n<〉 | 〈s<, d<, n<〉 ∈ L(P,O<)∧

(∃〈s�, d�, n�〉 ∈ L,∃q, 〈s<, d<〉 ∈ L(q,O<) ∧ 〈s�, d�〉 ∈ L(q,O�))}

By means of their respective labels, two OMPs can then be
compared using the algorithm (P1, P2). This algorithm
iterates through the O� labels of P1 and P2. At each iteration,
the sets of the highest remaining strand-distance pairs in the
labels of P1 and P2, respectively denoted B1 and B2, are consid-
ered. The algorithm systematically compares the tuples 〈s, d, n〉
of B1 and B2 with one another:

• Each 〈s, d, n〉 ∈ B1 (〈s, d, n〉 ∈ B2), such that 〈s, d, n〉 is either
greater than or incomparable to the tuples in B2 (B1), is stored
in a set H1 (H2), with H1 , ∅ (H2 , ∅) indicating that P1 �

P2 (P2 � P1) for the tuples involved, i.e. ∀p ∈ H1, P2 ≺p P1
(∀p ∈ H2, P1 ≺p P2).

• The tuples 〈s, d, n〉 ∈ B1 (〈s, d, n〉 ∈ B2), such that a tuple
〈s, d, n′〉 ∈ B2 (〈s, d, n′〉 ∈ B1) exists are stored in a set E.

Because the BPQs referred by the tuples in E can not be
compared with one another by means of the O� labels, the
corresponding O< labels L1 and L2 are computed and com-
pared in -(). In order to determine whether L1 is
greater than L2, this procedure employs the ≥value function:

≥value (L1, L2)← ∀〈s2, d2, n2〉 ∈ L2,
∑

〈s,d,n〉∈L1 ,〈s2 ,d2〉≤〈s,d〉

n ≥
∑

〈s,d,n〉∈L2 ,〈s2 ,d2〉≤〈s,d〉

n

The results of these comparisons may be contradictory when
at least one tuple from B1 is greater than anything in B2 and
at least one tuple from B2 is greater than anything in B1. In
that case, the algorithm terminates with returning incomparable
(′?′). If the comparisons are not contradictory, then the tuples
in B1 and B2 which yielded a strict ordering ′ ≺′ or ′ �′ (i.e.
H1 or H2), need to be differentiated from the ones for which no
such ordering could be established. All tuples in the labels of
P1 and P2 that are smaller than H1 or H2 are removed. For the
remaining tuples, the algorithm considers the next highest ones,
that are still part of the labels, in the subsequent iteration or it
terminates if there are no remaining tuples. The variables co
and cn are used in the algorithm to store the outcome of partial
comparisons with respect to BPQs in other parts of the partial
ordering.

For example, when applying this algorithm to compare
P1 = big ⊕ small with P2 = high ⊕ large, the high-
est strand-distance pairs from the O� labels are compared
first. This leads to H1 = {〈str(O�,med, v big), 1, 1〉} and
H2 = {〈str(O�,med, v high), 1, 1〉, 〈str(O�,med, v large), 1, 1〉}
and hence, the algorithm returns them as incomparable. When
comparing P1 = h med ⊕ med with P2 = med ⊕ l med,
H1 = H2 = ∅ and E = {〈str(O�,med,med), 0, 2〉}. Therefore,
-(E, P1, P2,O<,′ =′) is called where

L1 = {〈str(O<, l med, h med), 2, 1〉, 〈str(O<, l med, h med), 1, 1〉}

L2 = {〈str(O<, l med, h med), 1, 1〉, 〈str(O<, l med, h med), 0, 1〉}

Because, ≥value (L1, L2) holds, the procedure returns ′ �′. As O1
and O2 are now empty, ′ �′ becomes the result of the algorithm,
meaning P1 � P2.

Solution techniques

Algorithm 2 is somewhat similar to that presented in (Mittal, S.
& Falkenhainer, B. 1990), but it implements a best first search
(BFS) by means of a priority queue O of nodes n. For each node
n, a set Xu(n) of remaining active but unassigned attributes is
maintained. At each iteration, a node n is taken from O, and
the assignments of the first attribute x ∈ Xu(n) are processed.
For every assignment x : d that is consistent with the solution
of the current node n (i.e. solution(n) ∪ {x : d},C 0 ⊥), a new
child node is created. If Xu(n) is empty, the activity constraints
are fired in order to find a new set of active but unassigned at-
tributes. That is,

Xu(n) = {xi | solution(n),A ` active(xi)} − Xa(n)

where Xa(n) represents the active, but already assigned at-
tributes in node n.

Algorithm 2: (X,D,C,A, P)

Xa(n)← {xi | {},A ` active(xi)}; n← createNode(nil, Xa(n));
O← createOrderedQueue(); CP(n)← 0;
PP(n)← ⊕x∈X maxd∈D(x) P(x : d);
(first(Xa(n)), Xa(n), n,C, A, P,O);
while O , ∅

do























































































































n← dequeue(O);
if Xu(n) , ∅

then
{

x← first(Xu(n));
(x, n,C,A, P,O);

else















































































Xu(n)← {xi | solution(n),A ` active(xi)} − Xa(n);
if Xu(n) = ∅

then







































nnext ← first(O);
if CP(n) ⊀ PP(nfirst)

then return (S (n));

else
{

PP(n)← CP(n);
enqueue(O, n,CP(n), PP(n));

else
{

x← first(Xa(n));
(x, n,C,A, P,O);

procedure (x, nparent,C,A, P,O)
for d ∈ D(x)

do











































































if solution(nparent) ∪ {x : d},C 0 ⊥

then



































































nchild ← new node;
solution(nchild)← solution(nparent) ∪ {x : d};
Xd ← deactivated(solution(nchild), X(nparent));
Xnd(nchild)← Xnd(nparent) − {x} − Xd ;
Xa(nchild)← Xa(nparent) ∪ {x}; Xu(nchild)← Xu(nparent) − {x};
CP(nchild)← CP(nparent) ⊕ P(x : d);
PP(nchild)← CP(nchild) ⊕ (⊕x∈Xnd (n) maxd∈D(x) P(x : d));
enqueue(O, nchild, PP(nchild),CP(nchild));

In the priority queue O, nodes are maintained by means of
two heuristics: committed preference CP(n) and potential
preference PP(n). That is, given a node n,

CP(n) = ⊕x:d∈solution(n)P(x : d)

PP(n) = CP(n) ⊕ (⊕x∈Xnd(n) max
d∈D(x)

P(x : d))

where Xnd(n) is the set of unassigned attributes that can still be
activated given the partial assignment solution(n) (the actual im-
plementation employs an assumption-based truth maintenance
system (de Kleer, J. 1986) to efficiently determine which at-
tribute’s activity can no longer be supported). In other words,
CP(n) is the preference associated with the partial attribute-
value assignment in node n and PP(n) is CP(n) combined with
the highest possible preference assignments taken from all the
values of the domains of the attributes in Xnd. Thus, PP(n) com-
putes an upper boundary on the preference of a DPCSP solution
that includes the partial attribute value assignments correspond-
ing to n.

Theorem 1 (X,D,C,A, P) is admissible
Proof: (X,D,C,A, P) is a BFS guided by a heuristic func-
tion PP(n) = CP(n) ⊕ h(n), where CP(n) is the actual pref-
erence of node n and h(n) = ⊕x∈Xnd(n) maxd∈D(x) P(x : d). It
follows from the previous discussion that h(n) is greater than
or equal to the combined preference of any value-assignment
of unassigned attributes that is consistent with the partial so-
lution of n. In this BFS, the nodes n are maintained in a pri-
ority queue in descending order of PP(n). Let δ be a dis-
tance function that reverses the preference ordering such that
δ(P1) ≺ δ(P2) ← P1 � P2. (X,D,C,A, P) can then be
described as a BFS guided by δ(PP(n)) = δ(CP(n)) ⊕ δ(h(n)),
where the nodes n are maintained in a priority queue in as-
cending order of δ(PP(n)) and where δ(h(n)) is a lower bound
on the distance between n and the optimal solution. Therefore,
(X,D,C,A, P) is an A* algorithm, guaranteed to find a
solution S with a minimal δ(P(S)) or a maximal P(S).

pac1 pac2

psr2

psr1pt

pa

� � <

Figure 4: OMP scale for sample configuration task

Applications
This section presents two sample applications of the the DPCSP
configuration and compositional modelling.

Configuration
The car configuration problem, originally presented in (Mittal,
S. & Falkenhainer, B. 1990), is herein extended with OMPs.
The original DCSP specification is as follows:

Attributes and domains
Attribute Meaning Domain

xp Package {luxury,deluxe,standard}
x f Frame {convertible,sedan,hatchBack}
xe Engine {small,medium,large}
xb Battery {small,medium,large}
xs Sunroof {sr1,sr2}
xa Airconditioning {ac1,ac2}
xo Opener {auto,manual}
xg Glass {tinted,non-tinted}

Activity constraints
a1,2,3 active(xp) ∧ active(x f) ∧ active(xe)← >

a4 active(xs)← xp : luxury
a5 active(xa)← xp : luxury
a6 active(xs)← xp : deluxe
a7 active(xo)← xs : sr2
a8 active(xa)← xp : sr1
a9 active(xg)← active(xs)

a10 active(xb)← active(xe)
a11 active(xs)← active(xo)
a12 active(xs)← active(xg)
a13 ¬active(xo)← xs : sr1
a14 ¬active(xs)← x f : convertible
a15 ¬active(xa)← xb : small ∧ xe : small

Compatibility constraints
c1 xp : standard ∧ xa : ac2→ ⊥
c2 xp : luxury ∧ xa : ac1→ ⊥
c3 xp : standard ∧ ¬(x f : convertible)→ ⊥
c4 xo : auto ∧ xa : ac1 ∧ ¬(xb : medium)→ ⊥
c5 xo : auto ∧ xa : ac2 ∧ ¬(xb : large)→ ⊥
c6 xs : sr1 ∧ xa : ac2 ∧ xg : tinted→ ⊥

In this example, the partial preference ordering of figure 4
is assumed. The BPQs pt, pa, psr1, psr2, pac1, pac2 respectively
stand for the preference contribution of tinted glass (xg : tinted),
automatic opener (xo : auto), sr1 sunroof (xs : sr1), sr2 sunroof
(xs : sr2), ac1 airconditioner (xa : ac1) and ac2 airconditioner
(xa : ac2). This customer prioritises the choice of aircondi-
tioner over the choice of sunroof and the latter over tinted glass
and automatic opener. She also prefers the ac2 airconditioner
over the ac1, she is indifferent between the sunroof choices and
between the tinted glass option and the automatic opener.

A trace of the search is presented below. In order to avoid ex-
cessive details in the notation, only the most important actions
in running the algorithm are shown, i.e. enqueueing a node
in the priority queue, dequeueing the preferred node from the
queue, processing the values of an attribute and finding newly

activated attributes when a node without remaining active at-
tributes is encountered.

find active attributes:
enqueue n0 with n0.Xa = {xp, x f , xe, xb}

dequeue n0, process xp:
enqueue n1: xp : luxury with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n2: xp : deluxe with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n3: xp : standard with PP = nil
dequeue n1, process x f :
enqueue n4: x f : convertible with PP = pac2

enqueue n5: x f : sedan with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n6: x f : hatchBack with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

dequeue n5, process xe:
enqueue n7: xe : small with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n8: xe : medium with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n9: xe : large with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

dequeue n7, process xb:
ignore xb : small, it is inconsistent due to a5 and a15

enqueue n10: xb : medium with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

enqueue n11: xb : large with PP = pt ⊕ pa ⊕ psr1 ⊕ pac2

dequeue n10, find active attributes:
enqueue n12, with n12.Xa = {xs, xa, xg}

dequeue n12, process xs:
enqueue n13: xs : sr1 with PP = pt ⊕ psr1 ⊕ pac2

enqueue n14: xs : sr2 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

dequeue n13, process xa:
enqueue n15: xa : ac1 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac1

enqueue n16: xa : ac2 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

dequeue n16, process xg:
enqueue n17: xg : tinted with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

enqueue n18: xg : non-tinted with PP = pa ⊕ psr2 ⊕ pac2

dequeue n17, find active attributes:
enqueue n19, with n19.Xa = {xo}

dequeue n19, process x0:
ignore xo : auto, it is inconsistent due to c5

enqueue n20: xo : manual with PP = pt ⊕ psr2 ⊕ pac2

At this point in the trace, constraint c5 prevented the assign-
ment xo : auto. The first element in the priority queue O is
now n11 because it has a higher PP than any other node that
has not been dequeued yet. Part of remainder of the trace, from
dequeueing n11 onwards, is as follows:

dequeue n11, find active attributes:
enqueue n21, with n21.Xa = {xs, xa, xg}

dequeue n21, process xs:
enqueue n22: xs : sr1 with PP = pt ⊕ psr1 ⊕ pac2

enqueue n23: xs : sr2 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

dequeue n23, process xa:
enqueue n24: xa : ac1 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac1

enqueue n25: xa : ac2 with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

dequeue n25, process xg:
enqueue n26: xg : tinted with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

enqueue n27: xg : non-tinted with PP = pa ⊕ psr2 ⊕ pac2

dequeue n27, find active attributes:
enqueue n28, with n28.Xa = {xo}

dequeue n28, process xo:
enqueue n29: xo : auto with PP = pt ⊕ pa ⊕ psr2 ⊕ pac2

enqueue n30: xo : manual with PP = pt ⊕ psr2 ⊕ pac2

dequeue n29, solution found:
xp : luxury, x f : sedan, xe : small, xb : large,
xs : sr2, xa : ac2, xg : tinted, xo : auto

Finally, node n29 contains a solution because no further as-
signments are possible and there is no open node ni such that
PP(ni � PP(n29). Other solutions can be found by proceeding
with the search after n29 has been dequeued, until {n j ∈ O |
PP(n j) ⊀ PP(n29)} , ∅.

Compositional modelling

The following DPCSP has been generated from a compositional
modelling task in population dynamics (adapted from (Kep-
pens, J. & Shen, Q. 2000)). It is based on a scenario consisting
of three species ’prey 1’, ’prey 2’ and ’pred’, where pred feeds
on ’prey 1’ and ’prey 2’, and where ’prey 1’ and ’prey 2’ com-
pete with each other over scarce resources. The DCSP specifi-
cation of the problem is as follows:

Attributes and domains
Attribute Meaning Domain

x1 relevant growth(prey 1) {yes,no}
x2 relevant growth(prey 2) {yes,no}
x3 relevant growth(pred) {yes,no}
x4 relevant pred(pred,prey 1) {yes,no}
x5 relevant pred(pred,prey 2) {yes,no}
x6 relevant comp(prey 1,prey 2) {yes,no}
x7 model growth(prey 1) {exp,log,oth}
x8 model growth(prey 2) {exp,log,oth}
x9 model growth(pred) {exp,log,oth}

x10 model pred(pred,prey 1) {hol,lv}
x11 model pred(pred,prey 2) {hol,lv}

Activity constraints
a1,2,3 active(x1) ∧ active(x2) ∧ active(x3)← >

a4 active(x4)← x1 : yes ∧ x3 : yes
a5 active(x5)← x2 : yes ∧ x3 : yes
a6 active(x6)← x1 : yes ∧ x2 : yes
a7 active(x7)← x1 : yes
a8 active(x8)← x2 : yes
a9 active(x9)← x3 : yes

a10 active(x10)← x4 : yes
a11 active(x11)← x5 : yes

Compatibility constraints
c1 x6 : yes ∧ (x7 : exp ∨ x7 : oth)→ ⊥
c2 x6 : yes ∧ (x8 : exp ∨ x8 : oth)→ ⊥
c3 x10 : hol ∧ (x9 : exp ∨ x9 : oth)→ ⊥
c4 x10 : hol ∧ x7 : oth→ ⊥
c5 x11 : hol ∧ (x9 : exp ∨ x9 : oth)→ ⊥
c6 x10 : hol ∧ x8 : oth→ ⊥
c7 x10 : lv ∧ (x9 : exp ∨ x9 : log)→ ⊥
c8 x10 : lv ∧ (x7 : exp ∨ x7 : log)→ ⊥
c9 x11 : lv ∧ (x9 : exp ∨ x9 : log)→ ⊥

c10 x11 : lv ∧ (x8 : exp ∨ x8 : log)→ ⊥
The compositional modeller employs two types of assump-

tion class. Attributes x1 to x6 corresponds decisions on the rel-
evance of particular phenomena in the model. The assumptions
in these classes represent the relevance of the population growth
phenomena of the 3 species (x1, x2 and x3), of the predation phe-
nomena (x4 and x5) and of the competition phenomenon (x6).
Attributes x6 to x11 corresponds to alternative models for these
phenomena. Three types of population growth model are con-
sidered: exponential (’exp’), logistic (’log’) and other (’oth’).
Two types of predation model are considered: Lotka-Volterra
(’lv’) and Holling (’hol’).

The activity constraints are fairly straightforward to under-
stand. In essence, they state that all models for the predation
and competition phenomena rely on the existence of population
growth models for the species that are involved. The compati-
bility constraints restrict the combinations of alternative partial
models. These were automatically derived from model frag-
ments given in (Keppens, J. & Shen, Q. 2000). For exam-
ple, c3 states that the Holling predation model for ’pred’ and
’prey 1’ can not be combined with the exponential or other
growth model of ’pred’.

ph

pexp

<

<

poth

plv

plog

�
pc

�

Figure 5: Sample OMP scale for population dynamics

Many models meet the criteria imposed by the constraints.
However, the user of the model typically has certain preferences
for the different modelling choices that can be made. Figure 5
shows a sample ordering of preferences expressed in the OMP
calculus described earlier. In this example, a preference scale
is presumed where � = {pc, plv, phol, plog, pexp, poth}, respec-
tively representing the utility derived from a model of com-
petition, Lotka-Volterra predation, Holling predation, logistic
growth, exponential growth and other growth. The ordering
of BPQs in figure 5 states that the contribution of a competi-
tion model is an order of magnitude greater than other partial
models and ’other population growth’ is an order of magnitude
lower. Also, Lotka-Volterra predation is deemed more appropri-
ate than Holling predation and logistic growth more appropriate
than exponential growth.

Due to space constraints, the trace for this algorithm is not
shown. The optimal solution is x1 : yes, x2 : yes, x3 : yes, x4 :
yes, x5 : yes, x6 : yes, x7 : log, x8 : log, x9 : log, x10 : hol, x11 :
hol, with a total preference of pc ⊕ 2 × ph ⊕ 3 × plog

Conclusions and Future Work

This paper has introduced a preference calculus based on order
of magnitude reasoning. This calculus produces a partial order-
ing of valuations and distinguishes between different degrees
of coarseness. Thus, it better suits the expression of user pref-
erences than approaches employing preferences that are totally
ordered. It is most useful in situations where formal preference
elicitation is impractical or particularly difficult.

The preference calculus is intended to be used to help solve
synthesis problems, such as compositional modelling and con-
figuration. It is used as part of a novel type of constraint satis-
faction problem (CSP), the dynamic preference CSP (DPCSP)
that incorporates features from dynamic and valued CSPs.
From dynamic CSPs, a DPCSP takes activity constraints that
govern which attributes and the corresponding constraints are
part of the problem to be solved. From valued CSPs, a DPCSP
borrows the concept of assigning preference valuations to do-
main values which can be combined to compute the overall
preference contribution of an emerging solution. A solution al-
gorithm for such DPCSPs has been presented and its usage was
demonstrated by applying it to a DPCSP generated for a compo-
sitional modelling task and another for a configuration problem.

Future work includes the development of alternative solution
techniques for DPCSPs. One source of inefficiency of the algo-
rithms presented herein is their insistence on finding an optimal
solution. However, for many practical applications, finding a
close to optimal solution often suffices (Tsang, E. & Warwick,
T. 1990). A future focus of this research is therefore to investi-
gate the use of genetic algorithms for solving a DPCSP, which
would allow such flexible optimisation.

Acknowledgements
The first author was supported by a scholarship of the Faculty of
Science and Engineering of the University of Edinburgh. Both
authors are grateful to Ian Miguel and Joe Halliwell for useful
discussions.

References
Birmingham, W.P.; Gupta, A.P.; and Siewiorek, D.P. 1992. Automat-
ing the Design of Computer Systems. Jones and Bartlett.

Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-based con-
straint satisfaction and optimization. Journal of the ACM 44(2):201–
236.

Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997. A
constraint-based approach to preference elicitation and decision mak-
ing. In Doyle, J., and Thomason, R.H., eds., Working Papers of the
AAAI Spring Symposium on Qualitative Preferences in Deliberation
and Practical Reasoning, 19–28.

Brewka, G.; Benferhat, S.; and Le Berre, D. 2002. Qualitative choice
theory. In to appear in Proceedings of the 8th International Confer-
ence on Knowledge Representation and Reasoning.

de Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence
28:127–162.

Delgrande, J.P., and Schaub, T. 2000. Expressing preferences in
default logic. Artificial Intelligence 123(1–2):41–87.

Doyle, J., and Thomason, H. 1999. Background to qualitative deci-
sion theory. AI Magazine 20(2):55–68.

Falkenhainer, B., and Forbus, K.D. 1991. Compositional modeling:
finding the right model for the job. Artificial Intelligence 51:95–143.

Ha, V., and Haddawy, P. 1997. Problem-focused incremental elic-
itation of multi-attribute utility models. In Proceedings of the 13th
Conference on Uncertainty in Artificial Intelligence, 215–222.

Keppens, J., and Shen, Q. 2000. Towards compositional modelling
of ecological systems via dynamic flexible constraint satisfaction. In
Proceedings of the 14th International Workshop on Qualitative Rea-
soning about Physical Systems, 74–82.

Keppens, J., and Shen, Q. 2001. On compositional modelling. Knowl-
edge Engineering Review 16(2):157–200.

Levy, A.Y.; Iwasaki, Y.; and Fikes, R. 1997. Automated model se-
lection for simulation based on relevance reasoning. Artificial Intelli-
gence 96:351–394.

Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint satisfac-
tion problems. In Proceedings of the 8th National Conference on
Artificial Intelligence, 25–32.

Mittal, S., and Frayman, F. 1989. Towards a generic model of config-
uration tasks. In Proceedings of the International Joint Conference
on Artificial Intelligence, volume 2, 1395–1401.

Nayak, P.P., and Joskowicz, L. 1996. Efficient compositional model-
ing for generating causal explanations. Artificial Intelligence 83:193–
227.

Raiman, O. 1991. Order of magnitude reasoning. Artificial Intelli-
gence 51:11–38.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: Hard and easy problems. In Proceedings of the
14th International Joint Conference on Artificial Intelligence, 631–
637.

Tsang, E., and Warwick, T. 1990. Applying genetic algorithms to
constraint satisfaction optimization problems. In Proceedings of the
9th European Conference on Artificial Intelligence, 649–654.

Tversky, A., and Thaler, R.H. 1990. Anomalies preference reversal.
Journal of Economic Perspectives 4:201–211.

