

Activity prepared by the KCL EPAP group Experimental Particle and Astroparticle Physics

How many neutrinos???

Calculation activity

KCL EPAP Group

The Sun – a v_e generating nuclear reactor

How many of those neutrinos reach you?

May be useful to demonstrate this with a balloon - draw spots on it and blow it up

Area of sphere at Earth's distance from the sun, $A=4\pi$.1.5e11²=2.827e23 Flux of neutrinos at Earth is 10³⁶/ A =3.537e12 /m²/s

For simplicity, let's say my area (facing the sun) is $1m^2$ (that is probably an overestimate!) So through me in 1 s is 3.537e12 neutrinos

If I live to 80 years, that is 80*365.25*24*60*60 = 2.5246e9 seconds

In that time 2.5246e9*3.537e12 = 8.93e21 neutrinos will pass through me in my lifetime Chance of interaction = $8.93e21/10^{22} = 0.89$

Average age of people in room = T years Number of people = N Average area of a person = A m²

Probability = T(*365.25*24*60*60 to be in seconds) * N * A (in m²) / 10²²

The \sim is because we know from oscillations that neutrinos are not quite massless. They are very light but do have a tiny mass that will slow them down fractionally – only massless particles (like photons) can travel at exactly the speed of light, and nothing can travel faster

Average distance = 50cm (reasonable guess as they are going at all different angles) Average time for one neutrino = 0.5 / 3e8 = 1.7e-9 seconds

From last slide I have 3.537e12 neutrinos going through me each second and if they all spend 1.7e-9 seconds that gives = 3.537e12*1.7e-9 = 5895 seconds, or 5895 at once. So the probability that there is 1 is essentially 1.

Number of neutrinos N = flux * area * time = f.A.t From before, flux = f = 3.537e12 neutrinos passing through $1m^2$ per second

Volume of a box = Area * depth = A.d And time t = d / c Rearranging gives d = c.t So substituting we can write volume of the box as V = A.c.t or A.t = V/c Substituting this in N = f.A.t = f.V/c And we want N = 1 so rearrange V = $1.c/f = 3e8/3.537e12 = 8.48e-5 m^3$

Try a box that is 5cm*5cm*3.4cm

Supernova – an astronomical ν -generating nuclear explosion

A supernova is a powerful explosion when a massive star runs out of fuel.

A supernova can produce 10⁵⁸ neutrinos in just a few seconds!

https://spaceplace.nasa.gov/superno va/en/

1 light year = $3e8*365.25*24*60*60 / 10^3 = 9.46e12$ km = 9.46e15m

Area at earth = 4π .9.46e15² = 1.125e33m²

Flux at Earth's surface = 10⁵⁸ / 1.125e33 = 8.9e24!