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Abstract

We study a new link between the Steklov and Neumann eigenvalues of do-
mains in Euclidean space. This is obtained through an homogenisation limit of the
Steklov problem on a periodically perforated domain, converging to a family of
eigenvalue problems with dynamical boundary conditions. For this problem, the
spectral parameter appears both in the interior of the domain and on its boundary.
This intermediary problem interpolates between Steklov and Neumann eigenvalues
of the domain. As a corollary, we recover some isoperimetric type bounds for Neu-
mann eigenvalues from known isoperimetric bounds for Steklov eigenvalues. The
interpolation also leads to the construction of planar domains with first perimeter-
normalized Stekov eigenvalue that is larger than any previously known example.
The proofs are based on a modification of the energy method. It requires quantita-
tive estimates for norms of harmonic functions. An intermediate step in the proof
provides a homogenisation result for a transmission problem.

1. Introduction

Let � ⊂ R
d be a bounded and connected domain with Lipschitz boundary ∂�.

Consider on � the Neumann eigenvalue problem

{
−� f = μ f in �,

∂ν f = 0 on ∂�,
(1)

as well as the Steklov eigenvalue problem

{
�u = 0 in �,

∂νu = σu on ∂�.
(2)
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Here � is the Laplacian, and ∂ν is the outward pointing normal derivative. Both
problems consist in finding the eigenvaluesμ and σ such that there exist non-trivial
smooth solutions to the boundary value problems (1) and (2). For both problems,
the spectra form discrete unbounded sequences

0 = μ0 < μ1 � μ2 � . . . ↗ ∞
and

0 = σ0 < σ1 � σ2 � · · · ↗ ∞,

where each eigenvalue is repeated according to multiplicity. The corresponding
eigenfunctions { fk} and {uk} have natural normalisations as orthonormal bases of
L2(�) and L2(∂�), respectively.

1.1. From Steklov to Neumann : heuristics

Let us start by painting with a broad brush the relationships between the Neu-
mann and Steklov eigenvalue problems; they exhibit many similar features, and it
is not a surprise that they do so. Indeed, in both cases the eigenvalues are those of a
differential or pseudo-differential operator, namely the Laplacian and the Dirichlet-
to-Neumann map, whose kernels consist of constant functions. Moreover, in both
cases, the natural isoperimetric type problem consists in maximizingμk and σk (in-
stead of minimizing it as is usual for the Dirichlet problem). The relation between
the two boundary value problems is not solely heuristic and incidental. Indeed,
it is known from the works of Arrieta–Jiménez-Casas–Rodriguez-Bernal [3] and
Lamberti–Provenzano [30,31] that one can recover the Steklov problem as a limit
of weighted Neumann problems{

−� f = μρε f in �,

∂ν f = 0 on ∂�,
(3)

where ρε is a density function whose support converges to the boundary as ε → 0.
If we are to interpret the Neumann problem as finding the frequencies and modes
of vibrations of a free boundary membrane, this means that the Steklov problem
represents the frequencies andmodes of a membrane whose mass is concentrated at
the boundary. The reader should also refer to thework ofHassannezhad–Miclos [25,
Section 4], where a similar construction is used to prove a Cheeger-type inequality
for Steklov eigenvalues of a compact Riemannian manifold with boundary.

Our primary goal in this paper is to establish a link in the reverse direction,
by realizing the Neumann problem as a limit of appropriate Steklov problems.
This is achieved in two steps. The first one is to accumulate uniformly distributed
boundary elements inside the domain �. This is done by perforating the interior of
the domain with small holes that are uniformly distributed. On these new boundary
components, we consider the Steklov boundary conditions; this step is known as
the homogenisation process. We assume that the ratio of the radii of the holes to
the distance between them is at a Cioranescu–Murat type critical regime. Then,
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the eigenvalues and eigenfunctions of the Steklov problem converge to those of a
dynamical eigenvalue problem{

−�U = Adβ
U in �,

∂νU = 
U on ∂�,
(4)

where β � 0 is the critical regime parameter and Ad is the area of the unit sphere
in R

d . Its eigenvalues form a discrete unbounded sequence:


0,β < 
1,β � 
2,β � · · · ↗ ∞;
once again the functions associated to the eigenvalue 
0,β = 0 are constant.

Remark 1. In [42], Joachim von Below and Gilles François studied an eigenvalue
problem that is equivalent to Problem (4), which stems from a parabolic equation
with dynamical boundary conditions. Indeed, they study the eigenvalue problem{

−�u = λu in �,

∂νu = λαu on ∂�.
(5)

If λ is an eigenvalue of Problem (5), then
 = α−1λ is an eigenvalue of Problem (4)
with parameter β = 1

αAd
.

The parameter β in (4) can be interpreted as a weight on the interior of the
domain, with the boundary ∂� having constant weight 1. In order to recover the
Neumann problem, the second step will therefore be to send the parameter β to
∞, putting all the weight inside the domain. Under an appropriate normalisation,
eigenvalues and eigenfunctions of Problem (4) converge to those of Problem (1),
completing the circle for the relation between the Steklov and the Neumann prob-
lems (Fig. 1).

1.2. The homogenisation process

Consider a family of problems obtained by removing periodically placed balls
from the domain �. More precisely, given 0 < ε < 1, and k ∈ Z

d , define the cube

Qε
k := εk +

[
−ε

2
,
ε

2

]d ⊂ R
d ,

and define the set of indices

I ε :=
{

k ∈ Z
d : Qε

k ⊂ �
}

.

Let rε be an increasing positive function of ε with rε < ε/2. For k ∈ Z
d , define

T ε
k := B (εk, rε) ⊂ Qε

k

and set

T ε :=
⋃

k∈I ε

T ε
k ⊂ �. (6)
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Fig. 1. The domain �ε

Consider the family of perforated domains Fig. 1.

�ε = �\T ε.

The Steklov eigenvalues of �ε are written as σε
k := σk(�

ε), and we write
{
uε
k

}
for a corresponding complete sequence of eigenfunctions, normalized by∫

∂�ε

(uε
k)

2 dA = 1.

Our first main result is the following critical regime homogenisation theorem for
the Steklov problem:

Theorem 2. Suppose that rd−1
ε ε−d → β for some β ∈ [0,∞), as ε ↘ 0. Then

σε
k converges to the eigenvalue 
k,β of (4). The functions U ε

k ∈ H1(�) obtained
by harmonic extension of a normalized Steklov eigenfunction uε

k over the holes
T ε ⊂ � form a sequence which strongly converges in H1(�) to a solution Uk

associated with 
k,β of (4).

Remark 3. If the eigenvalue 
k = 
k,β is multiple of multiplicity m, that is


k−1 < 
k = . . . = 
k+m−1 < 
k+m,

then the convergence statement in the previous theorem is understood in the fol-
lowing sense: given a basis Uk, . . . ,Uk+m−1 for the eigenspace associated with

k , there is a family of m × m orthogonal matrices M(ε) such that

M(ε)

⎛
⎜⎝

U ε
k
...

U ε
k+m−1

⎞
⎟⎠ −→

⎛
⎜⎝

Uk
...

Uk+m−1

⎞
⎟⎠ (7)

as ε → 0. One could also be content with the weaker statement that if the eigenval-
ues are multiple, the convergence statement of Theorem 2 is only true up to taking
a subsequence.



From Steklov to Neumann via homogenisation

Remark 4. Literature on homogenisation theory is often concerned with the situa-
tion where holes are proportional to their reference cell. That is, rε = cε for some
constant c ∈ (0, 1/2). In this case one has rd−1

ε ε−d → ∞. It follows from [11]
that σε

k → 0. Indeed it is proved there that any bounded domain � ⊂ R
d satisfies

σk(�) |∂�| 1
d−1 � Cd,k, (8)

where the number Cd,k > 0 depend only on the dimension d and index k. The
hypothesis that rd−1

ε ε−d → ∞ implies that |∂�ε| → ∞, which forces σε
k → 0,

as claimed. Note that this also corresponds to the homogenisation regime which
was studied by Vanninathan in [41] for a slightly different problem, for which the
Dirichlet boundary condition was imposed on ∂� and the Steklov condition on
∂T ε.

The regime that we consider in Theorem 2 is the critical regime for the Steklov
problem, where we observe a change of behaviour in the limiting problem. This is
akin to the situation studied by Rauch–Taylor [38] and Cioranescu–Murat [10].

1.3. Convergence to the Neumann problem and spectral comparison theorems

The β parameter in Problem (4) can be interpreted as a relative weight between
the interior of � and its boundary ∂� for the behaviour of that problem, see Sec-
tion 2.2 for details on this interpretation. Our second main result is the following
theorem, describing the specific dependence on β in (4):

Theorem 5. For each k ∈ N, the eigenvalue 
k,β depends continuously on β ∈
[0,∞) and satisfies

lim
β→∞ Adβ
k,β = μk .

The eigenfunctions
{
Uk,β

}
satisfy

β1/2Uk,β → fk (9)

strongly inH1(�) as β → ∞, where fk is the kth non–trivial Neumann eigenfunc-
tion.

Remark 6. We make the second observation that this convergence cannot be uni-
form in k, as that would contradict [42, Theorem 4.4].

The relationships between isoperimetric typeproblems for theNeumannandSteklov
eigenvalue problems have been investigated for the first few eigenvalues in [18,19]
from the point of view of the Robin problem. Our methods also allow us to inves-
tigate the relationship between these isoperimetric problems for every eigenvalue
rank k.

The combination of Theorems 5 and 2 allows the transfer of known bounds
for Steklov eigenvalues to bounds for Neumann eigenvalues. For instance, we can
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combine these two theorems with [11, Theorem 1.3], asserting that for bounded
Euclidean domains with smooth boundary

σk(�)|∂�| 1
d−1 � C(d)k2/d . (10)

This leads to the following:

Corollary 7. The Neumann eigenvalues of a bounded domain � ⊂ R
d satisfy

μk(�)|�|2/d � C(d)k2/d , (11)

where the constant C(d) is exactly that of [11, Theorem 1.3].

Remark 8. The existence of a constant depending only on the dimension in in-
equality (11) is already known. In fact, Kröger obtained a better constant in [29].
However, it follows from Corollary 7 that any improvement to the bound (10) will
transfer to bounds on Neumann eigenvalues.

One of the original motivation for this project was the study of the following quan-
tity:

σ̂ ∗
k := sup

{
σk(�)|∂�| : � ⊂ R

2 bounded with smooth boundary
}

.

In dimension d = 2, we are able to get a stronger version of Corollary 7 in the
sense that we obtain a direct link between σ̂ ∗

k and

μ̂∗
k := sup

{
μk(�)|�| : � ⊂ R

2 bounded with smooth boundary
}

.

In that case, we obtain:

Theorem 9. For d = 2 and every k ∈ N,

μ̂∗
k � σ̂ ∗

k . (12)

Remark 10. From [28], we have that

σ1(�) |∂�| � 8π.

It follows from Theorem 9 that

μ1(�) |�| � 8π,

Of course, this bound is already known. Indeed the optimal upper bound is given
by the famous Szegő–Weinberger theorem,

μ1(D)π ≈ 3.39π,

however, it exemplifies the general principle that any bound for σk normalised by
perimeter transfers to bounds for μk normalised by area.

The previous discussion also yields the following corollary:
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Corollary 11.

σ̂ ∗
1 � μ1(D) × π ≈ 3.39π.

Indeed, by the Szegő–Weinberger inequality, we have that

σ̂ ∗
1 � πμ1(D) ≈ 3.39π. (13)

Furthermore, this number will be approached as close as desired in homogenisation
sequence of pierced unit diskswith large enough parameterβ. Of course, it is known
from [17] that if one is allowed to optimise amongst surfaces rather than Euclidean
domains, then there is a sequence of surfaces such that σ1(�n) |∂�n| → 4π . This
leads to the following natural conjecture: 1

Conjecture.

σ̂ ∗
1 = μ1(D) × π ≈ 3.39π.

Note that the previous best known lower bound for σ̂ ∗
1 was attained on some con-

centric annulus, whose first normalised Steklov eigenvalue is approximately 2.17π ,
see [22].We also observe that a similar analysis yields that for any� ⊂ R

2 bounded
with smooth boundary,

σ̂ ∗
k � μk(�) |�| .

In particular, it follows fromWeyl’s law for Neumann eigenvalues that there exists
a sequence ak ∼ 4πk such that

σ̂ ∗
k � ak .

1.4. Discussion

Homogenisation theory is a young branch of mathematics which started around
the 1960’s. Its general goal is to describe macroscopic properties of materials
through their microscopic structure. To the best of our knowledge, the first pa-
pers to study periodically perforated domains from a rigourous mathematical point
of view are those of Marchenko and Khruslov from the early 1960’s (for example
[33]) leading to their influential book [34] in 1974. The topic becamewidely known
in the West with the work of Rauch and Taylor on the crushed ice problem [38]
in 1975 and then with the publication in 1982 of [10] by Cioranescu and Murat.
Many of these early results were concerned with the Poisson problem �uε = f
under Dirichlet boundary conditions uε = 0 on ∂�ε. The limiting behaviour of the
solution uε depends on the rate at which rε ↘ 0. Three regimes are considered.
If the size of the holes rε tends to zero very fast, then in the limit the solutions
tend to those of the Poisson problem on the original domain �, while if the size of

1 In the time since the first apparition of this paper as a preprint, this conjecture has been
proved false by the first and third-named authors, along with Mikhail Karpukhin [21]. The
precise value is in fact σ̂∗

k = 8πk.
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the holes are big enough the solutions tend to zero. The main interest comes from
the critical regime, in which case the solutions tend to solutions of a new elliptic
problem.

In this paper we are concernedwith themuch less studied Steklov spectral prob-
lem (2). From the point of viewof homogenisation theory, this problem is atypical in
the sense that the function spaces which occur for different values of the parameter
ε > 0 are not naturally related. This means, in particular, that this problem does not
yield to any of the usual general frameworks used in homogenisation theory (such
as [26, Chapter 11]). Nevertheless, several authors have considered homogenisation
for this problem, using ad hoc methods depending on the specifc situation consid-
ered. The behaviour of Steklov eigenvalues under singular perturbations such as
the perforation of a single hole has also been studied in [24,36].

Our main inspiration for this work is the paper [41]. Several papers have also
considered homogenisation in the situation where the Dirichlet condition is im-
posed on the outer boundary while the Steklov condition is considered only on the
boundary of the holes [8,14]. In these papers the holes are proportional to the size
of the reference cell. The novelty of our homogenisation result in the case of the
Steklov problem is that consider holes that are shrinking much faster than that,
in a critical regime where the limiting problem is fundamentally different. They
are in fact shrinking at the precise rate which makes their total surface area (or
perimeter in dimension 2) is asymptotically comparable with the volume of the do-
main. This is similar to the work of Rauch–Taylor [38] for the Neumann problem,
Cioranescu–Murat [10] for the Dirichlet problem and Kaizu for the Robin problem
[27].

The energy method of Tartar (see [1, Section 1.3] for an exposition) has been
used extensively in the study of homogenisation problems at critical regimes, see
[10,27] and more recently [7], where they obtain norm-resolvant convergence for
theDirichlet, Neumann andRobin problem.Thatmethod uses an auxiliary function,
satisfying some energy-minimising PDE in the fundamental cells, in order to derive
convergence of the problem in the weak formulation. The method, in its Robin
or Neumann form, is boundary-condition agnostic and as such is ill-suited for the
Steklov problem, where the normalisation is with respect to L2(∂�ε). Indeed, while
the technique could be used to obtain some form of convergence, it will not be able
to transfer boundary estimates to L2(�), and ensure that the limit solution doesn’t
degenerate to the trivial one.

Nevertheless, one can interpret our technique as a variation on the energy
method, adapted for problems defined on the boundary. We are also using an aux-
iliary PDE in order to derive convergence, but it does not stem from compensated
compactness. Themain difference, however, is thatwe can deduce interior estimates
from those on the boundary of the periodic holes from our auxiliary problem, see
Lemma 26.

We note that in this paper we have chosen to consider only spherical holes.
In fact, it should be possible to consider more general convex holes obtained as
scaled copies rεω of a fixed convex set ω, as it is done in classical homogenization
literature. Here, convexity of the holes would be required for L∞ estimates of the
Steklov eigenfunctions; see Lemma 16.
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Since we are motivated by spectral questions, namely to explore a new link
between the Steklov problem and the Neumann problem, we decided to avoid the
technical difficulties which would occur by considering more general inclusions.
This allows us to get the simpler dynamical eigenvalue problem (3) and emphasise
clearly the link with the the classical Neumann eigenvalue problem by letting the
parameter β → +∞. Nevertheless, many of our proofs carry through with the
spherical holes being replaced with convex holes, with the exception that the con-
vergence in Theorem 2 is nowweak in H1(�) and Ad is replaced with the boundary
measure of the unscaled hole. The convexity assumption is used to obtain bounds
on the L∞ norm of the eigenfunctions; they are more sensitive to the shape of
the boundary than, say, Neumann eigenfunctions. Convergence of the energy, and
therefore strong convergence, would require a finer analysis of correctors which
we decided to avoid for the aforementioned reasons.

1.5. Structure of the proof and plan of the paper

In Section 2we formally describe properties of the various eigenvalue problems
that we study as well as the functions spaces over which they are defined. While
they are well-known, the notation used for all of them often collides. In that section,
we fix notation once and for all for the remainder of the paper for definedness and
ease of references.

In Section 3 we study one of the main technical tools in this paper, properties of
harmonic extensions of functions on annuli to the interior disk. Results are separated
into two categories: those that rely on the fact that the functions satisfy a Robin-type
boundary condition, and more general results that do not rely on such a thing. Most
of our results will be obtained by considering the Fourier expansion of a function

u(ρ, θ) =
∑
�,m

am� (ρ)Ym
� (θ)

in spherical harmonics, and obtaining our inequalities term by term for every am� .
Section 4 is the pièce de résistance of this paper. It is where we show Theorem

2 and the proof proceeds in many steps. We first prove that the family of harmonic
extensions U ε := U ε

k is bounded in the Sobolev space H1(�) hence there exists
a subsequence εn ↘ 0 such that U εn weakly converges to a function U ∈ H1(�).
This allows us to consider properties of the weak limitU , and of an associated limit

 to the eigenvalue sequence σ

εn
k .

It is then not so hard to show that, using the weak formulations of Problems (2)
and (4) that the limit of the homogenised Steklov problem contains terms corre-
sponding to the limit dynamical eigenvalue problem, plus some spurious terms that
must be shown to converge to zero. This is done by studying two representations of
the weak formulation using Green’s identity either towards the inside of the holes
or the inside of the domains �ε. The first one is used to show that the functionals
that arise in the study of the homogenisation problem are uniformly bounded, hence
we can use smooth test functions. In the second representation, we are therefore
allowed to use smooth test functions, which allows us to recover convergence to
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zero of the spurious terms. A key step in this argument is to understand the limit
behaviour of an auxiliary homogenisation problem for the transmission eigenvalue
problem (see Proposition 20).

Once we have established convergence to a solution of Problem 4, we end up
showing that the limit eigenpair (
,U ) does not degenerate to the trivial function.
Using variational characterisation of eigenvalues and eigenfunctions, we can also
show that we get complete spectral convergence, and that subsequences are not
needed.

Finally, in Section 5we show convergence to theNeumann problem as β → ∞.
The method is similar to the one used at the end of the previous section, but many of
the inequalities are more subtle. We also show the comparison theorems between
Steklov and Neumann eigenvalues in this section.

In this paper, we use c and C to mean constants whose precise value is not
important to our argument, and whose exact value may change from line to line.
We use the notations f = O (g) and f � g interchangeably to mean that there
exists a constant C such that | f (x)| � Cg(x).

2. Notation and function spaces

Four different eigenvalue problems will be used. The goal of this section is to
introduce them and fix the relevant notation. Throughout the paper, we use real
valued functions.

2.1. The Steklov problem on � and �ε

Given a bounded domain � whose boundary ∂� is smooth, the Dirichlet-to-
Neumann operator (DtN map) � acts on C∞(∂�) as

� f = ∂ν f̂ , (14)

where f̂ is the harmonic extension of f to the interior of �. The DtN map is an
elliptic, positive, self-adjoint pseudodifferential operator of order 1. Because ∂�

is compact, it follows from standard theory of such operators, see e.g [39], that
the eigenvalues form a non–negative unbounded sequence {σk : k ∈ N0} and that
there exists an orthonormal basis of ( fk) of L2(∂�) such that � fk = σk fk . The
harmonic extensions uk = f̂k satisfy the Steklov problem{

−�uk = 0 in �,

∂νuk = σkuk on ∂�.
(15)

In general, we use the same symbol uk for the function on � and for its trace on the
boundary ∂�. The eigenvalue sequence for�ε is denoted

{
σε
k : k ∈ N0)

}
, with cor-

responding eigenfunctions uε
k . The eigenfunctions uk and u

ε
k form an orthonormal

basis with respect to the inner products

( f, g)∂ :=
∫

∂�

f g dA, (16)
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and

( f, g)∂ε :=
∫

∂�ε

f g dA. (17)

The k-th nonzero eigenvalue σk is characterised by

σk = inf

{∫
�

|∇u|2 dx∫
∂�

u2 dA
: u ∈ H1(�) and (u, u j )∂ = 0 for 0 � j < k

}
. (18)

The eigenvalues σε
k have the same characterisation, integrating over �ε and ∂�ε

respectively instead, and with the orthogonality being with respect to (·, ·)∂ε .

2.2. Dynamical eigenvalue problem

For β ∈ (0,∞), consider the eigenvalue problem{
−�U = Adβ
U in �,

∂νU = 
U on ∂�,
(19)

where Ad is the area of the unit sphere in R
d . Problem (19) was introduced with a

slightly different normalization in [42], where it is called a dynamical eigenvalue
problem. The eigenvalues and eigenfunctions are those of the operator

P :=
(−(Adβ)−1� 0

0 ∂ν

)
. (20)

This unboundedoperator is definedonan appropriate domain in the spaceL2
Adβ(�)×

L2(∂�)which consists simply of L2(�)×L2(∂�) equipped with the inner product
defined by

( f, g)β := Adβ

∫
�

f g dx +
∫

∂�

f g dA. (21)

The dynamical eigenvalue problem (19) has a discrete sequence of eigenvalues

0 = 
0,β < 
1,β � 
2,β � . . . ↗ ∞. (22)

Let X ⊂ L2
Adβ(�) × L2(∂�) be the subspace defined by

X :=
{
U = (u, τu) : u ∈ H1(�)

}
, (23)

where τ : H1(�) → L2(∂�) is the trace operator. The eigenfunctions Uk,β asso-
ciated to 
k,β form a basis of X , but not of L2

Adβ(�) × L2(∂�). The eigenvalues

k,β are characterised by


k,β = inf

{ ∫
�

|∇U |2 dx

Adβ
∫
�
U2 dx + ∫

∂�
U2 dA

: U ∈ H1(�) and (U,Uj,β )∂ = 0 for 0 � j < k

}
.

(24)
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2.3. The Neumann eigenvalue problem

We will also make use of the classical Neumann eigenvalue problem{
−� f = μ f in �,

∂ν f = 0 on ∂�.
(25)

The Neumann eigenvalues form an increasing sequence

0 = μ0 < μ1 � μ2 � . . . ∞, (26)

with associated eigenfunctions fk , orthonormal with respect to the L2(�) inner
product

( f, g) :=
∫

�

f g dx. (27)

The eigenvalues are characterised by

μk = inf

{∫
�

|∇ f |2 dx∫
�

f 2 dx
: f ∈ H1(�) and ( f, f j ) = 0 for j = 0, 1, · · · , k − 1

}
.

(28)

3. Comparison theorems

In this section, we derive comparison inequalities that will be used repeatedly.
For 0 < r < R, set

Ar,R = B(0, R)\B(0, r).

For any set X where it is defined, the Dirichlet energy of a function f : X → R is

D( f ) :=
∫
X

|∇ f |2 dx.

The Dirichlet energy of f on a subset Y ⊂ X is written D( f ; Y ). Note that since
every problem under consideration is self-adjoint no generality is lost by studying
real-valued functions.

Lemmas 12 and 13 are proved by using a Fourier series decomposition for
functions in an annulus. We note that even though the proofs rely on estimates
on the radial part of these functions, we do not claim that the inequalities proved
therein are realised by radial optimisers. The standard Schwarz symmetrisation
arguments do not apply here because the domain of the functions are annuli rather
than balls. Furthermore, in several similar situations some breaking of symmetry
occurs: radially symmetric minimisation problems have nonradial minimisers. We
refer, for instance, to the work of Esteban [15] and Lopes [32, Section III] for such
examples in settings close to ours.



From Steklov to Neumann via homogenisation

3.1. Comparison theorems for functions satisfying a Steklov boundary condition

Our first comparison result concerns the Dirichlet energy of the harmonic ex-
tension of functions satisfying a Steklov boundary condition on the inner boundary
of an annulus. For a similar but weaker result, ultimately sufficient to obtain weak
convergence in Theorem 2, we refer the reader to [38, Example 1, p. 40] where an
argument relying purely on scaling is given.

Lemma 12. Fix a positive real number σ > 0. For any 0 < r < R � 1, let
u ∈ C∞(Ar,R) be such that{

�u = 0 in Ar,R,

∂νu = σu on ∂B(0, r).
(29)

Consider the function h : B(0, r) → R defined by{
h = u on ∂B(0, r),

�h = 0 in B(0, r).

Then as the ratio r/R goes to 0,

D(h) � 5D(u)
( r

R

)d (
1 + O

(( r

R

)d))
. (30)

Proof. For every � � 0, we denote by N� the dimension of the space H� of spherical
harmonics of order � and denote by Ym

� (θ), 1 � m � N� the standard orthonormal
basis of spherical harmonics on the unit sphere. On Ar,R , the function u admits a
Fourier decomposition in spherical harmonics

u(ρ, θ) =
∑
��0

1�m�N�

am� (ρ)Ym
� (θ). (31)

We start by studying the form of the coefficients am� .
Case d > 2. The harmonicity condition on u implies that the radial parts am� (ρ)

are given by

am� (ρ) = cm� ρ� + cm−�ρ
−�+2−d . (32)

By convention the coefficients c10 and c
1−0 are assumed to be different, theminus sign

referring as for the other coefficients to the solution blowing up at the origin. The
Steklov condition for u on ∂B(0, r) along with the orthogonality of the spherical
harmonics Ym

� imply

− ∂ρa
m
� (r) = σam� (r), (33)

which yields the relations

cm−� =

M :=︷ ︸︸ ︷(
� + rσ

� − 2 + d − rσ

)
r2�+d−2cm� . (34)
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In turns this yields the following explicit expression for the radial functions:

am� (ρ) = cm� ρ�

(
1 + M

(
r

ρ

)2�+d−2
)

. (35)

For r � d−2
2σ , it follows that

�

� − 2 + d
� M � 1. (36)

Case d = 2. Equations (32) holds except at � = 0, in which case,

a10(ρ) = c10 + c1−0 log ρ.

In that case, (35) becomes

a10 = c10

(
1 + rσ

1 + r log r
log(1/ρ)

)
= c10 (1 + M log(1/ρ)) .

Observe for the sequel that when d = 2 and � = 0, then M = O (rσ), and if � > 0,
then

M = 1 + O (rσ) . (37)

Because inequality (30) is invariant under scaling, it is sufficient to prove the
case R = 1 and to let r → 0. The harmonic extension of u to B(0, r) is given by

h(ρ, θ) =
∑
��0

1�m�N�

am� (r)
ρ�

r�
Ym

� (θ). (38)

The Dirichlet energy of h is

D(h) =
∑
��1

1�m�N�

�am� (r)2rd−2. (39)

On the other hand, the Dirichlet energy of u is given, from Green’s identity, and
the Steklov condition on ∂B(0, r)

D(u) =
∑
�,m

σam� (r)2rd−1 +
∑
�,m

am� (1)∂ρa
m
� (1). (40)

Our goal is now to find a bound on (39) in terms of (40). It is sufficient to show
that for each � � 1,

�am� (r)2 � 4r2am� (1)∂ρa
m
� (1)

(
1 + O

(
rd

))
. (41)
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Suppose without loss of generality that cm� = 1. The substitution of (34) into (32)
imply that

am� (r)2 = r2� (1 + M)2 � 5r2, (42)

and that

am� (1)∂ρa
m
� (1) = �

(
1 + (2 − d)M

�
r2�+d−2 + (2 − d − �)M2

�
r2(2�+d−2)

)

= � + O
(
rd

)
. (43)

Hence, dividing (42) by (43), and using the bounds on M from (36) and (37) we
have that for � � 1,

�am� (r)2 � 5am� (1)∂ρa
m
� (1)r2

(
1 + O

(
rd

))
. (44)

This proves our claim. 
�

3.2. General H1 comparison theorems on annuli and balls

The next two lemmas do not depend on any specific boundary condition. We
remark that all the lemmas in this section carry for convex, rather than spherical,
inclusions. This is the case since all quantities at hand are bounded in terms of the
Lipschitz constant of a diffeomorphism, and none of the estimates rely on solving
a specific differential equation.

The first Lemma gives bounds for Sobolev constants of annuli.

Lemma 13. For 0 < r < R < 1, define

γ (r, R) := inf

{∫
Ar,R

|∇u|2 + u2 dx∫
∂B(0,r) u

2 d A
: u ∈ H1(Ar,R), u

∣∣
∂B(0,r) �≡ 0

}
. (45)

Suppose that R � cr
d−1
d � 2r for some c > 0. Then, there is a constant C

depending only on the dimension and on c such that

γ (r, R) � C min
{
Rdr1−d , r

1
d −1

}
. (46)

Proof. As earlier, write a function u ∈ H1(Ar,R) as

u(ρ, θ) =
∑
�,m

am� (ρ)Ym
� (θ). (47)

Using the notation uθ for the tangential gradient, the Dirichlet energy of u is ex-
pressed as

D(u) =
∫ R

r

∫
Sd−1

(
u2ρ + ρ−2u2θ

)
ρd−1 dθ dρ

�
∫ R

r

∫
Sd−1

(
u2ρ

)
ρd−1 dθ dρ

=
∑
�,m

∫ R

r

(
am� (ρ)′

)2
ρd−1 dρ.

(48)
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On the other hand, the denominator in (45) is given by∫
∂B(0,r)

u2 dA = rd−1
∑
�,m

am� (r)2. (49)

Combining these last two expressions in (45) and defining the density w(ρ) =(
ρ
r

)d−1, we see it is enough to prove that

∑
�,m

∫ R

r

((
∂ρa

m
� (ρ)

)2 + am� (ρ)2
)

w(ρ) dρ � C min
{
Rdr1−d , r

1
d −1

}∑
�,m

am� (r)2.

(50)

Indeed, working term by term, we prove that any smooth function f : [r, R] → R

satisfies∫ R

r

(
f ′(ρ)2 + f (ρ)2

)
w(ρ) dρ � C min

{
Rdr1−d , r

1
d −1

}
f (r)2. (51)

To this end, assume without loss of generality that f (r) = 1. Following a strategy
that was used in [12] and in [9], consider the two following situations.

Let t ∈ (r, R), to be fixed later.
Case a. Suppose first that for all ρ ∈ (t, R), | f (ρ)| � 1/2. It follows from mono-
tonicity and explicit integration that∫ R

r
| f (ρ)|2 w(ρ) dρ � r1−d

4d

(
Rd − td

)
. (52)

Case b. Suppose there exists ρ0 ∈ (t, R) such that f (ρ0) < 1/2. Splitting the
integral, using the fact that w(ρ) � 1 and is increasing for all ρ together with the
Cauchy–Schwarz inequality leads to

∫ R

r
f ′(ρ)2w(ρ) dρ �

∫ t

r
f ′(ρ)2 +

∫ ρ0

t
f ′(ρ)2w(ρ) dρ

� 1

t − r

(∫ t

r
f ′(ρ) dρ

)2

+
(
t

r

)d−1 1

ρ0 − t

(∫ ρ0

t
f ′(ρ) dρ

)2

.

(53)

By hypothesis, R < 1, so that 1
ρ0−t > 1. This leads to

∫ R

r
f ′(ρ)2w(ρ) dρ � 1

2
min

{
1

t − r
,

(
t

r

)d−1
}(∫ ρ0

r
f ′(ρ) dρ

)2

. (54)

Choosing t = min
{
r

d−1
d , R/2

}
guarantees that min

{
1

t−r ,
( t
r

)d−1
}

= ( t
r

)d−1, so

that ∫ R

r

∣∣ f ′(ρ)
∣∣2 w(ρ) dρ � 1

2

(
t

r

)d−1 (∫ ρ0

r
f ′(ρ) dρ

)2

. (55)
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It follows from the definition of t that

(
t

r

)d−1

�

A:=︷ ︸︸ ︷
min

{
1,

( c
2

)d−1
}
r

1−d
d .

We can bound asymptotically the last integral in (53) as∫ R

r
f ′(ρ)2w(ρ) dρ � Cr

1−d
d

(∫ ρ0

r
f ′(ρ) dρ

)2

� A

4
r

1−d
d .

(56)

This also ensures that Rd − td � (1−2−d)Rd . Since both situations are exclusive,
inequality (50) holds, finishing the proof. 
�
The next lemma compares L2 norms on B(0, r) with H1 norms on B(0, R). Here,
for any �′ ⊂ �, the norm on H1(�′) is given by

‖u‖2H1(�′) = ‖u‖2L2(�′) + ‖∇u‖2L2(�′)2 . (57)

Lemma 14. For 0 < r < R � 1, if R � cr
d−1
d for some c > 0, there is a constant

C depending only on c and on the dimension such that for all u ∈ H1(B(0, R)),

‖u‖L2(B(0,r)) � Cr1/2 ‖u‖H1(B(0,R)) . (58)

Proof. Let u ∈ H1(B(0, R)). Given r ∈ (0, R),∫
B(0,r)

u2 dx =
∫ r

0
ρd−1

∫
Sd−1

u2 dθ dρ =
∫ r

0
‖u‖2L2(∂B(0,ρ))

dρ

It follows from the definition of γ in Lemma 13 that

‖u‖2∂B(0,ρ) � 1

γ (ρ, R)
‖u‖2H1(Aρ,R)

� 1

γ (ρ, R)
‖u‖2H1(B(0,R))

.

Substitution in the above leads to∫
B(0,r)

u2 dx � ‖u‖2H1(B(0,R))

∫ r

0

1

γ (ρ, R)
dρ.

It follows from Lemma 13 that∫ r

0

1

γ (ρ, R)
dρ � 1

C

∫ r

0

(
ρd−1

Rd
+ ρ1− 1

d

)
dρ

= 1

C

(
rd

dRd
+ r2− 1

d

2 − 1
d

)

� 1

C

(
r

cd
+ r2− 1

d

2 − 1
d

)
←− since Rd � crd−1

� C̃r.


�
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Finally, we require the following lemma about the behaviour of the boundary trace
operator as a domain gets shrunk:

Lemma 15. Let � ⊂ R
d be a bounded open set and denote

γ (�) := inf

{∫
�

|∇u|2 + u2 dx∫
∂�

u2 dA
: u ∈ H1(�), u

∣∣
∂�

�≡ 0

}
. (59)

Then, the following inequality holds as ε → 0:

γ (ε�) � εγ (�). (60)

Proof. Consider u ∈ H1(ε�), u
∣∣
∂ε�

�≡ 0. Then, with the change of variable
y = ε−1x, ∫

ε�

|∇u(x)|2 + u(x)2 dx = εd
∫

�

ε−2 |∇u(y)|2 + u(y)2 dy (61)

� εd
∫

�

γ (�)

∫
∂�

u(y)2 dA (62)

= εγ (�)

∫
∂ε�

u(x)2 dA. (63)


�

3.3. Uniform bounds on Steklov eigenfunctions

In order to obtain convergence of the eigenfunctions we will need that their L∞
norm stays bounded. In this subsection, since we will need to understand specific
interplay between boundary surface area and volume, we will diverge from our
convention and denote the area of a boundary ∂� by Hd−1(∂�). Let BV(�) be
the set of functions of bounded variation in �, that is the set of u ∈ L1(�) whose
derivative Du in the sense of distributions is a finite signedRadonmeasure on�. An
important feature of that space in our setting is that for bounded subsets E ⊂ R

d

with Lipschitz boundary, their indicator function 1E has bounded variation, and
|D1E | is the boundary measure of E . In [5, Theorem 3.1], the authors prove that
for any Steklov eigenfunction u of a domain � with eigenvalue σ ,

‖u‖L∞(�) � C ‖u‖L2(∂�) (64)

where C depends continuously on the dimension d, σ , |�| and the norm of the
trace application

T : BV(�) → L1(∂�). (65)

It is clear that in our situation, the dimension and |�| stay bounded. The eigenvalues
will be shown later to also stay bounded, but we use to control the norm of T . In
[5, Proposition 5.1], they give the following condition under which said norm stays
bounded for a family of domains. If {�ε} is a family of open bounded domains
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withHd−1(∂�ε) < ∞ and such that�ε ⊂ K for some bounded set K , and if there
exists constants Q and δ such that for every x ∈ ∂�ε

sup

{Hd−1(∂∗E ∩ ∂∗�ε)

Hd−1(∂∗E ∩ �ε)
: E ⊂ �ε ∩ Bδ(x),Per(E,�n) < ∞

}
� Q, (66)

then the norm of T : BV(�ε) → L1(∂�ε) is uniformly bounded in ε. Here, ∂∗E
denotes the reduced bondary of E , which is given (see [23, Definition 3.3]) by the
set of x ∈ ∂E such that

• for all r > 0,
∫
B(x,r) |D1E | > 0,

• the limit

ν(x) = lim
r↘0

∫
B(x,r) D1E∫
B(x,r) |D1E |

exists, and
• |ν(x)| = 1.

In general, the reduced boundary may be much smaller than the topological bound-
ary but for sets with C1 boundary they coincide.

The next lemma is inspired by [5, Example 2]. Note that in their example,

rε = o
(
ε

2d−1
d−1

)
, which means that the radius of the holes if one order of magnitude

in ε smaller than the critical level at which our holes are going to 0. Parts of the
proof are in a similar spirit but we need more precise estimates separately around
every boundary component.

Lemma 16. For all ε > 0 sufficiently small, the norm of T : BV(�ε) → L1(∂�ε)

is uniformly bounded in ε.

Proof. Following (66), for any xε ∈ ∂�ε, we want to give a uniform upper bound
for the ratio

Hd−1(∂∗E ∩ ∂�ε)

Hd−1(∂∗E ∩ �ε)
(67)

for sets E ⊂ Bδ(xε)∩�ε. Let us make the observation that for ε > 0 small enough,

#
{
n ∈ I ε : Qε

n ∩ Bδ(xε) �= ∅} � 2ωd

(
δ

ε

)d

, (68)

and for some M , Hd−1(∂� ∩ Bδ(xε)) � Mδd−1. On one hand, setting β̃ =
max(β, 1), for any E ⊂ �ε ∩ Bδ(xε) of finite perimeter,

Hd−1(∂∗E ∩ ∂�ε) � Hd−1(∂�ε ∩ Bδ(xε)) �
(
M + 2dβ̃δ

)
δd−1. (69)

On the other hand, we now need to find a lower bound for the denominator in
(67) terms of the numerator. By definition of I ε, for all n ∈ I ε we have that
∂�ε ∩ Qε

n = ∂T ε
n . From this, we can decompose

Hd−1(∂∗E ∩ ∂�ε) = Hd−1(∂∗E ∩ ∂�) +
∑
n∈I ε

Hd−1(∂∗E ∩ ∂T ε
n ). (70)



A. Girouard et al.

We first observe that if δ is chosen such that ωdδ
d � |�| /2 and Hd(E) � 1, the

trace inequality for BV (�) → L1(∂�) and the relative isoperimetric inequality
relative to� [5, Inequality (2.2)] applied to the characteristic functionχE ∈ BV (�)

implies that there is a constantC , whose precise value may change from line to line
but which depens only on �, such that

Hd−1(∂∗E ∩ ∂�) � CHd−1(∂∗E ∩ �)

= C(Hd−1(∂∗E ∩ (∂�ε\∂�)) + Hd−1(∂∗E ∩ �ε))

= C(
∑
n∈I ε

Hd−1(∂∗E ∩ ∂T ε
n ) + Hd−1(∂∗E ∩ �ε))

(71)

Substitution in (70) implies

Hd−1(∂∗E ∩ ∂�ε) � C

(
Hd−1(∂∗E ∩ �ε) +

∑
n∈I ε

Hd−1(∂∗E ∩ ∂T ε
n )

)
. (72)

For n ∈ I ε and t ∈ (0, ε/4), define

Fn,t := {x ∈ E : dist∂T ε
n (x) � t} ⊂ Qε

n. (73)

Assume that there is t ∈ (0, ε/4) such that

Hd−1(∂∗Fn,t ∩ Qε
n) � 2Hd−1(∂∗E ∩ Qε

n). (74)

Since projections on convex sets are nonexpansive and Fn,t ⊂ Qε
n, we have that

Hd−1(∂∗E ∩ ∂T ε
n ) = Hd−1(∂∗Fn,t ∩ ∂T ε

n )

� Hd−1(∂∗Fn,t ∩ Qε
n)

� 2Hd−1(∂∗E ∩ Qε
n).

(75)

If (74) holds for each n ∈ I ε then it follows from (72) that

Hd−1(∂∗E ∩ ∂�ε) � C

(
Hd−1(∂∗E ∩ �ε) +

∑
n∈I ε

Hd−1(∂∗E ∩ Qε
n)

)

� CHd−1(∂∗E ∩ �ε),

(76)

which completes the proof in this case.
Otherwise, let J ε := {n ∈ I ε : equation (74) does not hold}. For n ∈ J ε, set

hn(t) := Hd−1 ({x ∈ ∂∗Fn,t : dist∂T ε
n (x) = t}) . (77)

Since (74) does not hold,

2hn(t) � Hd−1(∂∗Fn,t ∩ Qε
n).

It follows from the relative isoperimetric inequality with respect to Qε
n that

cHd(Fn,t )
d−1
d � Hd−1(∂∗Fn,t ∩ Qε

n) � 2hn(t). (78)
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The coarea formula gives ∂tHd(Fn,t ) = hn(t), and it follows by integration and
the relative isoperimetric inequality with respect to Qε

n that

dHd(Fn,ε/4)
1/d =

∫ ε/4

0

hn(t)

Hd(Fn,t )
d−1
d

dt � Cε. (79)

That is for n ∈ J ε,

Hd(E ∩ Qε
n) � Hd(Fn,ε/4)

� Cεd

= Hd(Qε
n).

(80)

This implies that for ε > 0 small enough one has

Hd(E ∩ Qε
n) � C

β̃
Hd−1(∂T ε

n ). (81)

The isoperimetric inequality for E ⊂ R
d gives

∑
n∈J ε

Hd−1(∂T ε
n ) � β̃

∑
n∈J ε

Hd (E ∩ Qε
n)

� β̃Hd (E)

� C β̃Hd−1(∂∗E)
d

d−1

= C β̃
(
Hd−1(∂∗E ∩ ∂�) + Hd−1(∂∗E ∩ ∂T ε) + Hd−1(∂∗E ∩ �ε)

) d
d−1

.

(82)

Together with (71) and (75) this leads to the existence of a constant C which can
depend on β, such that

∑
n∈J ε

Hd−1(∂T ε
n ) � C

(
Hd−1(∂∗E ∩ �ε) +

∑
n∈J ε

Hd−1(∂T ε
n )

) d
d−1

. (83)

Because J ε �= ∅, dividing and factoring, this leads to

1 � C

(∑
n∈J ε

Hd−1(∂T ε
n )

) 1
d−1 ( Hd−1(∂∗E ∩ �ε)∑

n∈J ε Hd−1(∂T ε
n )

+ 1

) d
d−1

. (84)

For each n ∈ J ε, Qε
n ⊂ B2δ(xε) and it follows from (69) that we can choose δ

small enough depending on �, the dimension, and β but not on ε such that

C

(∑
n∈J ε

Hd−1(∂T ε
n )

) 1
d−1

<
1

4
. (85)

This implies that there is a constant c > 0 such that for all ε > 0,

1 � Hd−1(∂∗E ∩ �ε)∑
n∈J ε Hd−1(∂T ε

n )
. (86)
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Combining (72), (75) and (86), provides a constant C such that

Hd−1(∂∗E ∩ ∂�ε) � CHd−1(∂∗E ∩ �ε). (87)


�
Remark 17. When rε = o

(
ε

d
d−1

)
, (that is in the subcritical regime), the previous

result along with [5, Theorem 4.1] implies convergence of the eigenvalues of the
Steklov problem on �ε to the eigenvalues of the Steklov problem on �.

4. Homogenisation of the Steklov problem

Let us first establish some basic facts related to the geometry of the homogeni-
sation problem, under the assumption that rd−1

ε ε−d → β ∈ [0,∞) as ε → 0. The
number of holes N (ε) = #I ε satisfies

N (ε) ∼ |�|ε−d as ε → 0.

This implies that∣∣T ε
∣∣ =

∑
k∈I ε

|T ε
k | = O (rε) and

∣∣∂T ε
∣∣ =

∑
k∈I ε

|∂T ε
k | ∼ Adβ|�|. (88)

The remainder of the section is split into three parts. In the first onewe extend the
functions uε

k to thewhole of�, in order to obtain weakH1 convergence, up to taking
subsequences. In the second part, we prove that those converging subsequences
converge to solutions of Problem (4). Finally, we prove in the third part that the
only functions they can converge to are the corresponding eigenfunction in (4),
implying convergence as ε → 0, with this understood in the sense of Remark 3 if
the limit problem has eigenvalues that are not simple.

4.1. Extension of eigenfunctions

For k � 1, recall that uε
k : �ε → R is the k’th Steklov eigenfunction on �ε.

Then {
�uε

k = 0 in �ε,

∂νuε
k = σε

k u
ε
k on ∂�ε.

Recall also that the eigenfunctions uε
k are normalized by requiring that∫

∂�ε

(
uε
k

)2 dA = 1.

Define the function U ε
k ∈ H1(�) to be the harmonic extension of uε

k to the interior
of the holes, so {

U ε
k = uε

k in �ε,

�U ε
k = 0 in T ε.
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Lemma 18. There is a sequence εn → 0 such that U εn
k has a weak limit in H1(�).

Proof. It suffices to show that
{
U ε
k : 0 < ε � 1

}
is bounded in H1(�). Recall that

∥∥U ε
k

∥∥2
H1 = ∥∥U ε

k

∥∥2
L2 + D (

U ε
k

)
. (89)

We first bound the L2 norm of U ε
k . Let λ be the first eigenvalue of the following

Robin problem on �: {
−�u = λu in �,

∂νu = −u on ∂�.

It is well known (see for example [4]) that λ > 0 and that it admits the following
characterization:

λ = inf
v∈H1(�)

∫
�

|∇v|2 dx + ∫
∂�

v2 dS∫
�

v2 dx
.

Applying this to v = U ε
k leads to

∫
�

(
U ε
k

)2 dx � 1

λ

(∫
�

∣∣∇U ε
k

∣∣2 dx +
∫

∂�

(
U ε
k

)2 dA

)

� 1

λ

(D (
U ε
k

) + 1
)
.

(90)

It is therefore sufficient to bound the Dirichlet energy. We first see that

D (
U ε
k ;�

) = D (
uε
k;�ε

) + D (
U ε
k ; T ε

) = σε
k + D (

U ε
k ; T ε

)
. (91)

It follows from Lemma 12 and monotonicity of the Dirichlet energy, that the con-
tribution from the holes is

D (
U ε
k ; T ε

) =
∑
k∈I ε

D (
U ε
k ; T ε

k

)

�
∑
k∈I ε

5
(rε

ε

)d D (
uε
k; Qε

k

) (
1 + O

((rε
ε

)d))

� 5
(rε

ε

)d D (
uε
k;�ε

) (
1 + O

((rε
ε

)d))
� Cσk(�

ε),

(92)

for some constant C . Combining (92) and (90), we see that, to bound
∥∥U ε

k

∥∥
H1(�)

, it
is sufficient to find a bound for σε

k independent of ε. The variational characterisation
for Steklov eigenvalues can be rewritten as

σε
k = min

E⊂L2(∂�ε)
dim(E)=k+1

max
u∈E

D(u)

‖u‖2
L2(∂�ε)

. (93)
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We use eigenfunctions of the dynamical eigenvalue problem as a test subspace for
σε
k . Namely, setting E = span(U0, . . . ,Uk) we see that for ε small enough it spans

a k+1 dimensional subspace of L2(∂�ε). Indeed, they are an orthonormal set with
respect to (·, ·)β , and for every 0 � j, � � k,

(Uj ,U�)∂ε
ε→0−−→ (Uj ,U�)β . (94)

Therefore, from the characterisation of the eigenvalues 
k,β ,

σε
k � max

U∈E
D(U )

(U,U )∂ε

� 
k,β + o (1) .

(95)

This completes the proof that
{
U ε
k

}
is bounded so that there is a converging subse-

quence as ε → 0. 
�
From now on we will abuse notation and relabel that sequence εn → 0 along

which U ε
k has a weak limit as ε → 0 again.

4.2. Establishing the limit problem

Our aim by the end of this subsection is to prove the following weaker version
of Theorem 2:

Proposition 19. Let k ∈ N. As ε → 0, the pairs
(
σε
k ,U ε

k

)
converge to a solution

(
,U ) of (4), the convergence of the functions U ε
k being weak in H1(�).

Up to choosing a subsequence, we assume that σε
k converges to some number


and also that
{
U ε
k

} ⊂ H1(�) is weakly converging in H1(�) to some U ∈ H1(�),
from which we also get strong convergence to U in L2(�). Considering the real-
valued test function V ∈ H1(�), we see that∫

�

∇U ε
k · ∇V dx =

∫
�ε

∇uε
k · ∇V dx +

∫
T ε

∇U ε
k · ∇V dx

= σε
k

∫
∂�ε

uε
kV dx +

∫
T ε

∇U ε
k · ∇V dx

= σε
k

∫
∂�

uε
kV dA + σε

k

∫
∂T ε

uε
kV dA +

∫
T ε

∇U ε
k · ∇V dx.

Letting ε → 0 leads, if the limits exist, to∫
�

∇U · ∇V dx − 


∫
∂�

UV dA = 
 lim
ε→0

∫
∂T ε

uε
kV dA + lim

ε→0

∫
T ε

∇U ε
k · ∇V dx.

It follows from the Cauchy–Schwarz inequality that

∫
T ε

∇U ε
k · ∇V dx �

(∫
T ε

∣∣∇U ε
k

∣∣2 dx
∫
T ε

|∇V |2 dx
)1/2

,
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which tends to 0 according to Lemma 12. It follows that∫
�

∇U · ∇V dx − 


∫
∂�

UV dA = 
 lim
ε→0

∫
∂T ε

uε
kV dA,

and all that is left to do is to analyse the last term.

Proposition 20. Suppose that ε−drd−1
ε → β � 0. Then, for each V ∈ H1(�), the

following holds:

lim
ε→0

∫
∂T ε

uε
kV dA = Adβ

∫
�

UV dx. (96)

Remark 21. The functional V �→ ∫
∂T ε uε

kV is bounded on H1(�). By the Riesz–
Fréchet representation theorem, there exists a function ξε ∈ H1(�) such that∫

∂T ε

uε
kV =

∫
�

∇ξε · ∇V + ξεV dx ∀V ∈ H1(�).

Using appropriate test functions shows that ξε is the weak solution of the following
transmission problem:⎧⎪⎨

⎪⎩
�ξε = 0 in �ε ∪ T ε,

∂νξ
ε+ + ∂νξ

ε− = uε
k on ∂T ε,

∂νξ
ε = 0 on ∂�.

(97)

Proposition 20 is an homogenisation result for this problem. It means that in the
limit as ε → 0, the solution converges to that of the following problem:{

−�� + (1 − Adβ)� = 0 in �,

∂ν� = 0 on ∂�.
(98)

Transmission problems have recently been the subject of investigation through
means of homogenisation, see for example [35].

The proof of Proposition 20 is divided in three main steps. In the first step,
we justify that we can use smooth test functions in the limit (96). In order to
do so, we will use an inner representation of the lefthandside in (96), defined in
terms of extensions to the holes, to show that it is bounded, uniformly in ε. In this
representation, however, it is hard to explicitly compute the limit problem.

In our second step, we introduce an outer representation of the lefthandside in
(96), through integration on the outside of the holes. This representation is given in
terms of an auxilliary function �, for which we derive some regularity properties.

In the final step, we use this latter representation to show that the limit (96)
indeed holds. Here, we reap rewards from the previous steps and use explicitly the
properties of the auxilliary function �, as well as better estimates awarded from
the fact that we can test against smooth functions.
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Proof of Proposition 20. Define the family of bounded functionals Lε : H1(�) →
R by

Lε(V ) :=
∫

∂Tε

V dA.

Step 1: Inner representation of Lε.
Define ϕε : R

d → R by

ϕε(x) =
{ |x|2

2rε
for x ∈ B(0, rε),

0 elsewhere.
(99)

By periodizing along εZ
d we obtain the function �ε : R

d → R given by

�ε(x) :=
∑
k∈I ε

ϕε(x − εk). (100)

Lemma 22. The functional Lε : H1(�) → R admits the following representation:

Lε(V ) = d

rε

∫
T ε

V dx +
∫
T ε

∇�ε · ∇V dx. (101)

Proof. It is straightforward to check that

⎧⎪⎨
⎪⎩

��ε = d
rε

in T ε,

∂ν�ε = 1 on ∂T ε,

� = 0 in �ε.

(102)

The function �ε therefore satisfies the weak identity

∫
T ε

∇�ε · V = − d

rε

∫
T ε

V +
∫

∂T ε

V, ∀V ∈ H1(�). (103)


�

For each k ∈ N and ε > 0, the functional L̃ε : H1(�) → R is defined by

L̃ε(V ) := Lε(u
ε
kV ).

Lemma 23. There is an ε0 > 0 such that the family
{
L̃ε

}
ε>0 ⊂ (

H1(�)
)∗

is
uniformly bounded for 0 < ε � ε0.
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Proof. Given V ∈ H1(�), it follows from the Lemma 22 that

Lε(U
ε
k V ) = d

rε

∫
T ε

U ε
k V dx +

∫
T ε

∇�ε · ∇(U ε
k V ) dx. (104)

To bound the first term, start by using the Cauchy–Schwarz inequality to get that∣∣∣∣ drε
∫
T ε

U ε
k V dx

∣∣∣∣ � d

rε

∥∥U ε
k

∥∥
L2(T ε)

‖V ‖L2(T ε) . (105)

It follows from Lemma 14 that there is C > 0 depending only on β such that

‖V ‖L2(T ε) � Cr1/2ε ‖V ‖H1(�) ,∥∥U ε
k

∥∥
L2(T ε)

� Cr1/2ε

∥∥U ε
k

∥∥
H1(�)

,
(106)

so that

sup
ε∈(0,1)

∣∣∣∣ drε
∫
T ε

U ε
k V dx

∣∣∣∣ < ∞. (107)

To bound the second term in (104), the generalised Hölder inequality leads to∣∣∣∣
∫
T ε

∇�ε · ∇(U ε
k V ) dx

∣∣∣∣ �
∣∣∣∣
∫
T ε

U ε
k ∇�ε · ∇V + V∇�ε · ∇U ε

k dx

∣∣∣∣
�

∥∥U ε
k

∥∥
L2(T ε)

‖∇V ‖L2(T ε) ‖∇�ε‖L∞(T ε)

+ ∥∥∇U ε
k

∥∥
L2(T ε)

‖V ‖L2(T ε) ‖∇�ε‖L∞(T ε)

�
(∥∥U ε

k

∥∥
L2(T ε)

+ ∥∥∇U ε
k

∥∥
L2(T ε)

)
‖∇V ‖H1(�) ‖∇�ε‖L∞(T ε)

�
∥∥U ε

k

∥∥
H1(T ε)

‖∇V ‖H1(�) .

In the last inequality we have used ‖∇�ε‖L∞(T ε) = 1, which follows from (99).
This quantity is uniformly bounded as ε ↘ 0 since we have shown in the proof of
Lemma 18 that U ε

k is bounded in H1(�). Together with (107) this proves for each
V ∈ H1(�) the existence of a constant C such that |Lε(U ε

k V )| � C‖V ‖ for each
ε, and the conclusion follows from the Banach–Steinhaus theorem. 
�
Step 2: Outer representation of Lε. Consider the torus C = T

d = R
d/Z

d and
introduce the fundamental cell Cε as the perforated torus

Cε := C\B (0, ρε),

where ρε := ε−1rε is the renormalised radius. Following [41], we define the func-
tion ψε ∈ H1(Cε) through the weak variational problem∫

Cε

∇ψε · ∇V = −cε

∫
Cε

V +
∫

∂B(0,ρε)

V . (108)

By taking V ≡ 1, one sees that the necessary and sufficient condition for existence
of a solution (see for example [40, Theorem 5.7.7]) is

cε = Adρ
d−1
ε

|Cε| ∼ Ad(ρε)
d−1.
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Uniqueness of the solution is guaranteed by requiring that ψε be orthogonal to
constants on Cε. Therefore, ψε is the unique function such that{

�ψε = cε in Cε

∂νψε = 1 on ∂B(0, ρε)
and

∫
Cε

ψε = 0.

Consider the union of all cells strictly contained in �,

�̃ε :=
⋃

k∈I ε

Qε
k ⊂ �ε.

Define the function �ε : R
d\⋃

k∈Zd T ε
k → R as the scaled lift of ψε. That is, if

q : R
d → R

d/Z
d is the covering map, then

�ε(εx) := ψε(q(x)).

This function satisfies {
��ε = ε−2cε in �̃ε,

∂ν�ε = ε−1 on ∂T ε.

Lemma 24. The functional Lε : H1(�) → R admits the following representation:

Lε(V ) = ε

∫
�̃ε

∇�ε · ∇V dx + ε

∫
∂�̃ε\∂T ε

V ∂ν�ε dA + ε−1cε

∫
�̃ε

V dA.

The proof is immediately apparent, since for V ∈ H1(�), the following holds:∫
�̃ε

∇�ε · ∇V dx = −ε−2cε

∫
�̃ε

V dx + ε−1
∫

∂T ε

V dA +
∫

∂�̃ε\∂T ε

V ∂ν�ε dA.

(109)

We establish the following claim concerning ψε:

Lemma 25. There is a constant C, depending only on the dimension and on β,
such that

‖ψε‖H1(Cε) � Cε
1
2+ 1

d . (110)

Furthermore, for any s > 1, any compact set K ⊂ C, containing the origin in its
interior, there is a constant C ′ depending only on the dimension, β, s, and on K
such that

‖ψε‖Hs (Cε\K ) � C ′ε
1
2+ 1

d . (111)

In particular, this implies ‖Dαψε‖L∞(Cε\K ) decays as ε
1
2+ 1

d for any multi-index α.
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Proof. Observe that since ψε has mean 0 on Cε, the Poincaré–Wirtinger inequality
implies

μ1(Cε) ‖ψε‖2L2(Cε)
� ‖∇ψε‖2L2(Cε)d

, (112)

where μ1(Cε) is the first non-zero Neumann eigenvalue of Cε. Observe that

μ1(Cε) → 4π2 as ε → 0.

Indeed,μ1(Cε) is thefirst non-zeroNeumanneigenvalueof a puncturedd-dimensional
torus, which is known to converge to the first nonzero eigenvalue of the torus itself
as ε ↘ 0; see [6, Chapter IX], for instance.

Take V = ψε in the variational characterisation (108) of ψε, and consider ε to
be small enough that μ1(Cε) � 1. Using the Cauchy–Schwarz inequality yields

‖ψε‖2H1(Cε)
� 2

∫
Cε

|∇ψε|2 dx

� 2
∫

∂B(0,ρε)

ψε dA

� 2
√
Adρ

d−1
ε ‖ψε‖L2(∂B(0,ρε))

� 2
√
Adρ

d−1
ε ‖τε‖‖ψε‖H1(Cε),

(113)

where τε is the trace operator H1(Cε) → L2(∂B(0, ρε)). From the definition of τε

and monotonicity of the involved integrals, we have that

‖τε‖ � γ
(
ε

1
d−1 , 1

)−1
, (114)

where γ is defined in Lemma 13. We therefore deduce that ‖τε‖ � ε1/d , the
implicit constant depending only on the dimension and on β. Finally, dividing both
sides in (113) by ‖ψε‖H1, observing that ρd−1

ε ∼ βε and inserting the bound for
‖τε‖ in (113) finishes the proof of the first inequality.

For the second one, we have from [20, Theorem 8.10] that there is a constant
C̃ depending only on the dimension, on K , and on s such that

‖ψε‖Hs (Cε\K ) � C̃
(‖ψε‖H1(Cε) + ‖cε‖Hs (Cε)

)
. (115)

The second term is of order ρd−1
ε ∼ ε, and bounds for the H1 norm of ψε that were

obtained in (113) conclude the proof of the second inequality.
As for the remark considering the L∞ bounds on derivatives of ψε, we have

from inequality (111) that∥∥Dαψε

∥∥
Hs−|α|(Cε\K )

� ‖ψε‖Hs (Cε\K ) � C ′ε
1
2+ 1

d . (116)

Choosing s > |α| + d+1
2 , and ε small enough that Cε\K = C\K , we have that

Hs−|α|(Cε\K ) ↪→ L∞(Cε\K )

with norm independent of ε, concluding the proof. 
�
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Step 3: Computing the limit problem. It follows from Lemma 23 that it is sufficient
to verify convergence for a test function V ∈ C∞(�). From the outer representation
for Lε we have that

L̃ε(V ) =
∫

∂T ε

uε
kV

= ε

∫
�̃ε

∇�ε · ∇(uε
kV ) +

∫
∂�̃ε\∂T ε

uε
kV ∂ν�ε + ε−1cε

∫
�̃ε

uε
kV︸ ︷︷ ︸

→Adβ
∫
� UV

,

(117)

where convergence of the last term stems from strong L2 convergence. We now
show that the two other terms converge to 0. For the first one, the Cauchy–Schwarz
inequality gives

∫
�̃ε

ε∇�ε · ∇(uε
kV ) �

(∫
�̃ε

ε2|∇�ε|2
∫

�̃ε

|∇(uε
kV )|2

)1/2

. (118)

Let us first observe that since V is in C∞(�), we have that∫
�̃ε

∣∣∇(uε
kV )

∣∣2 � 2 sup
x∈�̃ε

(
|V (x)|2 + |∇V (x)|2

)
‖U ε

k ‖H1(�)

= O (1) .

(119)

Regarding the other term, note that∫
�̃ε

ε2|∇�ε|2 = ε2
∑
k∈I ε

∫
Qε

k

|∇�ε|2

=
∑
k∈I ε

εd
∫
Cε

|∇ψε|2

∼ |�|
∫
Cε

|∇ψε|2.

(120)

It follows from Lemma 25 that∫
Cε

|∇ψε|2 dx = O
(
ε1+

2
d

)
, (121)

hence that term indeed goes to 0. For the second term in (117), we have from the
generalised Hölder inequality that

ε

∫
∂�̃ε\∂T ε

uε
kV ∂ν�ε dA � ε ‖V ‖L2(∂�̃ε\∂T ε)

∥∥uε
k

∥∥
L2(∂�̃ε\∂T ε)

‖∂ν�ε‖L∞(∂�̃ε\∂T ε) .

(122)

We now analyse each of those norms.
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First, by scaling of derivatives, we have

‖ε∂ν�ε‖L∞(∂�ε\∂T ε) � sup
|α|=1

∥∥Dαψε

∥∥
L∞(Cε\B(0,1/4))

� ε
1
2+ 1

d ,

(123)

where the last bound holds by Lemma 25. We move on to
∥∥uε

k

∥∥
L2(∂�̃ε\∂T ε)

. Denote

by Ĩ ε the set of indices n ∈ Z
d such that ∂Qε

n ∩ ∂�̃ε �= ∅. One can see that

∥∥uε
k

∥∥
L2(∂�̃ε\∂T ε)

�
∑
n∈ Ĩ ε

∥∥U ε
k

∥∥
L2(∂Qε

n)
. (124)

On the other hand, it follows from Lemma 15 that there is a constant C (in fact, the
trace constant of the unit cube) such that∑

n∈ Ĩ ε

∥∥U ε
k

∥∥
L2(∂Qε

n)
� Cε−1/2

∑
n∈ Ĩ ε

∥∥U ε
k

∥∥
H1(Qε

n)

� Cε−1/2
∥∥U ε

k

∥∥
H1(�)

.

(125)

Finally, since V is fixed and smooth, we have that

‖V ‖L2(∂�̃ε\∂T ε) �
∣∣∂�̃ε\∂T ε

∣∣1/2 sup
x

V (x)

� C |∂�|1/2 sup
x

V (x).
(126)

All in all, this implies that the second term in (117) is bounded by a constant times
ε1/d , hence goes to 0 as ε → 0, finishing the proof of Lemma 20. 
�

We are now ready to complete the proof of the main result of this subsection.

Proof of Proposition 19. We know from [42] that we only need to show that the
solutions converge to a solution (
,U ) of the weak formulation of Problem 4,1
which is that for any test function V ,∫

�

∇U · ∇V dx = 


(
Adβ

∫
�

UV dx +
∫

∂�

UV dA

)
. (127)

The weak formulation of the Steklov problem on �ε is that for all test functions
V , ∫

�ε

∇uε
k · ∇V dx = σε

k

(∫
∂�

uε
kV dA +

∫
∂T ε

uε
kV dA

)
. (128)

The convergence of the gradient terms follows from weak convergence in H1 ofU ε
k

toU and Lemma 12. We already have that σε
k → 
. The integrals on ∂� converge

by weak convergence in H1 and compactness of the trace operator on ∂�. Finally,
convergence of the interior term comes from Proposition 20. 
�
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4.3. Spectral convergence of the problem

We need the following technical lemma:

Lemma 26. As ε → 0, we have that

L̃ε(u
ε
k) → Adβ

∫
�

U 2 dx. (129)

Remark 27. Observe that this situation is specific to the sequence uε
k . Indeed, there

are sequences {vε} converging weakly to some v ∈ H1(�) such that

lim
ε→0

L̃ε(vε) �= Adβ

∫
�

Uv dx. (130)

Proof. From the outer representation (117), we have that

L̃ε(u
ε
k) = ε

∫
�̃ε

∇�ε · ∇(uε
k)

2 dx + ε

∫
∂�̃ε\∂T ε

(uε
k)

2∂ν�ε dx + ε−1cε

∫
�̃ε

(uε
k)

2 dx,

= ε

∫
�̃ε

2∇�ε · uε
k∇uε

k dx + ε

∫
∂�̃ε\∂T ε

(uε
k)

2∂ν�ε dx + ε−1cε

∫
�̃ε

(uε
k)

2 dx.

(131)

The last term converges towards the desired Adβ
∫
�
U 2 dx once again by strong

L2 convergence of the sequence U ε
k . To study the first term, let us now introduce

the sets

ωε :=
⋃

k∈I ε

B
(
εk,

ε

4

)
\B(εk, rε) ⊂ �̃ε, (132)

and decompose

ε

∫
�̃ε

∇�ε · ∇(uε
k)

2 dx = 2

(∫
ωε

+
∫

�̃ε\ωε

)
ε∇�ε · uε

k∇uε
k dx. (133)

Let us first consider the integral over ωε. It follows from [5] that the L∞ norms of
the Steklov eigenfunctions uε

k is bounded, uniformly in terms of σε
k , and the norm

of the trace T : BV(�ε) → L1(∂�ε), which we have shown in Lemma 16 to be
bounded. This, along with the scaled H1 norm estimate for ε∇�ε from Lemma 25,
the L2 boundedness of ∇uε

k from Lemma 18 and the generalised Hölder inequality
yields∫

ωε

2ε∇�ε · uε
k∇uε

k dx � 2 ‖ε∇�ε‖L2(�ε)d

∥∥∇uε
k

∥∥
L2(�ε)d

∥∥uε
k

∥∥
L∞(ωε)

� ε
1
2+ 1

d .

(134)

For the integral over �̃ε\ωε, observe that scaling Lemma 25 yields

‖ε∇�ε‖L∞(�̃ε\ωε)d = sup
|α|=1

∥∥Dαψε

∥∥
L∞(Cε\B(0,1/4))

� ε
1
2+ 1

d .

(135)
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Inserting that bound into the generalised Hölder inequality, along with H1

boundedness of uε
k yields∫

ωε

2ε∇�ε · uε
k∇uε

k dx � 2 ‖ε∇�ε‖L∞(�̃ε\ωε)d

∥∥∇uε
k

∥∥
L2(�ε)d

∥∥uε
k

∥∥
L2(�ε)

� ε
1
2+ 1

d .

(136)

Finally, for the integral on the boundary ∂�̃ε\∂T ε, we have from Hölder that

ε

∫
∂�̃ε\∂T ε

(uε
k)

2∂ν�ε dA � ε
∣∣∂�̃ε\∂T ε

∣∣ ‖∂ν�ε‖L∞(∂�̃ε\∂T ε)

∥∥(uε
k)

2
∥∥
L∞(∂�̃ε\∂T ε)

.(137)

We have as in the proof of Lemma 20 that the L2 norm of uε
k is uniformly bounded,

from uniform boundedness of the trace operator. From Lemma 25 we have that

ε ‖∂ν�ε‖L∞(∂�̃ε\∂T ε) = O
(
ε

1
2+ 1

d

)
,

and as earlier, we have ∥∥∥(uε
k)

2
∥∥∥
L∞(∂�̃ε\∂T ε)

� C,

from Lemma 16. Finally, it follows from standard lattice packing theory that # Ĩ ε �
Cε1−d for someC depending only on�, so that

∣∣∂�̃ε\∂T ε
∣∣ � C . Combining these

three estimates, we have indeed that the product in (137) is going to 0 as ε → 0,
concluding the proof. 
�

Until now, we have shown that the harmonic extensions to the holes in �ε of
Steklov eigenpairs (σ ε

k , uε
k) converge weakly in H

1 and strongly in L2 to a solution
(
,U ) to the problem {

−�U = Adβ
U in �,

∂νU = 
U on ∂�.
(138)

It remains to be shown that the convergence is to the “right” eigenpair (
k,β ,Uk).
Spectral convergence of this type is a staple of homogenisation theory, see for ex-
ample [2,37] in a standard setting or [16] using the theory of E-convergence. In
both cases, the general theory cannot be directly applied here since theHilbert space
L2
Adβ(�) × L2(∂�) on which the limit problem is self-adjoint has no natural em-

bedding to the Hilbert spaces L2(∂�ε), compare for example with [16, Definitions
1–3]. Our methods use instead the quadratic forms associated with the eigenprob-
lems directly, similar methods were used in spectral prescription, see for example
[13].

For the remainder of this section, as β is fixed, we will write simply
k . We first
start by the following lemma, showing that the limit functionU does not degenerate
to the 0 function:
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Lemma 28. Let U be such that U ε
k → U weakly in H1(�). Then,

(U,U )β = 1. (139)

Proof. By compactness of the trace operator on ∂�, we have that∫
∂�

(U ε
k )2 dx →

∫
∂�

U 2 dx. (140)

as ε → 0. Moreover, by Lemma 26, we have that∫
∂T ε

(
U ε
k

)2 dx → Adβ

∫
�

U 2 dx (141)

as ε → 0. Hence (U ε
k ,U ε

k )∂ε → (U,U )β . Since U ε
k has been normalised to

L2(∂�ε) norm 1, this concludes the proof. 
�
We are now ready to complete the proof of our first main result.

Proof of Theorem 2. We first show that all the eigenvalues converge. We proceed
by induction on the eigenvalue rank k. The case k = 0 is trivial. Indeed, we then
have that the eigenvalues σε

0 ≡ 0 obviously converge to
0 = 0 and the normalised
eigenfunctions U ε

0 (x) = |∂�ε|−1/2, which converges to the constant fonction

U0(x) = (|∂�| + Adβ |�|)−1/2 .

Suppose now that for all 0 � j � k − 1, we have that U ε
j converges to Uj weakly

in H1(�). We first show that


k � σε
k + o (1) . (142)

In order to do this, wewill show that the eigenfunctionsUk are good approximations
to appropriate test functions for the variational characterisation (18) of σε

k .
Observe that by compactness of the trace operator on ∂� and by Lemma 20,

lim
ε→0

∫
∂�ε

uε
jUk dA =

∫
∂�

UkU j dA + Adβ

∫
�

UkU j dx = 0 (143)

for all 0 � j � k − 1. Hence, we can write

Uk = V ε +
k−1∑
j=0

ηε
j u

ε
j dA, (144)

where for all 0 � j � k − 1 and all ε > 0,∫
∂�ε

V εuε
j = 0, (145)



From Steklov to Neumann via homogenisation

and ηε
j → 0 as ε → 0. Now, we have that


k =
∫

�

|∇Uk |2 dx

�
∫

�ε

∣∣∇V ε
∣∣2 +

k−1∑
j=0

(ηε
j )∇uε

j · ∇V ε +
k−1∑
j,l=0

ηε
jη

ε
k∇uε

j · ∇uε
k dx.

(146)

Since the uε
j and V ε are bounded in H1(�), the integral of the two sums in the

previous equation go to 0 as ε → 0. On the other hand, we have that for all ε > 0,
V ε is an appropriate test function for σε

k . Hence,∫
�ε

∣∣∇V ε
∣∣2 dx � σε

k

∫
∂�ε

(V ε)2 dA. (147)

It follows from the decomposition (144) and the fact that, by Lemma 20,∫
∂�ε

U 2
k dA →

∫
∂�

U 2
k dA + Adβ

∫
�

U 2
k dx = 1 (148)

that

lim
ε→0

∫
∂�ε

(V ε)2 dx = 1, (149)

implying that indeed 
k � σε
k + o (1). We now show that


k � σε
k .

Let (
,U ) be the limit eigenpair for (σ ε
k , uε

k) and suppose that

(
,U ) = (
 j ,Uj )

for some 0 � j � k − 1. We have that

0 = lim
ε→0

∫
∂�ε

uε
k dA

= lim
ε→0

∫
∂�ε

uε
kU j dA +

∫
∂�ε

uε
k(u

ε
j −Uj ) dA

(150)

The first term converges to 1 by the assumption that (U,Uj )β = 1 and Lemma
20. As for the second term, we have by the Cauchy–Schwarz inequality and the
normalisation

∥∥uε
k

∥∥
L2(∂�ε)

= 1 that∫
∂�ε

uε
k(u

ε
j −Uj ) dA �

∥∥∥uε
j −Uj

∥∥∥
L2(∂�ε)

→ 0
(151)

as ε → 0 by Lemma 26. This results in a contradiction. We therefore deduce that
σε
k converges to some eigenvalue 
 of problem 4 that is larger than 
 j for all
j � k − 1. Combining this with the bound (142) implies that σε

k converges to 
k ,
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andweak convergence of the eigenfunction therefore follows, when the eigenvalues
are simple.

To obtain strong convergence of the eigenfunctions, it is only left to prove that
the Dirichlet energy converges. This follows directly from Lemma 12 which tells
us, as in (92), that

D(U ε
k ;�) = D(uε

k;�ε)(1 + o (1)),

as well as the fact that

D(uε
k;�ε) = σε

k → 
k = D(Uk;�). (152)

If 
k has multiplicity m, that is


k−1 < 
k = . . . = 
k+m−1 < 
k+m, (153)

observe that the above argument still yields convergence of σε
j to 
 j for all k �

j < k + m. For the eigenfunctions, start by fixing a basis Uk, . . . ,Uk+m−1 of
the eigenspace associated with 
k . Observe that along any subsequence there is a
further subsequence such that all the eigenfunctionsU ε

j , converge simultaneously to

solutions of Problem 4. Since, for all ε, the functionsU ε
j were L

2(∂�ε)-orthogonal,
in the limit they are still orthogonal, this time with respect to (·, ·)β . This implies
that in the limit they span the eigenspace associatedwith
k . As such, the projection

on the span of
{
U ε

j : k � j < k + m
}
converges to the projections on the span of{

Uj : k � j < k + m
}
. Since this was true along any subsequence, it is also true

for the whole sequence, proving convergence of the projections in the sense alluded
to in Remark 3. 
�

5. Dynamical boundary conditions with large parameter

The goal of this final section is to understand the limit, as β becomes large, of
the eigenvalues 
k,β , and of the corresponding eigenfunctions Uk,β , normalized
by

1 = (Uk,β ,Uk,β)β =
∫

∂�

U 2
k,β dA + Adβ

∫
�

U 2
k,β dx.

Recall that the Neumann eigenvalues of � are

0 = μ0 � μ1 � μ2 � · · · ↗ ∞.

We are now ready to prove our second main result.

Proof of Theorem 5. For k fixed, we start by showing that β
k,β is bounded. Con-
sider the min–max characterisation of 
k,β to obtain


̃k,β := β
k,β = min
E⊂H1(�)

dim(E)=k+1

max
f ∈E\{0}

∫
�

|∇ f |2 dx
1
β

∫
∂�

f 2 dA + Ad
∫
�

f 2 dx
. (154)
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The quotient on the righthand side of (154) is clearly bounded uniformly in β

for any k + 1 dimensional subspace of smooth functions on �. We can therefore
suppose that a subsequence in β of 
̃k,β converges, say to 
̃k,∞. Let us now prove
that Ũk,β := β1/2Uk,β is a bounded family in H1(�). The normalisation on Uk,β

implies that

1 � Adβ

∫
�

U 2
k,β dx = Ad

∫
�

Ũ 2
k,β dx.

For the Dirichlet energy, we have that∫
�

∣∣∇Ũk,β
∣∣2 dx = β
k,β , (155)

which was already shown to be bounded. Therefore there is also a weakly conver-
gent subsequence in in H1(�) as β → ∞, converging to say Ũk,∞. We take the
subsequence to coincide with the one for 
̃k,β . Observe as well that the normali-
sation condition on Uk,β prevents the limit Ũk,∞ from vanishing identically.

The functions Ũk,β satisfy the following weak variational characterisation for
any element V ∈ H1(�):∫

�

∇Ũk,β · ∇V dx = 
̃k,β

(
β−1

∫
∂�

Ũk,βV dA + Ad

∫
�

Ũk,βV dx
)

. (156)

Letting β → ∞, weak convergence of Ũk,β in H1(�) implies that the limit satisfies
the weak identity∫

�

∇Ũk,∞ · ∇V dx = 
̃k,∞Ad

∫
�

Ũk,∞V dx. (157)

In other words, Ũk,∞ is a solution to the Neumann eigenvalue problem with eigen-
value μ = 
̃k,∞Ad .

We now proceed by recursion on k to show convergence to the right eigenpair.
Once again, the statement is trivial for k = 0 and the constant eigenfunction.
Assume that we have convergence for the first k − 1 eigenpairs. We now proceed
in a similar fashion as in the proof of the spectral convergence to Problem (4). We
repeat the argument because the inequalities are more subtle. We first show that

μ̃k(�) := μk(�)

Ad
� 
̃k,β(1 + o (1)). (158)

Write

fk = Fβ +
k−1∑
j=0

( fk,Uj,β)βUj,β , (159)

with Fβ ⊥β Uj,β for 0 � j < k. We have that

( fk,Uj,β)β = ( fk, β
−1/2 f j )β + ( fk,Uj,β − β−1/2 f j )β . (160)



A. Girouard et al.

The first inner product develops as

( fk, β
−1/2 f j )β = β−1/2

∫
∂�

fk f j dA + Adβ
1/2

∫
�

fk f j dx. (161)

The first term clearly goes to 0 as β → ∞, and the second one vanishes by
orthogonality of the Neumann eigenfunctions in L2(�). We now turn our attention
to the second inner product in (160). We have that

lim
β→∞ β−1/2

∫
∂�

fk(Ũ j,β − f j ) dA = 0 (162)

by weak H1 convergence of Ũ j,β and compactness of the trace operator. On the
other hand, strong L2 convergence implies that

Adβ
1/2

∫
�

fk(Ũ j,β − f j ) dx = o
(
β1/2

)
. (163)

All in all, this implies that

( fk,Uj,β)β = o
(
β1/2

)
(164)

for all 0 � j < k. We now write

μ̃k = 1

Ad

∫
�

|∇ fk |2 dx

� 1

Ad

∫
�

∣∣∇Fβ

∣∣2 dx − 1

Ad

k−1∑
j=0

( fk,Uj,β)2β
 j,β .

(165)

Since β
 j,β is bounded and equation (163) implies that ( fk,Uj,β)2β = o (β), we
deduce that the last term in (165) goes to 0. We now observe that by the variational
characterisation of 
k,β ,

1

Ad

∫
�

∣∣∇Fβ

∣∣2 dx � 
k,β

Ad

(∫
∂�

F2
β + Adβ

∫
�

F2
β

)
,

= 
̃k,β

(
1

Adβ

∫
∂�

F2
β dA +

∫
�

F2
β dx

)
.

(166)

In the same way as we obtained the bound on the last term in (165), the first integral
is o (β). As for the second one, we write

∫
�

F2
β dx =

∫
�

⎛
⎝ fk −

k−1∑
j=0

( fk,Uj,β)βU
2
j,β

⎞
⎠

2

dx

= 1 −
k−1∑
j=0

∫
�

( fk,Uj,β)β f jU j,β dx

+
k−1∑
j,�=0

∫
�

( fk,Uj,β)β( fk,U�,β)βUj,βU�,β dx.
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Strong L2(�) convergence of β1/2Uj,β and the fact that ( fk,Uj,β) = o
(
β1/2

)
imply that the last two integrals converge to 0 as β → ∞.

We have therefore obtained that

μ̃k(�) � 
̃k,β (1 + o (1)) , (167)

that is we have indeed proven assertion (158).
Suppose now that (
̃k,β , Ũk,β) converge to a Neumann eigenpair (μ̃ j , f j ) for

some j < k. Then, we have that

1 = lim
β→∞

∫
�

f j Ũk,β dx

= lim
β→∞

∫
�

( f j − Ũ j,β)Ũk,β dx +
∫

�

Ũk,βUj,β dx

� lim
β→∞

∥∥ f j − Ũ j,β
∥∥
L2(�

∥∥Ũk,β
∥∥
L2(�)

+
∣∣∣∣
∫

�

Uk,βUj,β dx

∣∣∣∣
= 0,

, (168)

where the limit comes from strong convergence in L2(∂�) to 0 of Uj,β and our
recursion hypothesis. This is a contradiction, hence the convergence is to the correct
eigenpair. Strong convergence then follows in the sameway as in (152). This implies
convergence of thewhole sequence if theNeumann spectrumof� is simple. If there
are eigenvalues with multiplicity, the same procedure as for the homogenisation
problem yields once again convergence.

As for continuity in β, the same proof goes through in exactly the same way,
except for the fact that we do not need to show the boundedness results in β. 
�

Wecan now prove the comparison results between Steklov andNeumann eigen-
values.

Proof of Corollary 7. It is proved in [11, Theorem 1.4] that any bounded domain
� ⊂ R

d satisfies

σk(�)|∂�| � C(d)|�| d−2
d k2/d , (169)

where C(d) is a constant which depends only on the dimension. When applied to
�ε this leads, after taking ε → 0, to


k,β(|∂�| + Adβ|�|) � C(d)|�| d−2
d k2/d . (170)

Taking the limit β → ∞ leads to

μk |�| � C(d)|�| d−2
d k2/d . (171)

This is equivalent to

μk |�|2/d � C(d)k2/d . (172)


�
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Finally, all is left to do is to prove the previous theorem has the following
corollary in dimension d = 2. It allows one to transform universal bounds for
Steklov eigenvalues into universal bounds for Neumann eigenvalues.

We write �ε
β for a domain �ε as constructed earlier whose holes are exactly of

radius rd−1
ε = βεd .

Proof of Theorem 9. We have from Theorem 2 that

lim
ε→0

σk

(
�ε

β

) ∣∣∣∂�ε
β

∣∣∣ = 
k,β(�) (|∂�| + Adβ |�|)

= |∂�|
β


̃k,β + Ad |�| 
̃k,β .

(173)

Now, the first term clearly goes to 0 as β → ∞, while, by Theorem 5, we have
that

lim
β→∞ Ad |�| 
̃k,β = μk(�) |�| . (174)


�
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