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Abstract

The validity of Weyl’s law for the Steklov problem on domains with Lipschitz
boundary is a well-known open question in spectral geometry. We answer this
question in two dimensions and show that Weyl’s law holds for an even larger class
of surfaces with rough boundaries. This class includes domains with interior cusps
as well as “slow” exterior cusps. Moreover, the condition on the speed of exterior
cusps cannot be improved, which makes our result, in a sense optimal. The proof is
based on the methods of Suslina and Agranovich combined with some observations
about the boundary behaviour of conformal mappings.

1. Introduction and Main Results

1.1. Asymptotics of Steklov Eigenvalues

Let� be a bounded domain in a smooth complete Riemannianmanifold (M, g)

of dimension d � 2. Consider the Steklov eigenvalue problem{
�u = 0 in �;
∂νu = σu on ∂�,

(1.1)

where � is the Laplace-Beltrami operator on M associated with the Riemannian
metric g and ∂ν is the outward normal derivative. Under some regularity conditions
on the boundary, for instance ∂� Lipschitz [3], the spectrum is discrete and forms
a sequence accumulating only at infinity:

0 = σ0(�) � σ1(�) � σ2(�) � . . . ↗ ∞.

Wewill discuss weaker conditions under which the spectrum is discrete later on. To
study eigenvalue asymptotics it is convenient to introduce the eigenvalue counting
function

N (σ ) := #
{

j ∈ N : σ j (�) < σ
}
.
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If ∂� is piecewise C1, it is known [1] that the counting function satisfies the Weyl
asymptotics

N (σ ) = ωd−1

(2π)d−1 Vold−1(∂�)σ d−1 + o
(
σ d−1

)
, (1.2)

whereωd is the volume of the d-dimensional unit ball.We refer also to [2,36,37,42]
for earlier results on this topic, as well as to [11,14,15,33] for improvements of
the error estimate under stronger regularity assumptions. Extending the asymptotic
formula (1.2) to domains with Lipschitz boundaries is a well known open problem,
see for example [14,17,35,43], to which we provide an answer in two dimensions.

Theorem 1.1. Let � be a bounded domain with Lipschitz boundary in a smooth
complete Riemannian manifold of dimension two. Then its Steklov eigenvalues
satisfy the asymptotics (1.2).

In fact,we prove that (1.2) holds for domains satisfyingweaker regularity conditions
defined via the boundary behaviour of conformal maps, see Sect. 1.2. We give
examples of domains satisfying those conditions in Sect. 4, they include the so-
called chord-arc domains, as well as domains with inward and “slow” outward
cusps, see Proposition 4.2.

The proof of Theorem 1.1 relies on the variational characterisation of Steklov
eigenvalues. While this characterisation is standard for Lipschitz domains, certain
subtleties arise for domainswith less regular boundarywhichwe clarify in Sect. 1.3.
We use a conformal map to obtain an isospectral weighted Steklov problem on a
surface with smooth boundary. The isospectrality follows from the equivalence
of the corresponding variational characterisations; for Lipschitz domains, it can
be deduced almost directly from the analogous results for the Neumann problem
[19]. Finally, we use the methods developed in [9,42], see also [1], in order to
obtain spectral asymptotics for these weighted Steklov problems. For Lipschitz
domains we could use the results from [1,42] in a straightforward way; we extend
these techniques to allow for more singular weights corresponding to less regular
boundaries.

Remark 1.2. While the present paper was under review, Theorem 1.1 was extended
to higher dimensions in [34]. In this preprint, the variational ideas from [9] are
also used after a reduction to a model problem. Since the theory of conformal maps
cannot be applied in higher dimensions, it is replacedwith a delicate and technically
sophisticated analysis of elliptic operators with discontinuous coefficients.

1.2. Conformal Regularity

As was mentioned above, our first goal is to reduce the Steklov problem on
a surface with rough boundary to a weighted Steklov problem on a surface with
smooth boundary, via a conformal map. Slightly abusing terminology, we refer
to domains in two-dimensional Riemannian manifolds whose boundary is a finite
collection of disjoint closed simple curves as surfaces with boundary. We say
that two surfaces �1 and �2 with (potentially empty) boundary are conformally
equivalent, or in the same conformal class if there exists ϕ : �1 → �2 a conformal
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diffeomorphism of their interior extending to a homeomorphism of their boundary.
This defines an equivalence relation on surfaces with boundary, and it is clear that
every conformal class consists of surfaces with the same topological type, that is
same orientability, genus and number of boundary components.

The uniformisation theorems are concernedwith finding a canonical representa-
tive in every conformal class C. These canonical representatives are circle domains,
which are the complement of b geodesic disks in a closed surface MC endowed
with a metric of constant curvature gC . It follows from the uniformisation theo-
rems of Haas and Maskit [20,25] that there is a circle domain in every orientable
conformal class with finite topology; this result was extended to the non-orientable
setting in [24, pp. 11–12]. We shall denote this canonical representative (�C, gC).

Many boundary regularity results in the litterature are proven for conformal
maps from the disk to simply connected surfaces with boundary. It follows from
[5, p.24] that any such result for maps from the disk is also valid for maps from an
annulus into a doubly connected surface with boundary, by alternately filling the
boundary components of the target with a disk and conjugating with inversions.
As observed in [24, Remark 2.2], this allows one to extend the regularity theory to
conformal maps from arbitrary circle domains with finite topology. Indeed, in that
situation the restriction of the conformal map to a neighbourhood of one boundary
component in the circle domain is a map from an annulus into a doubly connected
surface with boundary. In particular, Carathéodory’s Theorem tells us that any con-
formal diffeomorphism of the interiors ϕ : �C → � extends to a homeomorphism
of the boundary [30, Theorem 2.6].

Definition 1.3. Let C be a conformal class and ϕ : �C → � be a conformal
diffeomorphism. We define, when they exist,

β :=
∣∣∣dϕ∣∣

∂�C

∣∣∣ and η := |dϕ|2 .

We call β the boundary conformal factor and η the interior conformal factor.

The interior conformal factor η ∈ L1(�C) and the Riemannian volumemeasure
dvg on � is the pushforward measure ϕ∗(η dvgC ). If a surface with boundary has
finite perimeter the boundary conformal factor β ∈ L1(∂�C), and the boundary
length measure d�g on ∂� is the pushforward measure ϕ∗(β d�gC ) [30, Theorem
6.8]. Integrability properties of the conformal factors β and η are controlled by the
regularity of the boundary ∂�. This motivates the following definition of regularity
classes:

Definition 1.4. Let C be a conformal class, � ∈ C, and X (�C) and Y(∂�C) be
function spaces. We say that � has boundary conformal regularity Y if for some
conformal diffeomorphism ϕ : �C → �, the boundary conformal factor β ∈ Y .
We say that � has interior conformal regularity X if for some conformal diffeo-
morphism the interior conformal factor η ∈ X .

We note that our definition of interior conformal regularity differs from that
in [18,19] by a factor of 2 since in those papers it was stated in terms of the
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integrability of |dϕ| rather than |dϕ|2. In other words, interior conformal regularity
Lp corresponds to domains which are L2p conformally regular in their definitions.

The integrability class of the interior conformal factor � has been used to
investigate the properties of the Neumann Laplacian, see [18,19]. As expected, the
regularity of the boundary conformal factor also appears in the study of the Steklov
problem.

Remark 1.5. By the Kellogg–Warschawski Theorem [30, Theorem 3.6], surfaces
with boundary of class Cn,α , n � 1 and 0 < α < 1, have boundary conformal
regularity Cn−1,α . It follows furthermore from the arguments in the proof of [4,
Lemma 5.1] that any surface with Lipschitz boundary (or, more generally, a chord–
arc domain, see Sect. 4) has boundary conformal regularity Lp for some p > 1,
and surfaces of finite perimeter have boundary conformal regularity L1.

Note that domains with exterior cusps do not have boundary conformal regu-
larity Lp for any p > 1. In order to include some of these domains in our analysis
we need to recall the following definition [6, Sections IV.6, IV.8]:

Definition 1.6. Given (�,μ) a measure space of finite measure and a � 0 the
space L(log L)a(�) is a space of functions f on � such that∫

�

| f |(log(2 + | f |)a dμ < ∞

endowed with the norm

‖ f ‖L(log L)a(�) = inf

{
t > 0 :

∫
�

∣∣∣∣ f

t

∣∣∣∣
(
log

(
2 +

∣∣∣∣ f

t

∣∣∣∣
))a

dμ � 1

}
.

One can show that L(log L)a(�) is a Banach space for every a � 0. The dual of
L(log L)a(�) is the space exp L1/a(�) of functions f on � such that

‖ f ‖exp L1/a(�) := inf

{
t > 0 :

∫
�

exp

(∣∣∣∣ f

t

∣∣∣∣
1/a

)
dμ � 1

}
< ∞. (1.3)

The norm (1.3) is equivalent to the dual norm on exp L1/a so that there is C de-
pending only on (�,μ) such that for all f ∈ L(log L)a(�) and u ∈ exp L1/a(�)

the Hölder-type inequality

‖ f u‖L1(�) � C ‖ f ‖L(log L)a(�) ‖u‖exp L1/a(�) (1.4)

holds.

Given a conformal classC and� ∈ Cwith boundary conformal factorβ we consider
the weighted Steklov problem{

�u = 0 in �C;
∂νu = βσu on ∂�C,

(1.5)

The spectrum of this weighted problem is discrete and accumulates at infinity if
the trace operator W1,2(�C) → L2(∂�C, β d�gC ) is compact, see [13, Sections 3
and 4]. This is the case if β ∈ L log L(∂�C), see Proposition 2.2.
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Theorem 1.7. Let C be a conformal class and (�, g) ∈ C be a surface with bound-
ary conformal regularity L log L. Then, problems (1.1) and (1.5) are isospectral in
the sense that σk(�) = σk(�C, β) for all k ∈ N.

Remark 1.8. A simple computation shows that Theorem 1.7 holds when the bound-
ary is smooth, see for example [22, Lemma 3.3]. If the boundary is sufficiently
rough, isospectrality is not a priori clear, and is resolved through the study of com-
position operators between Sobolev spaces with appropriately chosen norm. In a
similar way, the existence of those bounded composition operators gives rise to
isospectrality of the weighted Neumann problems, see [19]. This issue was not pre-
viously addressed in the literature on the Steklov problem on Lipschitz domains,
cf. [16, Proposition 2.1.4].

Our main technical theorem is

Theorem 1.9. Let � be a surface with boundary of boundary conformal regularity
L log L. Then its Steklov eigenvalues satisfy the asymptotic formula (1.2).

Equivalently, for any surface � with smooth boundary and β ∈ L log L(∂�),
the eigenvalues of the weighted problem (1.5) satisfy the asymptotic formula (1.2),
with Vold−1(∂�) replaced by

∫
∂�

β d�g.

The equivalence of the two formulations follows from Theorem 1.7. Note that
in view of Remark 1.5, Theorems 1.7 and 1.9 imply Theorem 1.1.

1.3. Variational Characterisation and Natural Domains for the Steklov Problem

On a surface with boundary �, consider the Sobolev space

W1,2(�) :=
{

f ∈ L2(�) : |∇ f | ∈ L2(�)
}

,

where ∇ f is the weak gradient. If � is a surface with Lipschitz boundary, there are
two equivalent norms on W1,2(�):

‖ f ‖2W1,2(�)
=

∫
�

|∇ f |2 dvg +
∫

�

f 2 dvg, (1.6)

and

‖ f ‖2
W1,2

∂ (�)
=

∫
�

|∇ f |2 dvg +
∫

∂�

f 2 d�g. (1.7)

The norm (1.6) is the standard one and is commonly used in interior problems, for
instance the Neumann problem. On the other hand the norm (1.7) is a natural norm
of choice for the Steklov problem. When the boundary is only some collection of
Jordan curves these norms may not be equivalent, even when the boundary has
finite perimeter (one can show that this is the case for domains with fast cusps as
defined in Sect. 4.2). By theMeyers–Serrin theorem, for any surface with boundary
� the space W1,2(�) is the completion of

W(�) := {
f ∈ C∞(�) : ‖ f ‖W1,2(�) < ∞}

under the ‖·‖W1,2(�) norm, which motivates the following definition:



77 Page 6 of 20 Arch. Rational Mech. Anal. (2023) 247:77

Definition 1.10. Let � be a surface with boundary. The boundary Sobolev space
W1,2

∂ (�) is defined as the completion of

W∂ (�) :=
{

f : � → R : f ∈ C∞(�) and ‖ f ‖W1,2
∂ (�)

< ∞
}

under the ‖·‖W1,2
∂ (�)

norm.

Again, for surfaces with sufficiently regular boundary, W1,2(�) and W1,2
∂ (�)

are isomorphic. We give the following condition for their equivalence in terms of
interior and boundary conformal regularity.

Proposition 1.11. Let � be a surface with boundary with both interior and bound-
ary conformal regularity L log L. Then, W1,2(�) and W1,2

∂ (�) are isomorphic.

The appropriate space to define the Steklov problem (especially whenW1,2(�)

and W1,2
∂ (�) are not isomorphic) is W1,2

∂ (�), see [26]. The Steklov eigenvalues
σk(�) satisfy the variational characterisation

σk(�) = inf
Ek

sup
u∈Ek\{0}

∫
�

|∇u|2 dvg∫
∂�

u2 d�g
,

where Ek is a k + 1 dimensional subspace of W1,2
∂ (�). For the weighted problem

on �C , we have that for β ∈ L log L(�C) the weighted Steklov eigenvalues satisfy
the characterisation

σk(�C, β) = inf
Ek

sup
u∈Ek\{0}

∫
�C |∇u|2 dvg∫
∂�C u2β d�g

,

where again Ek is a k + 1 dimensional subspace of W1,2
∂ (�C). The isospectrality

Theorem 1.7 is a consequence of the following result on composition operator
between Sobolev spaces:

Proposition 1.12. Let C be a conformal class and (�, g) ∈ C be a surface with
boundary. Let ϕ : �C → � be a conformal diffeomorphism with boundary con-
formal factor β ∈ L log L. Then, the composition operator

ϕ∗ : W1,2
∂ (�) → W1,2

∂ (�C) ϕ∗ f := f ◦ ϕ

induced by ϕ is an isomorphism.

Plan of the Paper

The text of this paper is organised as follows: Sect. 2 is concerned with the proof
of Theorem 1.7. We then use the variational isospectrality to prove that domains of
boundary conformal regularity L log L have discrete Steklov spectrum. Section3 is
dedicated to proving Theorem 1.9, expanding on the theory of spectral asymptotics
for variational eigenvalues developed in [9,42]. In Sect. 4 we give a few examples
of domains satisfying the hypotheses of Theorem 1.9. Finally, in Sect. 5 we discuss
some further extensions and applications of ourmethods, in particular to the Steklov
problem with an indefinite weight and to the Neumann eigenvalue problem.
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2. Isospectrality and Composition Operators

Wefirst prove the following lemma about composition operators on someOrlicz
spaces, in a fashion similar to [19, Theorem 4], which is stated for Lebesgue spaces:

Lemma 2.1. For j ∈ {1, 2}, let (� j , μ j ) be measure spaces with finite measure,
ϕ : �1 → �2 be measurable and suppose that the pushforward measure ϕ∗(μ1) =
βμ2, where β : �2 → (0,∞). Then, ϕ induces a bounded composition operator

ϕ∗ : exp L2(�2) → L2(�1), ϕ∗ f := f ◦ ϕ

if and only if β ∈ L log L(�2).

Proof. To prove that the condition β ∈ L log L(�2) is sufficient, assume that f ∈
exp L2(�2), so that | f |2 ∈ exp L(�2). Since L log L(�2) is a reflexive space with
dual exp L(�2), we can compute∫

�1

∣∣ϕ∗ f
∣∣2 dμ1 =

∫
�2

| f |2 β dμ2

� ‖β‖L log L(�2)

∥∥∥ f 2
∥∥∥
exp L(�2)

= ‖β‖L log L(�2)
‖ f ‖2expL2(�2)

.

(2.1)

Let us now show that the condition is necessary. Indeed, if β 
∈ L log L(�2), it
is not a bounded linear functional on exp L(�2), so that we can make the second
integral in the first line of (2.1) arbitrarily large with an appropriate choice of
| f |2 ∈ exp L(�2). ��

In the next proposition, we show compactness of a weighted boundary trace
operator. The proof is similar in nature to the ideas in [13, Example 3.19 (iii)] where
the weight is instead in the interior.

Proposition 2.2. Let�be a surface with smooth boundary and0 � β ∈ L log L(∂�),
β 
≡ 0. Then, the trace operator Tβ : W1,2(�) → L2(∂�, βd�) is compact.

Proof. Define θ : ∂� → R as θ := 1
β
1{β>0}. Consider the diagram

W1,2(�) exp L2(∂�) L2(∂�)

L2(∂�, βd�),

T

Tβ

M√
β

M√
θ

where T is the trace operator and Mh is the operator of multiplication by the
function h. The trace operator T is bounded; exp L2(∂�) is in fact the optimal
target space on ∂� for bounded traces from W1,2(�), see [10, Example 5.3]. By
Hölder’s inequality (1.4) between exp L(∂�) and L log L(∂�) there exists, C > 0
such that∥∥∥M√

β f
∥∥∥2
L2(∂�)

=
∫

∂�

f 2β d� � C
∥∥∥ f 2

∥∥∥
exp L(∂�)

‖β‖L log L(∂�)

= C ‖ f ‖2expL2(∂�)
‖β‖L log L(∂�) .
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In other words, M√
β is bounded with norm at most C ‖β‖L log L(∂�). As for M√

θ ,
we have that ∥∥∥M√

θ f
∥∥∥2
L2(∂�;β d�)

=
∫

∂�∩{β>0}
f 2 d� � ‖ f ‖2L2(∂�)

Thus, for a probably different constant C > 0 independent of β we have∥∥Tβ

∥∥ � C ‖β‖L log L(∂�C) .

To prove compactness, it is sufficient to prove that M√
β ◦ T is compact. If β is a

nonnegative smooth function, the composition can instead be factored as

W1,2(�) L2(∂�) L2(∂�),
T M√

β

and compactness therefore follows from the usual trace restriction theoremW1,2(�)

→ L2(∂�), see [29, Theorem 2.6.2]. By density of smooth functions in L log L, for
every ε > 0, there is a nonnegative βε ∈ C∞(∂�) such that ‖β − βε‖L log L(∂�) < ε

and βε � β almost everywhere, so that
√

β − √
βε �

√
β − βε. but then∥∥∥M√

β ◦ T − M√
βε

◦ T
∥∥∥ �

∥∥∥M√
β−βε

∥∥∥ ‖T ‖ � ‖β − βε‖L log L(∂�) ‖T ‖ � ε ‖T ‖ .

Thus M√
β ◦ T is a norm limit of compact operators hence compact itself and Tβ

is compact also. ��
Wenowhave the right tools to prove the composition Propositon 1.12, following

the structure of the proof of [19, Theorem 6]:

Proof of Proposition 1.12. Let f ∈ W∂ (�) as in Definition 1.10. Invariance of the
Dirichlet energy under conformal diffeomorphisms tells us that

‖∇ f ‖L2(�) = ∥∥∇(ϕ∗ f )
∥∥
L2(�C)

.

By Lemma 2.1, since the boundary conformal factor is in L log L, ϕ induces the
bounded composition operator (ϕ−1)∗ : exp L2(∂�C) → L2(∂�). Therefore, for
every a ∈ R, we have that

|a| = Per(�)−1/2 ‖a‖L2(∂�)

� Per(�)−1/2 (‖ f ‖L2(∂�) + ‖ f − a‖L2(∂�)

)
� Per(�)−1/2

(
‖ f ‖L2(∂�) +

∥∥∥(ϕ−1)′
∥∥∥
L log L(∂�C)

∥∥ϕ∗ f − a
∥∥
exp L2(∂�C)

)
.

(2.2)
We claim that there exists a constant C > 0 such that∥∥ϕ∗ f

∥∥
L2(∂�C)

� inf
a∈R

(
‖a‖L2(∂�C) + ∥∥ϕ∗ f − a

∥∥
L2(∂�C)

)
� inf

a∈R

(
Per(�)−1/2 Per(�C)1/2 + C ‖1‖L log L(∂�C)

)
(
‖ f ‖L2(∂�) + ∥∥ϕ∗ f − a

∥∥
exp L2(∂�C)

)
.
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Indeed, thefirst inequality is just the triangle inequality.We thenuse (2.2) to estimate
the first term, and inequality (1.4) together with the relations ‖h‖2

L2 = ∥∥h2
∥∥
L1 ,

‖h‖2
exp L2 = ∥∥h2

∥∥
exp L1 to estimate the second.

The space exp L2(∂�C) is the optimal target space for trace operators from
W1,2(�C), and this is equivalent to the validity of a Poincaré trace inequality, see
[10, Theorems 1.3 and 5.3],

inf
a

∥∥ϕ∗ f − a
∥∥
exp L2(∂�C)

� C
∥∥∇ϕ∗ f

∥∥
L2(�C)

.

Combining the previous display formulas gives us the existence of some constant
C > 0 such that ∥∥ϕ∗ f

∥∥
W1,2

∂ (�C)
� C ‖ f ‖W1,2

∂ (�)
.

Since W∂ (�) is dense in W1,2
∂ (�), the pullback ϕ∗ extends to the whole space as

a bounded operator as well. Proving the analogous result for (ϕ−1)∗ is simpler.
Since �C has smooth boundary, the spaces W1,2(�C) and W1,2

∂ (�C) are isomor-
phic. Compactness (in fact, boundedness is enough here) of the trace operator
W1,2(�C) → L2(∂�C, β d�gC ) obtained in Proposition 2.2 then implies that for
every h ∈ W(�C),∥∥∥(ϕ−1)∗h

∥∥∥2
W1,2

∂ (�)
= ‖∇h‖2L2(�C)

+ ‖h‖2L2(∂�C ,βd�gC )
� C ‖h‖2

W1,2
∂ (�C)

.

By density we once again have that (ϕ−1)∗ extends to the whole space as a bounded
operator, completing the proof. ��

We can now prove Theorem 1.7.

Proof of Theorem 1.7. Let Ek be a k + 1 dimensional subspace of W1,2
∂ (�). Then,

by Proposition 1.12, ϕ∗(Ek) is a k + 1 dimensional subspace of W1,2
∂ (�C), and for

every u ∈ Ek , ∫
�

|∇u|2 dvg∫
∂�

u2 d�g
=

∫
�C |∇u|2 dvgC∫
∂�C u2β d�gC

.

This implies directly that σk(�C, β) � σk(�). The analogous reasoning with
(ϕ−1)∗ instead of ϕ∗ gives the reverse inequality. ��

In order to prove Proposition 1.11, we extend the results of [19] to a slightly
more singular interior conformal factor.

Lemma 2.3. Let C be a conformal class and (�, g) ∈ C be a surface with boundary,
which has interior conformal regularity L log L through the conformal diffeomor-
phism ϕ : �C → �. Then, the composition operator

ϕ∗ : W1,2(�) → W1,2(�C) ϕ∗ f := f ◦ ϕ

induced by ϕ is an isomorphism.
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Proof. The proof is essentially identical to the proof of Proposition 1.12. We re-
place the result on the trace operators W1,2

∂ (�C) → exp L2(∂�C) and the corre-
sponding Poincaré inequality with the optimal Sobolev embedding W1,2(�C) →
exp L2(�C), and use the fact that the interior conformal factor |dϕ|2 ∈ L log L to
get a bounded composition operator exp L2(�C) → L2(�). ��

We can now prove Proposition 1.11.

Proof (Proof of Proposition 1.11). Since �C is a surface with smooth bound-
ary, the spaces W1,2(�C) and W1,2

∂ (�C) are isomorphic, via some linear map
ι. Interior conformal regularity L log L provides us with an isomorphism ϕ∗ :
W1,2(�) → W1,2(�C) and boundary conformal regularity L log L with an iso-
morphism ϕ∗

∂ : W∂ (�) → W1,2(�C). The composition (ϕ∗
∂ )−1 ◦ ι ◦ ϕ∗ provides

the desired isomorphism. ��

3. Spectral Asymptotics

3.1. Eigenvalue Counting Functions of Compact Operators

We first present some known results about spectral asymptotics of compact
operators defined via quadratic forms. These results can be found in the works of
Suslina [42], Birman–Solomyak [9], and Sukochev–Zanin [40], in a more general
form. For the convenience of the reader we state them here in a form which is
specific for our purposes.

LetH be a Hilbert space and K ∈ K(H) be a self-adjoint nonnegative compact
operator. The non-zero spectrum of K consists of a discrete set of nonincreasing
nonnegative eigenvalues

{
λ j (K ) : j ∈ N

}
counted with multiplicity and converg-

ing to 0. The variational characterisation of the eigenvalues yields

λ j (K ) = max
E j ⊂H

min
u∈E j \{0}

(K u, u)

(u, u)
, (3.1)

where E j ranges over j dimensional subspaces. Note that the operator K can be
equivalently defined via the associated bilinear form appearing in the numerator
(3.1); we will use this observation further on. For λ > 0, define the eigenvalue
counting function

n(λ; K ) := #
{

j : λ j (K ) > λ
}
,

and, for a given α > 0, the functionals

nα(K ) = lim sup
λ↘0

λαn(λ; K ) and nα(K ) = lim inf
λ↘0

λαn(λ; K ).

Note that if nα(K ) = nα(K ) = Cα , then

n(λ; K ) = Cαλ−α(1 + o (1)).

We make use of the following general properties of this counting function, which
are collected in [9, Appendix 1], see also the references therein:
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Lemma 3.1. The following properties hold:

(1) [9, Lemma 1.16]For any α > 0, the functionals nα(K ) and nα(K ) are invariant
under compact perturbations of the inner product on H, as well as restriction
to subspaces of finite codimension.

(2) [9, Lemma 1.18 and its proof], [42, Lemma 1.5], Weyl–Fan Ky lemma. Let
K1 � K2 ∈ K(H) be nonnegative self-adjoint compact operators. Then, for
any α > 0, ∣∣∣nα(K1)

1
1+α − nα(K2)

1
1+α

∣∣∣ � nα(K2 − K1)
1

1+α

and ∣∣∣nα(K1)
1

1+α − nα(K2)
1

1+α

∣∣∣ � nα(K2 − K1)
1

1+α .

(3) [9, Lemma 1.15] Let K1 ∈ K(H1) and K2 ∈ K(H2) be nonnegative self-
adjoint compact operators. Let B : H1 → H2 be a bounded operator such
that (K1u, u)H1 = 0 for all u ∈ ker B. If there is a > 0 such that for all
u ∈ H1 \ ker B

(K1u, u)H1

(u, u)H1

� a
(K2Bu, Bu)H2

(Bu, Bu)H2

,

then for all λ > 0, n(λ; K1) � n(a−1λ; K2) for all λ > 0.

Wewill use these abstract results in the concrete situationwhereH = W1/2,2(�),
where � is a finite collection of smooth curves with length measure d�. For
β : � → [0,∞) let Kβ be the operator in W1/2,2(�) be defined by the bilin-
ear form

(Kβu, v)H =
∫

�

uvβ d�, u, v ∈ Dom(Kβ). (3.2)

The following lemma essentially goes back to the work of Solomyak [39], see
also [38]. It is a direct reinterpretation of [40, Lemma 4.4] (cf. [35, Theorem 2.1])
in view of the variational characterisation of the eigenvalue counting function [9,
Lemma 1.14].

Lemma 3.2. Let � be a finite collection of smooth curves and 0 � β ∈ L log L(�).
Let Kβ be the self-adjoint operator on W1/2,2(�) defined via the bilinear form
(3.2). Then there exists a constant C(�) > 0 such that

n(λ; Kβ) � C(�)λ−1 ‖β‖L log L(�) .

We now have the required tools to prove Theorem 1.9.

3.2. Proof of Theorem 1.9

We turn to the second, equivalent, statement. Recall that the eigenvalues of the
weighted Steklov problem on a surface with smooth boundary are characterised
variationally as

σk(�, β) = min
Ek

max
U∈Ek\{0}

∫
�

|∇U |2 dAg∫
∂�

u2β d�g
. (3.3)
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Here Ek ⊂ W1,2(�) (which is isomorphic to W1,2
∂ (�)) is a k + 1 dimensional

subspace, and u := τU , where τ : W1,2(�) → W1/2,2(∂�) is the trace operator,
which is continuous. Here and further onwe adopt the following convention: capital
letters denote functions in the interior, and the corresponding lower case letters
denote their boundary traces.

Let

X :=
{

V ∈ W1,2(�) :
∫

∂�

vβ d�g = 0

}
.

be the orthogonal complement in L2(∂�;β d�g) to the kernel of the weighted
Dirichlet-to-Neumann map, that is to the constant functions. We equip X with the
inner product

(U, U )X =
∫

�

|∇U |2 dAg.

Let us define an operator Qβ on X via the bilinear form

(QβU, V )X =
∫

∂�

u v β d�g, u, v ∈ X . (3.4)

Clearly, we have that

λk(Qβ) = max
Ek⊂X

min
u∈Ek\{0}

∫
∂�

u2β d�g

(U, U )X
. (3.5)

In view of (3.5) and (3.3) we have that for k � 1, σk(�, β)−1 = λk(Qβ), so that

N (σ ; M, β) − 1 = n(σ−1; Qβ), (3.6)

where we have subtracted one on the left to account for the eigenvalue zero. Let
us find the asymptotics of n(σ−1; Qβ) as σ−1 =: λ ↘ 0. It follows from Lemma
3.1(1) that the asymptotics of n(λ; Qβ) does not change if we first replace (U, U )X
with (U, U )X + (U, U )L2(�) (this is a compact perturbation), and then lift the
orthogonality condition, in order to consider U ∈ W1,2(�) as in (3.3). By the
density of smooth functions in L log L, for every ε > 0 we can find a smooth
βε ∈ C∞(∂�) such that‖β − βε‖L log L < ε.Without loss of generality,we suppose
that βε � β almost everywhere so that Qβ − Qβε is a positive operator. Since we
know, by the general theory of pseudodifferential operators, that as λ ↘ 0

n(λ; Qβε ) = λ−1

π

∫
∂�

βε d�g + o
(
λ−1

)
,

it is sufficient by Lemma 3.1(2) to show that

n(λ; Qβ − Qβε ) � Cλ−1 ‖β − βε‖L log L ,

with C depending only on �. It immediately follows from (3.4) that ker τ ⊂
ker(Qβ − Qβε ). Defining Kβ as in Lemma 3.2 with � = ∂�, we have that for all
U ∈ W1,2(�),

((Kβ − Kβε )u, u)W1/2,2(∂�) = ((Qβ − Qβε )U, U )W1,2(�)



Arch. Rational Mech. Anal. (2023) 247:77 Page 13 of 20 77

By the trace theorem, we also have that there exists C� such that

(τU, τU )W1/2,2(∂�) � C�(U, U )W1,2(�).

By applying first Lemma 3.1(3) then Lemma 3.2 we deduce that

n(λ; Qβ − Qβε ) � n(C�λ; Kβ − Kβε )

� C ′
�λ−1 ‖β − βε‖L log L(∂�)

� C ′
�λ−1ε.

Since this holds for arbitrary ε > 0, we deduce that

n(λ; Qβ) = λ−1

π

∫
∂�

β d�g + o
(
λ−1

)
and in view of (3.6) this completes the proof of the theorem.

4. Examples

In this last section,we present examples of domains having conformal regularity
L log L and explore the sharpness of Theorem 1.9. We give planar domains as
example, but they extend in a straightforward manner to domains in a complete
Riemannian surface.

4.1. Chord-Arc Domains

Recall that a Jordan domain � ⊂ R
2 is called a chord-arc (or Lavrentiev)

domain if there exists a constant C such that for any x, y ∈ ∂�

dist∂�(x, y) � C distR2(x, y),

where the left-hand sides denotes the length of the shortest arc of the boundary
joining x and y, and the right-hand side denotes the distance between x and y
in R

2. It is clear that any Lipschitz domain is a chord-arc domain. The class of
chord-arc domains is larger than Lipschitz and includes, in particular, the domain
bounded between two logarithmic spirals. Note that domains with cusps are not
chord-arc.

There is a large literature on the conformal regularity of chord-arc domains,
see, for instance [21] and references therein. The next result is well-known. We
outline its proof below for the convenience of the reader.

Proposition 4.1. Let � ⊂ R
2 be a chord-arc domain and let ϕ : D → � be a

conformal map. Then ϕ′ ∈ Lp(∂�) for some p > 1.

Proof. Since� is a chord-arc domain, by [45, Theorem 1] we have that ϕ′ ∈ Aq for
some q > 1, where Aq denotes a Muckenhoupt class of weights (see, for instance
[12, Section VI.6] for a definition). By [12, Corollary 6.10], every Muckenhoupt
weight on ∂� of class Aq , q > 1 is in Lp(∂�) for some p > 1, which is our
claim. ��
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4.2. Domains with Cusps

Let � ⊂ R
2 be a domain with boundary ∂� which is a finite union of smooth

curves. If two curvesmeet at an interior angle zerowe say that they form an outward
cusp, and if the interior angle is equal to 2π we say that they form an inward cusp.

Let x0 to be the tip of a cusp, ϕ : �C → � be a conformal diffeomorphism,
and set �C � z0 = ϕ−1(x0). If x0 is the tip of an inward cusp, then ϕ′(z0) = 0.
In fact domains with inward cusps have ϕ′ ∈ C0,1(∂�) [30, Theorem 3.9]. A
typical example is the standard cardioid domain defined in polar coordinates as
{(r, θ) : r = 2(1 + cos θ)}, for which ϕ(z) = (z + 1)2.

Consider now domains with outward cusps. Suppose that in a neighbourhood
of the outward cusp at x0 the boundary of � consists of two smooth curves γ1(t),
γ2(t), where t is the arc length parameter and γ1(0) = γ2(0) = x0. We say that �
has a slow cusp at x0 if there is α ∈ (0, 1) (the speed of the cusp) such that

lim
t↘0

|γ1(t) − γ2(t)|
t1+α

= sα > 0

In turn if there is C such that t−2 |γ1(t) − γ2(t)| � C < ∞ for all t > 0 we say
that � has a fast cusp at x0.

It is shown in [26] that whenever a domain has a fast cusp, the Dirichlet-to-
Neumann map does not have a compact resolvent. Therefore, its spectrum is not
discrete and Weyl’s law can not hold. However, the Dirichlet-to-Neumann map for
a domain whose boundary is Lipschitz except at a finite number of slow cusps has
a compact resolvent, and hence a discrete spectrum.

Suppose now that x0 is the tip of a cusp of speed α. Applying [23, Proposition
2.10] to [32, Corollary 1], we see that as z → z0 the conformal factor |dϕ(z)|
behaves asymptotically as

|dϕ(z)| = O
(
|z − z0|−1 (− log(|z − z0|)−1− 1

α

)
. (4.1)

A direct calculation gives that |dϕ| ∈ L log L if and only if 0 < α < 1. In other
words, precisely for those α for which the spectrum is discrete. This shows that
Theorem 1.9 gives in a sense an optimal condition for the validity of Weyl’s law.

Let us summarize the results of this subsection in the following:

Proposition 4.2. Let � ⊂ R
2 be a domain with piecewise smooth boundary, pos-

sibly with interior and exterior cusps. If all exterior cusps are slow then Weyl’s law
(1.2) holds for the counting function of the Steklov eigenvalues on �. Moreover, if
� has at least one fast cusp, then the Steklov spectrum of � is not discrete.

Remark 4.3. It would be interesting to understand if there exist domains for which
the Steklov spectrum is discrete but theWeyl’s law (1.2) does not hold. To construct
such an example one needs to find a domain � with the boundary conformal factor
in L1 \ L log L, and yet for which the resolvent of the Dirichlet-to-Neumann map
is still compact. We note that in terms of the weighted problem it seems like this
would require going beyond the Orlicz scale: indeed, for every 0 � a < 1 one can
find β ∈ L(log L)a(∂�) so that the embedding W1,2(∂�) → L2(∂�, βd�) is not
compact, following the proof found in [13, Example 3.19].
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5. Further Remarks and Extensions

5.1. The Steklov Problem with Indefinite Weight

Suppose for now that� is a surfacewith smooth boundary, and given β : ∂� →
R consider the Steklov problem with an indefinite weight:{

�u = 0 in �;
∂νu = βσu on ∂�.

(5.1)

Indefinite eigenvalue problems of this type have been considered in the literature,
see for example [1,36,41,42]. If 0 
≡ β ∈ L log L(∂�) is such that {β > 0} and
{β < 0} both have positive measure in ∂�, then the non-zero eigenvalues form two
sequences

{
σ±

k (�, β) : k ∈ N
}
consisting of the positive and negative eigenvalues,

accumulating respectively at ±∞. To define the variational principle, let us first
denote

‖ f ‖2
W1,2

∂ (�;β)
=

∫
�

|∇ f |2 dvg +
∫

∂�

f 2 |β| d�g

and

W∂ (�;β) :=
{

f : � → R : f ∈ C∞(�) and ‖ f ‖W1,2
∂ (�;β)

< ∞
}

.

Wedenote byW1,2
∂ (�;β) the closure ofW∂ (�;β) under the ‖·‖W1,2

∂ (�;β)
norm, and

X to be the subset of W1,2
∂ (�;β) orthogonal to β. Following [9,42], the non-zero

eigenvalues of problem (5.1) satisfy the variational principle

±1

σ±
k (�, β)

= min
Fk

max
u∈Fk\{0}

±
∫
∂�

u2β d�g∫
�

|∇u|2 dAg
,

where Fk is a codimension k − 1 subspace of X . Denoting by

N±(σ ;�,β) := #
{
k : 0 < ±σ±

k (�, β) < σ
}

the counting functions for each of those sequences, it follows from the work of
Birman–Solomyak [7,8] (see [31, Theorem 6.1] for a modern proof, in English)
that if β is smooth, then

N±(σ ;�,β) = σ

π

∫
∂�

β± d� + o (σ ) (5.2)

where β± = max {0,±β} are the positive and negative parts of β. This formula
is valid whether or not β takes both positive and negative values. Using the same
methods as in Sect. 3 allows us to extend this result to β ∈ L log L(∂�). We note
that the results in Lemma 3.1 are in fact proven in [9,42] for operators with both
positive and negative spectrum, with the obvious redefinition of the functions n±

α

and n±
α .

When � has non-smooth boundary, we consider once again a conformal map
ϕ : �C → �. If the productϕ∗β |dϕ| ∈ L log L(∂�C), then the proof of Proposition
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1.11 carries through and ϕ induces an isomorphism ϕ∗ between W1,2
∂ (�;β) and

W1,2
∂ (�C;ϕ∗β). If both ϕ∗β and ϕ∗β |dϕ| are in L log L(∂�C) then

W1,2
∂ (�C;ϕ∗β) ∼= W1,2

∂ (�C) ∼= W1,2
∂ (�C;ϕ∗β |dϕ|)

and as in Theorem 1.7 problem (5.1) is isospectral to{
�u = 0 in �C
∂νu = |dϕ| ϕ∗βσu on ∂�C .

We see directly that a sufficient condition for having the Weyl law (5.2) is also
that |dϕ| ϕ∗β ∈ L log L(∂�C). For any surface with Lipschitz boundary, we have
that |dϕ| and |dϕ|−1 are in Lp for some p > 1 with Hölder conjugate p′, see
[4, proof of Lemma 5.1]. Therefore, if ϕ∗β ∈ Lq(∂�C) for q > p′, the Weyl
law (5.2) holds. Arguing as in [44, Theorem 4], see also [19, Theorem 4], one
can show that for q > p′ the map ϕ induces a bounded composition operator

ϕ∗ : L qp
p−1 (∂�) → Lq(∂�C). Therefore, a sufficient condition for the Weyl law to

hold is β ∈ Lr (∂�), for some r > p2/(p − 1)2. In particular, if � is a Lipschitz
domain and β is in some Orlicz space contained in Lq(∂�) for any q < ∞, then
the weighted Steklov problem, definite or not, satisfies the Weyl law (5.2).

5.2. The Neumann Problem

The methods developed in this paper can be also applied to the Neumann prob-
lem {

−�gu = λu in �

∂νu = 0 on ∂�.

In this case, the conformal map ϕ : �C → � gives rise to the variationally isospec-
tral weighted Neumann problem{

−�gu = λ |dϕ|2 u in �C
∂νu = 0 on ∂�C .

If the boundary is regular enough, the Neumann spectrum is discrete and we aim
for a Weyl law of the form

NNeu(λ) = Area(�)

4π
λ + o (λ) . (5.3)

This problem is well studied, and, in particular, we already know that the Weyl law
holds for a large class of domains with rough boundary. For instance, it is shown
in [28] that (5.3) for every domain whose boundary is of the Hölder class C0,α for
α > 1/2, see also [27] It is also shown in [28] that domains with finite straight
cusps of any speed satisfy (5.3). Moreover, sharp remainder estimates have been
obtained in many cases.

A straightforward adaptation of the methods developed in this paper yields an
alternative proof of (5.3) provided |dϕ|2 ∈ L log L(�C). This is shown in essentially
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the same way as Lemma 3.2. While this approach does not give sharp remainder
estimates, it is significantly more elementary. Using (4.1), we note that the class of
domains for which |dϕ|2 ∈ L log L(�C) includes any cusp of polynomial speed.
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