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THE STEKLOV SPECTRUM OF CUBOIDS

ALEXANDRE GIROUARD, JEAN LAGACÉ, IOSIF POLTEROVICH AND
ALESSANDRO SAVO

Abstract. The paper is concerned with the Steklov eigenvalue problem on
cuboids of arbitrary dimension. We prove a two-term asymptotic formula for the
counting function of Steklov eigenvalues on cuboids in dimension d > 3. Apart from
the standard Weyl term, we calculate explicitly the second term in the asymptotics,
capturing the contribution of the (d − 2)-dimensional facets of a cuboid. Our
approach is based on lattice counting techniques. While this strategy is similar
to the one used for the Dirichlet Laplacian, the Steklov case carries additional
complications. In particular, it is not clear how to establish directly the completeness
of the system of Steklov eigenfunctions admitting separation of variables. We prove
this result using a family of auxiliary Robin boundary value problems. Moreover, the
correspondence between the Steklov eigenvalues and lattice points is not exact, and
hence more delicate analysis is required to obtain spectral asymptotics. Some other
related results are presented, such as an isoperimetric inequality for the first Steklov
eigenvalue, a concentration property of high frequency Steklov eigenfunctions and
applications to spectral determination of cuboids.

§1. Introduction and main results.

1.1. Asymptotics of the Steklov spectrum. The Steklov eigenvalues of a
bounded Euclidean domain � ⊂ Rd are the real numbers σ ∈ R for which
there exists a non-zero harmonic function u : � → R such that ∂nu = σu
on the boundary ∂�. Here ∂n denotes the outward normal derivative, which
exists almost everywhere provided the boundary ∂� is Lipschitz. Under this
assumption, it is known that for d > 2 the Steklov spectrum is discrete (see [1])
and is given by the increasing sequence of eigenvalues 0 = σ0 < σ1 6 σ2 6
· · · ↗ ∞, where each eigenvalue is repeated according to its multiplicity. The
counting function N : R→ N is then defined by N (σ ) := #{ j ∈ N : σ j < σ }.

For domains with smooth boundary, one can show using pseudodifferential
techniques that the counting function satisfies Weyl’s law

N (σ ) =
ωd−1

(2π)d−1 Vold−1(∂�)σ
d−1
+ O(σ d−2) as σ ↗ +∞, (1.1.1)

where ωd−1 is the measure of the unit ball B1(0) ⊂ Rd−1. The remainder
estimate in (1.1.1) is sharp and attained on a round ball. Moreover, a two-
term asymptotic formula for the counting function holds under a non-periodicity
condition of the geodesic flow on ∂� (see [14, formula (5.1.8)]).
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THE STEKLOV SPECTRUM OF CUBOIDS 273

Understanding precise asymptotics for Steklov eigenvalues on domains with
singularities, such as corners and edges, is significantly more challenging,
since pseudodifferential techniques do not work in this case (see [5, §3] for
a discussion). Using variational methods, one can prove a one-term Weyl
asymptotic formula that holds for any piecewise C1 Euclidean domain (see [1]):

N (σ ) =
ωd−1

(2π)d−1 Vold−1(∂�)σ
d−1
+ o(σ d−1) as σ ↗ +∞. (1.1.2)

However, in order to get sharper asymptotics, one needs to understand the
contribution of singularities to the counting function. In two dimensions, some
results in this direction have been recently obtained in [12]. In the present paper
we aim to explore the most basic higher-dimensional example: the Euclidean
cuboids.

1.2. Main result. Given d ∈ N, the cuboid1 with parameters a1, . . . , ad > 0
is defined as a product of the intervals

� = (−a1, a1)× (−a2, a2)× · · · × (−ad , ad) ⊂ Rd .

If a1 = a2 = · · · = ad we say that � is a cube. The main result of this paper is
the following theorem.

THEOREM 1.1. Let � ⊂ Rd be the cuboid with parameters a1, . . . , ad > 0.
For d > 3, the counting function of Steklov eigenvalues satisfies a two-term
asymptotic formula as σ →∞:

N (σ ) = C1Vold−1(∂�)σ
d−1
+ C2Vold−2(∂

2�)σ d−2
+ O(σ η), (1.2.1)

where ∂2� denotes the union of all the (d − 2)-dimensional facets of �. Here
η = 2/3 for d = 3 and η = d − 2− 1/(d − 1) for d > 4. The constants C1 and
C2 are given by

C1 =
ωd−1

(2π)d−1

and

C2 =
2(d−2)/2ωd−2

(2π)d−2 −
2Gd−1,1

πd−1 −
ωd−2

2(2π)d−2 ,

where

Gd−1,1 =

∫ π/2

0
· · ·

∫ π/2

0︸ ︷︷ ︸
d−2

arccot
(d−2∏

j=1

csc θ j

) d−2∏
k=1

sink(θk) dθ1 . . . dθd−2.

For d = 2, the counting function admits a one-term asymptotics

N (σ ) = π−1Vol1(∂�)σ + O(1).
1 Cuboids are also often referred to as boxes, d-orthotopes or hyperrectangles. The term “cuboids”
appears to be more common in recent literature on spectral geometry (see [6, 18]).
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274 A. GIROUARD et al

Figure 1: (N (σ )− C1Vol2(∂�)σ 2
− C2Vol1(∂2�)σ)/σ 2/3 for σ < 750.

Remark 1.2. It can be shown that C2 > 0 for all d > 3, see Appendix B. The
constants Gd,1 are special cases of constants G p,q which will be introduced in
§3. The constants G2,1 and G3,1 can be computed explicitly as

G2,1 =
1
2 (−1+

√
2)π,

G3,1 =
1
8 (−2+ π)π.

Remark 1.3. For d = 2, the above asymptotics also follows from [12,
Corollary 1.6.1]. In dimensions d > 3 we do not expect the error estimates
obtained in Theorem 1.1 to be sharp (see also Remark 3.18), and it is an
interesting open problem to determine the optimal value of the exponent η in
(1.2.1).

Remark 1.4. For d = 3, Theorem 1.1 implies that

R(σ ) =
N (σ )− C1Vol2(∂�)σ 2

− C2Vol1(∂2�)σ

σ 2/3

is a bounded function of σ . In order to validate the expression for the constant
C2 obtained in Theorem 1.1, we have checked numerically that this claim holds,
using the approximate eigenvalues introduced in §3 on a cube with side lengths 2.
Figure 1 shows that |R(σ )|6 3 for σ < 750 which corresponds to approximately
a million eigenvalues.

1.3. Outline of the proof. The proof of Theorem 1.1 is given in §3. The
outline of the argument is as follows. First, we show that the Steklov eigenvalue
problem on a cuboid admits separation of variables, see Lemma 2.1 below.
Separation of variables yields eigenfunctions that are products of trigonometric,
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THE STEKLOV SPECTRUM OF CUBOIDS 275

hyperbolic and possibly linear factors. One can check that the number of
eigenvalues corresponding to eigenfunctions containing linear terms is at most
finite, see Theorem 2.6. The same theorem also shows that the eigenvalue
counting problem can be reduced to a family of approximate lattice counting
problems. More specifically, given 1 6 p 6 d , we consider the counting function
Np of eigenvalues corresponding to eigenfunctions with exactly p trigonometric
factors. It turns out that for each p > 1, the counting function Np satisfies a two-
term asymptotic formula, see Proposition 3.1. The functions Np for p = d − 1
and p = d − 2 are the dominant ones. In particular, the main term in (1.2.1)
corresponds to the main term in the asymptotics for Nd−1. The second term in
(1.2.1) is obtained as a sum of the main term in the asymptotics of Nd−2 and
the second term in Nd−1. The latter also splits into two parts: one is the standard
contribution of overcounted lattice points (see Lemma 3.17), and the other has to
do with the geometry of the domain Eσ defined by (3.4.12) arising in the lattice
counting problem. While this domain Eσ converges to a ball as σ → ∞, the
approximation produces an error that contributes to the second term of (1.2.1).
This explains why the coefficient C2 is represented by a sum of three constants.
Note that while two of these constants are negative, the coefficient C2 is always
positive; see Appendix B.

1.4. Discussion. The second term in Weyl asymptotics (1.2.1) for cuboids
could be compared with the corresponding term in the asymptotic expression
[14, formula (5.1.8)] mentioned earlier, which holds on smooth manifolds with
boundary, satisfying a non-periodicity condition. Recall that in the smooth case,
the second term is proportional to the integral of the mean curvature of the
boundary. Note that a cuboid could be viewed as a limit of smooth hypersurfaces
with all the curvatures concentrated in small neighbourhoods shrinking to the
union of the (d − 2)-dimensional facets of the cuboid. This naive observation
provides some intuition regarding the nature of the second term in asymptotic
formula (1.2.1).

It would be very interesting to establish an analogue of Theorem 1.1 for
arbitrary Euclidean polyhedra and, more generally, for Riemannian manifolds
with edges, satisfying certain non-periodicity assumptions. While the present
paper was in the final stages of preparation, Ivrii [10] informed us on his work
in progress in this direction.

Another promising direction of further research in the subject is to explore
the asymptotic expansion for the Steklov heat trace on Euclidean polyhedra, as
well as on arbitrary Riemannian manifolds with edges. In particular, one could
ask whether the Steklov spectral asymptotics contains information on the lower-
dimensional facets of polyhedra. While the Weyl asymptotics does not appear to
be accurate enough for that purpose, the Steklov heat trace asymptotics is likely
to give a positive answer to this question. We intend to explore it elsewhere.

Remark 1.5. The existence of a two-term asymptotic formula for the
counting function of Steklov eigenvalues on a cube was claimed earlier in [13].
However, the proof of this claim contained a miscalculation invalidating the
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276 A. GIROUARD et al

argument. Indeed, in the beginning of [13, §3], the authors write down the
boundary condition at xi = 0 in case βi < 0 and get c1

√
|βi | = λc2, while

it should be −c1
√
|βi | = λc2, since the normal derivative at xi = 0 is −∂i .

Due to this missing minus sign, the authors obtain the equation sin(
√
βi ) = 0

leading to an exact correspondence between Steklov eigenvalues and lattice
points. However, in reality this correspondence is only approximate (see §2.3),
and therefore counting eigenvalues is a significantly more difficult task. Note
also that the completeness of eigenfunctions admitting separation of variables
was not justified in [13].

1.5. An isoperimetric inequality for the first Steklov eigenvalue. Given a cuboid
� ⊂ Rd with parameters a1, . . . , ad > 0, let �? and �] be the cubes such that

Vold−1∂�
?
= Vold−1∂� and Vold�] = Vold�.

THEOREM 1.6. For any cuboid �, we have:
• σ1(�

?) > σ1(�), with equality if and only if �? = �;
• σ1(�

]) > σ1(�), with equality if and only if �] = �.

The proof of the theorem is presented in §4.3. In a way, it is not surprising
that the cube, being the most symmetric of all cuboids, maximizes σ1 under
both volume and surface area restrictions. Theorem 1.6 could be compared
with the well-known Weinstock’s inequality [19] stating that the disk is a
unique maximizer for σ1 among planar simply connected domains with a given
perimeter (see also a recent generalization of this result for convex domains in
higher dimensions obtained in [4]), as well as with Brock’s result [3] which
states that balls are unique maximizers among Euclidean domains � ⊂ Rd with
prescribed d–volume.

It follows from Theorem 1.6 that any cube is spectrally determined among all
cuboids.

COROLLARY 1.7. Let � ⊂ Rd be a cuboid which is isospectral to the cube
�a ⊂ Rm with side lengths 2a > 0. Then d = m and � = �a .

Proof. It follows from Theorem 1.1 that d = m and Vold−1(∂�) =

Vold−1(∂�a). Moreover, since σ1(�) = σ1(�a), the conclusion follows from
the uniqueness of the maximizer in Theorem 1.6. �

Note that a similar corollary with an almost identical proof holds for planar
simply-connected domains, among which the disk is spectrally determined,
using the case of equality in Weinstock’s theorem [19].

It is still unknown whether there exist non-isometric Steklov isospectral
Euclidean domains. Our results imply that if two rectangles are Steklov
isospectral, they are isometric.

COROLLARY 1.8. The Steklov spectrum of a rectangle uniquely determines
its side lengths.
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THE STEKLOV SPECTRUM OF CUBOIDS 277

The proof of this corollary is presented in §4.4. Let us conclude the
introduction with the following conjecture.

CONJECTURE 1.9. Any two Steklov isospectral cuboids are isometric.

Plan of the paper. In §2, we explore the structure of Steklov eigenvalues and
eigenfunctions on cuboids. In particular, in §2.1 we describe separation of
variables and prove that it yields a complete system of Steklov eigenfunctions.
In §2.2 a classification of eigenfunctions is presented based on the number of
linear, trigonometric and hyperbolic terms, which is later used in §2.3 to reduce
the problem of counting eigenvalues to counting approximate lattice points.
Theorem 1.1 is proved in §3. This is the most technically involved part of
the paper, involving tools from analytic number theory and Fourier analysis.
Other results of the paper are proved in §4. In particular, a somewhat surprising
observation that Steklov eigenfunctions may concentrate on lower-dimensional
facets of cuboids is presented in §4.1. Sections 4.3 and 4.4 provide the proofs of
Theorem 1.6 and Corollary 1.8. Appendix A contains the proof of an auxiliary
Lemma A.1 used in §3.4. In Appendix B we justify the positivity of the constant
C2 as stated in Remark 1.2.

Remark 1.10. Right before submitting our paper on the archive, we learned of
the preprint [17] which discusses Steklov eigenvalues of rectangles and cuboids
of dimension 3. Note that [17, Conjecture 3.1] immediately follows from our
Proposition 4.2.

§2. Eigenfunctions and separation of variables.

2.1. Separation of variables. The following lemma shows that the method of
separation of variables is applicable to the computation of the Steklov spectrum
of a product of compact manifolds with boundary. In particular, we justify
completeness of the system of Steklov eigenfunctions admitting separation of
variables.

LEMMA 2.1. Let M1 and M2 be smooth compact Riemannian manifolds with
boundary. Let σ > 0 be a Steklov eigenvalue of the product manifold M =
M1×M2 with the eigenspace Fσ ⊂ L2(M). There exists a basis (u(1), . . . , u(m))
of Fσ such that each u( j)

: M1 × M2 → R is separable:

u( j)(x1, x2) = u( j)
1 (x1)u

( j)
2 (x2), 1 6 j 6 m,

where u( j)
1 : M1 → R and u( j)

2 : M2 → R.

Proof. Consider the Robin problem with parameter σ > 0 on M{
1u + λu = 0 in M,
∂nu = σu on ∂M.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000414
Downloaded from https://www.cambridge.org/core. Bibliotheque de l'Universite Laval, on 13 Dec 2018 at 18:47:11, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000414
https://www.cambridge.org/core


278 A. GIROUARD et al

It is well known that the Robin problem on M admits separation of variables,
since L2(M) = L2(M1)⊗ L2(M2) is a product space, see e.g., [16, §11.5]. The
number σ > 0 is a Steklov eigenvalue of M if and only if 0 is an eigenvalue of
the Robin problem with parameter σ , and the corresponding eigenspace is the
same for both problems. Since one can find a separated eigenbasis for Fσ by
virtue of it being a Robin eigenspace on M , it then suffices to use the same basis
for Fσ when we consider it as a Steklov eigenspace. �

Remark 2.2. It is not easy to show directly that the traces of all separable
Steklov eigenfunctions form a basis in L2(∂M), since the boundary ∂M of a
product manifold is not itself a product manifold.

Remark 2.3. Lemma 2.1 yields completeness of the system of separable
Steklov eigenfunctions on cuboids. Surprisingly, a complete proof of this result
has not appeared in the literature even in the case of rectangles. Note that the
completeness argument for the square presented in [5, §3] does not extend to
arbitrary rectangles, contrary to the claim made in [2, §4] and in [17]. Indeed, the
proof given in [5] uses in a crucial way the diagonal symmetries of the square,
which allow us to use a connection to the vibrating beam problem via mixed
Steklov–Neumann–Dirichlet problems on an isosceles right triangle.

Let d ∈ N and consider the cuboid � with parameters a1, . . . , ad > 0.
Because � is a product of compact intervals, it follows from Lemma 2.1 that
there exists a complete set {u j } j∈N0 of separated Steklov eigenfunctions on �.
Consider a function u : �→ R given by the product u(x) = u1(x1) · · · ud(xd),
where u j : [−a j , a j ] → R. Requiring u to be a Steklov eigenfunction with
eigenvalue σ > 0 leads to numbers λ1, λ2, . . . , λd ∈ R such that

u′′j + λ j u j = 0 on (−a j , a j ),

u′j (a j ) = σu j (a j ),

−u′j (−a j ) = σu j (−a j ),

(2.1.1)

subject to the harmonicity condition

d∑
j=1

λ j = 0. (2.1.2)

The following lemma describes the eigenvalues and eigenfunctions of the
auxiliary one-dimensional Steklov spectral problem (2.1.1) with a parameter
λ ∈ R.

LEMMA 2.4. Let λ ∈ R. The non-zero solutions ϕ : [−a, a] → R of the
differential equation ϕ′′ + λϕ = 0 subject to the boundary conditions

ϕ′(a) = σϕ(a) and −ϕ′(−a) = σϕ(−a)

for some constant σ > 0 are constant multiples of one the following functions:
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THE STEKLOV SPECTRUM OF CUBOIDS 279

(i) for λ = 0, ϕ(t) ≡ 1 and σ = 0 or ϕ(t) = t and σ = a−1;
(ii) for λ = α2 > 0, one of

ϕ(t) = sin(αt) with σ = α cot(αa),
ϕ(t) = cos(αt) with σ = −α tan(αa)

(in other words, for each ` ∈ {0, 1}, σ = α cot(αa + `(π/2)) is an
eigenvalue);

(iii) for λ = −β2 < 0, one of

ϕ(t) = sinh(βt) with σ = β coth(βa),
ϕ(t) = cosh(βt) with σ = β tanh(βa)

(in other words, for each j ∈ {−1, 1}, σ = β tanh(βa) j is an eigenvalue).

It will be useful to introduce a uniform notation for these eigenvalues. Given
a > 0 and ` ∈ {0, 1}, let

Ta,`(x) = x cot
(

ax + `
π

2

)
=

{
x cot(ax) for ` = 0,
−x tan(ax) for ` = 1,

and

Ha,`(x) =

{
x coth(ax) for ` = 0,
x tanh(ax) for ` = 1.

It follows from Lemma 2.4 that separable eigenfunctions are products of
linear factors, trigonometric factors (the function sin for `= 0, and cos for `= 1)
and hyperbolic factors (the function sinh for `= 0, and cosh for `= 1). A careful
accounting of these will be presented.

2.2. Classification of eigenfunctions. It follows from the previous paragraph
that there is a complete set of Steklov eigenfunctions given by products of linear,
trigonometric and hyperbolic factors. They are of the form

u(x1, . . . , xd) =
∏
i∈τ0

xi
∏
j∈τ1

Trig j (α j xj )
∏
k∈τ2

Hypk(βk xk), (2.2.1)

where τ0, τ1, τ2 are disjoint subsets of Sd := {1, 2, . . . , d} such that τ0 ∪ τ1 ∪

τ2 = Sd , and each Trig j ∈ {sin, cos} and Hypk ∈ {sinh, cosh}. In order for this
function to be a Steklov eigenfunction corresponding to the eigenvalue σ > 0,
the function u must be harmonic. This amounts to the following restatement of
condition (2.1.2) in terms of the constants α j and βk :∑

j∈τ1

α2
j =

∑
k∈τ2

β2
k . (2.2.2)
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280 A. GIROUARD et al

This equation will be called the harmonicity condition. Moreover, the spectral
parameter σ has to be the same on each face of the cuboid. By Lemma 2.4 this
translates into the following equations, called the compatibility conditions:

σ =


a−1

i for i ∈ τ0,

Tai ,`(i)(αi ) for i ∈ τ1,

Hai ,`(i)(βi ) for i ∈ τ2.

(2.2.3)

Here the function ` : Sd → {0, 1} is used to specify which trigonometric
and hyperbolic functions are used, according to the convention introduced in
Lemma 2.4. The corresponding eigenfunction (2.2.1) is then given precisely by
the product of the factors ui : [−ai , ai ] → R which are specified by

ui (xi ) =


Trig`(i)(αi xi ) for i ∈ τ1,

Hyp`(i)(βi xi ) for i ∈ τ2,

xi otherwise,
(2.2.4)

where Trig0 = sin, Trig1 = cos, Hyp0 = sinh and Hyp1 = cosh.
Note that any separated eigenfunction that has a linear factor u j (xj ) = xj

contributes the eigenvalue σ = a−1
j to the spectrum. Since the multiplicity of

each eigenvalue is finite, this can occur at most a finite number of times. We
summarize the above mentioned facts in the following theorem.

THEOREM 2.5. Let p ∈ {1, . . . , d − 1}, and let Tp be the set of all ordered
bipartitions τ = (τ1, τ2) of {1, . . . , d} in the sets of cardinality p and q = d− p.
For each τ ∈ Tp and any ` : τ1 ∪ τ2 → {0, 1}, let Sτ,` be the set of all numbers
σ > 0 for which there exist positive numbers αi for i ∈ τ1 and β j , for j ∈ τ2,
which solve

σ = Tai ,`(i)(αi ) = Ha j ,`( j)(β j ) for all i ∈ τ1, j ∈ τ2

subject to the constraint ∑
i∈τ1

α2
i =

∑
j∈τ2

β2
j .

Denote also by S0 the collection of Steklov eigenvalues corresponding to
separated eigenfunctions having a linear factor. Then the Steklov spectrum of
a cuboid � is given by the union of S0 which contains at most finitely many
elements, and the families Sτ,l for all possible choices of τ and `.

2.3. Reduction to approximate lattice counting. We will now give a more
precise description of the spectrum by constructing a correspondence between
the Steklov eigenvalues of cuboids and the vertices of certain lattices.

Let � be a cuboid with parameters a1, . . . , ad . Let p ∈ {1, . . . , d − 1}
represent the number of trigonometric factors of a separated eigenfunction
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THE STEKLOV SPECTRUM OF CUBOIDS 281

without linear factors. Each bipartition τ = (τ1, τ2) ∈ Tp then corresponds to a
separated eigenfunction of the form

u(x1, . . . , xd) =
∏
j∈τ1

Trig j (α j xj )
∏
k∈τ2

Hypk(βk xk). (2.3.1)

Let N0 = {0, 1, 2, . . . } be the set of non-negative integers. Given n ∈ Np
0 , let

In = In,p,τ :=
∏
i∈τ1

(
niπ

2ai
,
(ni + 1)π

2ai

]
⊂ Rp.

The boxes In are fundamental domains of a lattice. The following theorem
shows that each box gives rise to a cluster of at most 2q eigenvalues and,
moreover, the boxes In with n ∈ Np and |n| large enough correspond to precisely
2q eigenvalues.

THEOREM 2.6. Given p ∈ {1, . . . , d−1}, and q = d− p, let τ ∈ Tp specify
the position of trigonometric and hyperbolic factors of eigenfunctions of the form
(2.3.1). The following assertions hold.
(i) Eigenfunctions of the form (2.3.1) form a complete system of Steklov

eigenfunctions on a cuboid up to a finite number of eigenfunctions
containing linear factors.

(ii) For each n ∈ Np, there exist at most 2q eigenfunctions of the form (2.3.1)
with α ∈ In.

(iii) There exists a number N ∈ N, such that for every n ∈ Np with |n| > N,
there are exactly 2q eigenfunctions of the form (2.3.1) with α ∈ In. The
corresponding eigenvalues σ (k)n , with k ∈ {1, . . . , 2q

}, satisfy

σ (k)n =
|αn|
√

q
+ O(|n|−∞) (2.3.2)

for some αn ∈ In, where f (x) = O(|x |−∞) means that f (x) = O(|x |−N )

for N arbitrarily large.
(iv) There exist only finitely many eigenfunctions of the form (2.3.1) such that

n ∈ Np
0 \ N

p. For each n ∈ Np
0 \ N

p, there are at most 2q eigenfunctions
of the form (2.3.1) with α ∈ In.

Assertions (ii) and (iii) essentially say that up to a finite number of boxes,
there is always exactly 2q solutions in the box In, while assertion (iv) says that
while some boxes touching the coordinate hyperplanes {xj = 0} might contain
solutions, this will only happen a finite number of times. This means that while
all the three cases are needed to fully describe the spectrum, asymptotically we
can only count eigenvalues described by (iii), up to a O(1) error.

Proof of Theorem 2.6. Assertion (i) is a direct consequence of Lemmas 2.1
and 2.4. In order to prove assertion (ii), for each ` : Sd → {0, 1} and n ∈ Np
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we will show that there exists at most one eigenfunction. Up to a small error, the
corresponding eigenvalue will be equal to the norm of a point which is located
in the box I2n+m,p,τ , where m ∈ {0, 1}p is determined by the restriction of ` to
τ1. Together with the choice of ` on τ2, this will account for clusters of at most
2q eigenvalues corresponding to each of the boxes In.

Construction of an eigenfunction. For each i ∈ τ2, the function βi 7→

Hai ,`(i)(βi ), is increasing and positive for βi > 0. It satisfies Hai ,`(i)(βi ) =

βi + O(β−∞i ) as βi →∞ and

lim
βi→0

Hai ,`(i)(βi ) =


1
ai

if `(i) = 0,

0 if `(i) = 1.

This implies that the equations

Hai ,`(i)(βi ) = Ha j ,`( j)(β j ) for all i, j ∈ τ2 (2.3.3)

define a connected curve CH = CH,p,τ ⊂ Rq (the index H stands for
“hyperbolic”) which behaves like the diagonal

{β ∈ Rq
: βi = β j for each i, j ∈ τ2}

to infinite order as |β| → ∞. The common value given by equation (2.3.3)
increases monotonically from some c > 0 to infinity along the curve CH as
it moves away from the origin. In fact, this non-negative constant is

c` = max{0, a−1
i : i ∈ τ2, `(i) = 0}.

On the other hand, for each i ∈ τ1 the restricted function

Tai ,`(i) :

(
niπ

ai
+
`(i)π
2ai

,
niπ

a1
+
(`(i)+ 1)π

2ai

]
−→ [0,∞) (2.3.4)

is decreasing and surjective. Hence, for each point β ∈ CH ⊂ Rq , there exist
unique numbers

αi (β) ∈

(
niπ

ai
+
`(i)π
2ai

,
niπ

a1
+
(`(i)+ 1)π

2ai

]
(for each i ∈ τ1)

such that

Tai ,`(i)(αi ) = Ha j ,`( j)(β j ) for all i ∈ τ1, j ∈ τ2. (2.3.5)

This defines an image curve CT ⊂ Rp given by

CT = {αi (β) : i ∈ τ1,β ∈ CH }.
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Figure 2: Various CT curves in the situation where d = 3, p = 2 and τ1 = {1, 2}.

In other words, we have defined a continuous map α : CH −→ CT between
these two curves. It follows from (2.3.4) that the curve CT is contained in the
box I2n+m, where m ∈ {0, 1}p is determined by the restriction of ` to τ1. In
particular, as the value of |β| increases from its minimal value to +∞ along the
curve CH , the value of |α(β)| is contained in the compact interval[

inf
x∈I2n+m

|x|, sup
x∈I2n+m

|x|
]
⊂ (0,∞).

Hence, if infx∈I2n+m |x| > c` there will be a point β ∈ CH such that α = α(β)

satisfy |α| = |β|. This amounts to saying that any of the common values given
by (2.3.5) is a Steklov eigenvalue of the cuboid. It follows from monotonicity of
each factor in equation (2.3.5) that this solution (α,β) is unique.

Remark 2.7. Let d = 4, a1 = a2 = a3 = a4 = 1, p = 2 and τ1 = (1, 2).
In this case, Figure 2 shows the intersections of the four different curves CT
with the boxes I2n+m ⊂ R2 for n = (12, 2) and m ∈ {0, 1}2. The corresponding
curve CH for the particular choice of the hyperbolic factor given by `(3) = 1
and `(4) = 0, is shown on Figure 3. On each of these curves, the marked point
corresponds to the solution of the compatibility equations. Note that the curves
CT intersect two of the boxes, and the functions Tai ,`(i) defined on them are
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Figure 3: The curve CH corresponding to `(3) = 1 and `(4) = 0: x3 tanh(x3) = x4 coth(x4).

positive in one box and negative in the other. The solutions of the compatibility
equations lie on the positive side.

We now turn to assertion (iii). Observe first that there is a uniform bound on
c` hence there is a N such that if |n| > N then

inf
x∈In
|x| > c`.

From the previous discussion this ensures that there are exactly 2q solutions
in the box In. We proceed in two steps for the more quantitative part of the
statement. First, we prove that eigenvalues do take the form (2.3.2), and then we
show that for all k ∈ {1, 2, . . . , 2q

} the same αn works.

Localization. Fix the restriction ` : τ2→ {0, 1}q for the moment. The various
choices of trigonometric factors (represented by the choice of ` : τ1 → {0, 1}p)
gives rises to exactly one solution α2n+m in each of the 2p boxes I2n+m,
where m runs over all choices of m ∈ {0, 1}p. For each of these m, the
corresponding eigenvalue is given by any of the functions appearing in equation
(2.3.5) evaluated on any of the coordinates of (α2n+m,β2n+m) ∈ Rp

× Rq . It
follows that for each j ∈ τ2, and n ∈ Nq

|βn|
2
=

∑
i∈τ2

β2
n,i = qβ2

n, j + O(|n|−∞).
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Hence for each j ∈ τ2,

βn, j =
|βn|
√

q
+ O(|n|−∞).

The corresponding eigenvalue is therefore given, for any j ∈ τ2, by

σn = Ha j ,`( j)(βn, j ) =
|βn|
√

q
+ O(|n|−∞) =

|αn|
√

q
+ O(|n|−∞),

as was announced.

Clustering. If `, `′ : Sd → {0, 1} agree on τ1, it follows from

Ha j ,`( j)(x)− Ha j ,`′( j)(x) = O(x−∞)

that the corresponding eigenvalues satisfy

σn,` − σn,`′ = O(|n|−∞).

The various choices of the restriction ` : τ2 → {0, 1} therefore lead to 2q

eigenvalues satisfying

σ k
n =
|αn|
√

q
+ O(|n|−∞) for k = 1, . . . , 2q .

Exceptional eigenvalues. For n ∈ Np
0 \ N

p we have that ni = 0 for at least
one i ∈ τ1. On the interval (0, π/2ai ], the function Tai ,0 is positive while Tai ,1
is negative, hence an eigenvalue can only correspond to `(i) = 0. In this case,
the range of Tai ,0 is [0, a−1

i ). A corresponding eigenvalue is therefore bounded
above by a−1

i . There is only a finite number of these, proving assertion (iv).
This concludes the proof of Theorem 2.6. �

In the next section we will take up the task of understanding the asymptotic
behaviour of the counting function N (σ ).

§3. Eigenvalue asymptotics. The goal of §3 is to prove Theorem 1.1.
The plan is to represent the counting function N (σ ) as a sum of auxiliary
counting functions corresponding to different families of eigenvalues provided
by Theorem 2.6. Each of those counting functions will be then investigated using
lattice counting techniques.

3.1. A hierarchy of counting functions. Let p ∈ {1, 2, . . . , d − 1}. Given τ =
(τ1, τ2) ∈ Tp and ` : Sd → {0, 1}, define the counting function N τ,`

: R→ N
by

N τ,`(σ ) = #{ j ∈ N : σ j ∈ Sτ,` and σ j < σ }.

Recall that the bipartition τ defines the location τ1 of the trigonometric factors,
and the location τ2 of the hyperbolic factors, whereas the function ` distinguishes
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between sin and cos trigonometric factors, and sinh and cosh hyperbolic factors.
We also introduce

N τ (σ ) :=
∑

`:Sd→{0,1}d
N τ,`(σ ) and Np(σ ) :=

∑
τ∈Tp

N τ (σ ). (3.1.1)

Since there is only a finite number of eigenfunctions with linear factors, one has

N (σ ) =
d−1∑
p=1

Np(σ )+ O(1).

Set q = d − p and let ∂q� denote the union of p-dimensional facets of a cuboid
�. Our goal is to prove the following asymptotics for Np(σ ).

PROPOSITION 3.1. For each p = 1, . . . , d − 1, we have

Np(σ ) =

√
q p

(2π)pωpVolp(∂
q�)σ p

+ cpVolp−1(∂
q+1�)σ p−1

+ O(σ ηp ),

(3.1.2)

where cp are some explicitly computable constants and

ηp = max
(

p − 1−
1
p
, p − 2+

2
p + 1

)
=

{
2/3 if p = 2,
p − 1− 1/p otherwise.

We prove Proposition 3.1 in §3.5.

3.2. Quasi-eigenvalues. In this section, we observe that the clustering of
eigenvalues in Theorem 2.6 allows us to simplify the eigenvalue counting
problem. Essentially, we will count every cluster as one eigenvalue with a weight
equal to the number of eigenvalues in the cluster.

Definition 3.2. Given p ∈ Sd , q = d − p, τ ∈ Tp, ` : Sd → {0, 1} and
n ∈ Np, the number |αn|/

√
q defined in (2.3.2) is called a quasi-eigenvalue of

multiplicity 2q .

It is clear from Theorem 2.6 that

N (σ ) =
d−1∑
p=1

2q#
{

n ∈ Np
:
|αn|
√

q
< σ

}
+ O(1). (3.2.1)

The factor 2q accounts for the clustering of eigenvalues around the corresponding
quasi-eigenvalue. Note that the O(1) error can be absorbed in the error term
in (1.2.1). Therefore, in view of (3.2.1), for our purposes there is no need to
distinguish between counting eigenvalues and quasi-eigenvalues.
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3.3. Eigenfunctions with a single trigonometric factor. Consider first the case
p = 1. The choice of sin or cos for the trigonometric factor and the choice of
the coordinate corresponding to the trigonometric factor yields 2d families of
eigenfunctions, each having 2d−1 possibilities for the choice of the hyperbolic
factor. As follows from Theorem 2.6, each of the 2d families contributes a cluster
of 2d−1 eigenvalues which correspond to the same quasi-eigenvalue. Therefore,
as was mentioned earlier, this cluster can be counted for our purposes as a single
quasi-eigenvalue of multiplicity 2d−1. The compatibility equations

Hai ,`(i)(βi ) = Ha j ,`( j)(β j ) for all i, j ∈ τ2 (3.3.1)

define a connected curve in Rd−1 which goes to infinity along the diagonal while
its value increases to+∞. Equating (3.3.1) to Tak ,`(k), k ∈ τ1 amounts to solving
the following equations:

αk cot(akαk) =
αk
√

d − 1
+ O(α−∞k ) if `(k) = 0,

and

−αk tan(akαk) =
αk
√

d − 1
+ O(α−∞k ) if `(k) = 1.

This yields eigenvalues of the form

σ =


π j

a j
√

d − 1
+

1

a j
√

d − 1
arccot((d − 1)−1/2)+ O( j−∞) if `(k) = 0,

π j

a j
√

d − 1
+

1

a j
√

d − 1
arctan((d − 1)−1/2)+ O( j−∞) if `(k) = 1,

each with quasi-multiplicity 2d−1. Given that arccot and arctan are bounded
functions, and since

Vol1(∂d−1�) = 2d
d∑

j=1

a j ,

we have that

N1(σ ) =
ω1
√

d − 1
2π

Vol1(∂d−1�)σ + O(1).

This concludes the proof of Theorem 1.1 for d = 2, since p = 1 is the only
possibility in this case. Observe that for d = 2, this is indeed the expected first
term of Weyl’s law (1.1.2).
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3.4. Eigenfunctions with many trigonometric factors. In this subsection, we
count the number of eigenvalues associated with eigenfunctions with more than
one trigonometric factor. The idea is to write the eigenvalues as the norms of
points α ∈ Rp that are close to some lattice points. The main difficulty is that
the compatibility equations are transcendental, making it impossible to explicitly
find α. We will therefore approximate the eigenvalues in a controlled way, and
we will show that this approximation results in a small enough error that could
be absorbed in the remainder in the two-term asymptotics for the eigenvalue
counting function. Finally, we will use the lattice point counting techniques
going back to [8, 15], and more recently used in [11].

3.4.1. Approximate eigenvalues. Suppose that d > 3 and p ∈ {2, . . . , d − 1}.
Let τ ∈ Tp and ` : Sd → {0, 1} be given.

Given n ∈ Np, it follows from Theorem 2.6 and the compatibility equations
(2.2.3), that the corresponding solution α = αn ∈ In satisfies the following for
each i, j ∈ τ1:

αi cot
(
αi ai +

`(i)π
2

)
= α j cot

(
α j a j +

`( j)π
2

)
=
|αn|
√

q
+ O(|n|−∞).

Hence, for each i ∈ τ1, we have, choosing the principal branch of arccot, a family
of solutions indexed by n ∈ Np

αi ai =

(
ni +

`(i)
2

)
π + arccot

(
1
√

q

[
1+

∑
j 6=i∈τ1

(
α j

αi

)2]1/2)
+ O(|n|−∞).

Since αi = (ni + `(i)/2)π/ai + O(1), we can rewrite the previous equation as
follows:

αi =
(ni + `(i)/2)π

ai

+
1
ai

arccot
(

1
√

q

[
1+

∑
j 6=i

(
(nj + `( j)/2)π/a j + tα j (n)
(ni + `(i)/2)π/ai + tαi (n)

)2]1/2)
+ O(|n|−∞), (3.4.1)

where the functions tα j are bounded. Since `(i) ranges over {0, 1}, the solution
set to the previous equation is the same as the one to

αi =
niπ

2ai
+

1
ai

arccot
(

1
√

q

[
1+

∑
j 6=i

(
njπ/2a j + tα j (n)
niπ/2ai + tαi (n)

)2]1/2)
+ O(|n|−∞).

(3.4.2)

LEMMA 3.3. Define α̃i as

α̃i =
niπ

2ai
+

1
ai

arccot
(

1
√

q

[
1+

∑
j 6=i

(
ai nj

a j ni

)2]1/2)
. (3.4.3)
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Then

α̃i = αi + O(|n|−1). (3.4.4)

Proof. In Lemma A.1 in the Appendix, take xi = niπ/ai and ψi = tαi . Then
one readily sees that

|x| � |n|,

where f � g means that f = O(g) and g = O( f ). The lemma then follows. �

Note that the right-hand side of equation (3.4.3) does not depend on αi
anymore, which makes it easier to analyse.

We now have eigenvalues indexed by n ∈ Np given by

σn =

√√√√1
q

∑
i∈τ1

α̃2
i + O(|n|−1). (3.4.5)

Definition 3.4. The numbers

σ̃n =

√√√√1
q

∑
i∈τ1

α̃2
i (3.4.6)

are called the approximate eigenvalues.

Remark 3.5. Up until now, eigenvalues, quasi-eigenvalues and approximate
eigenvalues were indexed by n ∈ Np. In the following two theorems it is
convenient to use n ∈ N to index them in ascending order.

The following lemma allows us to estimate the error induced by counting
approximate eigenvalues instead of eigenvalues.

LEMMA 3.6. Let (an), (bn) be two sequences of positive numbers which tend
to infinity. Suppose there exists a number s > −1 such that an = bn + O(b−s

n ).
Let

Na(λ) = #{n : an < λ} and Nb(λ) = #{n : bn < λ}.

Suppose that there exists a number K such that

Na(λ) =

K∑
k=0

ckλ
p−k
+ O(λr ),

with r < p − K . Then

Nb(λ) =

K∑
k=0

ckλ
p−k
+ O(λr ′), (3.4.7)

where r ′ = max(r, p − 1− s).
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Remark 3.7. Note that if r ′ > p− K , some of the terms in the sum in (3.4.7)
might be absorbed in the error term.

Proof. Indeed, the assumption on the sequences an and bn implies that there
exists c > 0 such that

Na

(
λ+

c
λs

)
6 Nb(λ) 6 Na

(
λ−

c
λs

)
.

A direct computation of Na(λ± cλ−s) completes the proof of the lemma. �

Recall now the definition of N τ (σ ) given by (3.1.1). We will write Ñ τ for the
counting function of the corresponding approximate eigenvalues.

LEMMA 3.8. We have

|Ñ τ (σ )− N τ (σ )| = O(σ p−1−1/p).

Proof. Both the eigenvalues and the approximate eigenvalues are, up to a
bounded error, the norms of the points of the lattice 0 =

⊕p
i=1 (π/2ai

√
q)N,

repeated 2q times. Denote by ln := {|γ | : γ ∈ 0}n the sequence of norms of the
points of the lattice 0 arranged in ascending order. It is well known that there is
a constant C such that

Nl(σ ) = Cσ p
+ O(σ p−1),

where C depends on 0 and Nl denotes the counting function of the sequence ln
as in Lemma 3.6. Applying Lemma 3.6 with s = 0 yields

N τ (σ ) = 2qCσ p
+ O(σ p−1).

Reversing this expression tells us that

σn =

(
n

2qC

)1/p

+ o(n1/p). (3.4.8)

From equations (3.4.6) and (3.4.8) we have that

σ̃n = σn + O(n−1/p).

Therefore, applying once again Lemma 3.6, but this time with s = 1/p, yields

N τ (σ ) = Ñ τ (σ )+ O(σ p−1−1/p). (3.4.9)
�
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3.4.2. Another representation of the counting function. For every τ , let us now
define a family of sets Eσ ⊂ Rp with the property that

Ñ τ (σ ) =
∑

n∈Np

2qχ

(
n
σ

)
+ O(1), (3.4.10)

where χ := χσ is the indicator function of Eσ . Let us define elliptic polar
coordinates in Rp with the convention that θp = 0:

r2
=

∑
i∈τ1

(
πxi

2ai
√

q

)2

,

xj = r
2a j
√

q
π

cos(θ j )
∏
i< j

sin(θi ).

(3.4.11)

We define the family of sets

Eσ :=
{
(r, θ) ∈ Rp

: r2
+

2r
σ

∑
j∈τ1

1
a j

g j (θ)+
H(θ)
σ 2 < 1

}
, (3.4.12)

with

g j (θ) := cos θ j
∏
i< j

sin θi arccot
(

1
√

q

[
1+

∑
i 6= j

(
xi

xj

)2]1/2)
, (3.4.13)

and

H = H(θ) =
∑
j∈τ1

1
a2

j
arccot

(
1
√

q

[
1+

∑
i 6= j

(
xi

xj

)2]1/2)2

.

From equation (3.4.6), we can observe that the evaluation of χ at σ−1n in
coordinates (3.4.11) is 1 if and only if σ̃n < σ . If |n| > N as in Theorem 2.6,
there are 2q solutions close to any order to σ̃n. This achieves our stated goal of
equation (3.4.10). Let us now prove a few properties of the set Eσ that will be
required in the sequel.

LEMMA 3.9. There exists σ0, such that for σ > σ0 the set Eσ is strictly
convex and the principal curvatures of ∂Eσ are positive and uniformly bounded
away from 0. Furthermore, the boundary ∂Eσ is smooth for all σ > σ0, and
all the derivatives of the boundary defining function are uniformly bounded in
σ > σ0.
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Proof. From equation (3.4.12) ∂Eσ is the level set of the function

F(r, θ) = r2
+

2r
σ

∑
j∈τ1

1
a j

g j (θ)+
H(θ)
σ 2 ,

which satisfies

F(r, θ) = r2
+ O(σ−1),

[∇F(x)]i =
πxi

ai
√

q
+ O(σ−1),

Hess F = diag
(

π

ai
√

q

)
i∈τ1

+ O(σ−1).

(3.4.14)

One can observe that H and g j , j ∈ τ1 are all smooth functions of θ ∈ Sp−1. This
automatically yields the claim on the smoothness and the uniform boundedness
of the derivatives of the boundary defining function.

Furthermore, for σ large enough, the second fundamental form of ∂Eσ , being
a positive multiple of Hess F , is positive, with its smallest eigenvalue uniformly
bounded away from 0. This implies the claim on the principal curvatures, which
in turn yields strict convexity of Eσ . �

This directly implies the following corollary.

COROLLARY 3.10. The product of the principal curvatures of ∂Eσ is
uniformly bounded away from zero for σ large enough.

3.4.3. Poisson summation formula. In this section, we use the general scheme
of the proof of [11, Theorem 1.1]. Recall that

N τ (σ ) =
∑

n∈Np

2qχ

(
n
σ

)
+ O(1)

= 2q−p
∑

n∈Zp

χ

(
n
σ

)
+ Rτ (σ )+ O(1), (3.4.15)

where Rτ (σ ) is the error term induced by the overcounting of points on
hyperplanes with one vanishing coordinate.

Our goal is now to compute the terms appearing in equation (3.4.15)
using the Poisson summation formula which states, under sufficient smoothness
assumptions, that ∑

n∈Zp

f (n) =
∑

m∈Zp

f̂ (m), (3.4.16)

where the Fourier transform is given by

f̂ (ξ) :=
∫
Rp

f (x)e−2π ix·ξ dx.
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However, χ is not regular enough for us to use the Poisson summation
formula, hence we need to mollify it. Let us introduce a non-negative function
ψ ∈ C∞c (R) supported in [−1, 1] and such that∫

∞

0
ψ(r)r p−1 dr =

1
Vp−1

,

with Vp−1 being the volume of the (p − 1)-dimensional unit sphere in Rp. We
then define a family 9ε : Rp

→ R of radial bump functions of total mass 1 by

9ε(x) =
1
ε pψ

(
|x|
ε

)
.

Set 9 := 91 Consider the smooth function χε = 9ε ∗ χ . Note that

9̂ε(ξ) = 9̂(εξ).

We now prove the following lemma.

LEMMA 3.11. Let χ+ε , χ
−
ε : Rp

→ R be defined by

χ+ε (x) = χε((1− η+ε)x),
χ−ε (x) = χε((1+ η−ε)x)

for some η−, η+ > 0. One can choose η−, η+ in such a way that for all σ large
enough

χ−ε (x) 6 χ(x) 6 χ
+
ε (x)

for all x ∈ Rp and all ε > 0 small enough.

Proof. For the first inequality, observe that

χε((1+ η−ε)x) =
∫
Rp
χ(y)9ε((1+ η−ε)x− y) dy

=

∫
B(1+η−ε)x(ε)

χ(y)9ε((1+ η−ε)x− y) dy

6 sup
B(1+η−ε)x(ε)

χ(y).

Hence, to show that χε((1 + η−ε)x) 6 χ(x) for all x, by convexity of Eσ it is
sufficient to show that for all x ∈ ∂Eσ , there exists η−, independent of σ such
that the following holds for each ε > 0 small enough

B(1+η−ε)x(ε) ∩ Eσ = ∅.
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Note that for all x ∈ ∂Eσ we have that

dist((1+ t)x, ∂Eσ ) = (x ·N∂Eσ (x))t + O(t2), (3.4.17)

where N∂Eσ is the Gauss map of the boundary. To see this, denote by Tx∂Eσ
the tangent hyperplane of ∂Eσ at x, and by Px the orthogonal projection on that
hyperplane. We have by the triangle inequality that

|dist((1+ t)x, ∂Eσ )− dist((1+ t)x, Tx∂Eσ )| 6 dist(Px((1+ t)x), ∂Eσ ).

We observe that dist((1+ t)x, Tx∂Eσ ) = (x ·N∂Eσ (x))t . Let F , as before, be the
function in Rp such that the set F ≡ 1 coincides with ∂Eσ . Taking the Taylor
expansion of F around x, we have that

dist(Px((1+ t)x), ∂Eσ ) 6 ‖Hess F(x)‖∞|Px((1+ t)x)|2 = O(t2),

where we used that ‖Hess F(x)‖∞ is bounded uniformly for σ > σ0 and x ∈
∂Eσ . Note that the strict convexity of ∂Eσ and equation (3.4.14) imply that x ·
N∂Eσ (x) is bounded away from zero uniformly for σ > σ0. This implies that we
can choose η− large enough and independent in σ such that indeed

B(1+η−ε)x(ε) ∩ Eσ = ∅.

For the second inequality, we have

χε((1− η+ε)x) =
∫
Rp
χ(y)9ε((1− η+ε)x− y) dy

=

∫
B(1−η+ε)x(ε)

χ(y)9ε((1− η+ε)x− y) dy

> inf
B(1−η+ε)x(ε)

χ(y).

Hence, to show that χ(x) 6 χε((1 − η+)x), it is sufficient to show that for all
x ∈ ∂Eσ there exists η+ independent of σ such that

B(1−η+)x(ε) ⊂ Eσ .

Using once again equation (3.4.17) and arguing exactly as above yields the
desired number η+. �

The following is an immediate corollary of the previous lemma.

COROLLARY 3.12. We have that∑
n∈Zp

χ−ε

(
n
σ

)
6
∑

n∈Zp

χ

(
n
σ

)
6
∑

n∈Zp

χ+ε

(
n
σ

)
.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000414
Downloaded from https://www.cambridge.org/core. Bibliotheque de l'Universite Laval, on 13 Dec 2018 at 18:47:11, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000414
https://www.cambridge.org/core


THE STEKLOV SPECTRUM OF CUBOIDS 295

We will now apply the Poisson summation formula (3.4.16) to χ±ε , which
are smooth functions. This yields, using the basic properties of the Fourier
transform,

∑
n∈Zp

χ±ε

(
n
σ

)
= σ p

∑
m∈Zp

χ̂±ε (σm)

= σ p
∑

m∈Zp

(1+ O(ε))χ̂
(

σm
1∓ η±ε

)
9̂

(
εmσ

1∓ η±ε

)
= σ pVol(Eσ )+ O(εσ p)

+ O
(∑

m∈Zp

m6=0

σ pχ̂

(
σm

1∓ η±ε

)
9̂

(
εmσ

1∓ η±ε

))
. (3.4.18)

Note that for this expression to hold, we will need to later choose ε = o(1). Since
9 is a Schwartz function, its Fourier transform is also Schwartz, hence to find
estimates on the asymptotic behaviour of equation (3.4.18), we only need to find
bounds on χ̂ . This is done in the following lemma.

LEMMA 3.13. For σ large enough, the Fourier transform of χ satisfies the
upper bound

χ̂(ξ) = O(|ξ |−(d+1)/2). (3.4.19)

Proof. For σ large enough, the set Eσ is strictly convex and has smooth
boundary. Therefore, following [9, Theorem 2.29] we have that for any function
f ∈ C∞(Rp) such that f 6= 0 on ∂Eσ∫

Eσ
f (x)e−2π ix·ξ dx = O(|ξ |−(d+1)/2),

where the implicit constants depend on the product of the principal curvatures of
∂Eσ and stay bounded as long as the principal curvatures are bounded away from
0. Hence, by equation (3.4.14), these constants will be uniformly bounded for σ
large enough. Applying this result with f (x) ≡ 1 yields the desired result. �

Remark 3.14. Note that the estimates on lower-order error terms obtained in
[9, Theorem 2.29] depend on the derivatives of the boundary defining function
of ∂Eσ . By Lemma 3.9 those derivatives are bounded uniformly for σ > σ0.

We now find the dependence on ε of the third summand in (3.4.18). We will
choose the optimal value of ε such that the second and the third terms are both
as small as possible. Splitting the third summand into two terms we use equation
(3.4.19) and the fact that 9̂ is a Schwartz function to obtain
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O
(∑

m∈Zp

m 6=0

σ pχ̂

(
mσ

1∓ η±ε

)
9̂

(
εmσ

1∓ η±ε

))

= O
( ∑

0<|m|6(εσ )−1

σ (p−1)/2(1∓ η±ε)(p+1)/2

|m|(p+1)/2

+

∑
|m|>(εσ)−1

σ (p−1)/2(1∓ η±ε)(p+1)/2+N

|m|(p+1)/2+N (σε)N

)
,

for an arbitrary N > 0 which will be fixed below. Assuming that ε is small and
taking into account that the summands on the right-hand side are decreasing in
|m|, we may estimate the first of those sums by∑

0<|m|6(εσ )−1

σ (p−1)/2(1∓ η±ε)(p+1)/2

|m|(p+1)/2 � σ (p−1)/2
∫ (εσ )−1

1

r p−1

r (p+1)/2 dr

= O(ε(1−p)/2).

The second of those sums can be estimated, for N large enough that the integral
converges, by ∑

|m|>(εσ)−1

σ (p−1)/2(1∓ η±ε)(p+1)/2+N

|m|(p+1)/2+N (σε)N

� σ (p−1)/2(σε)−N
∫
∞

(εσ )−1

r p−1

r (p+1)/2+N dr

= O(ε(1−p)/2).

The optimal ε to make both σ pε and ε(1−p)/2 as small as possible is

ε = σ−2p/(1+p),

yielding that ∑
n∈Zp

χ±ε

(
n
σ

)
= σ pVol(Eσ )+ O(σ p−2+2/(1+p)). (3.4.20)

We now compute the volume of Eσ .

LEMMA 3.15. Let 6 = Sp−1
∩ Rp
+. We have

Volp(Eσ ) =
2p√q p

π p ωp
∏
j∈τ1

a j −
22p√q pG p,q

π pσ

∑
j∈τ1

∏
i 6= j

ai + O(σ−2),

(3.4.21)

where

G p,q =

∫
6

g j (θ) dθ , (3.4.22)

for any of the functions g j defined by equation (3.4.13).
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Remark 3.16. Note that G p,q does not depend on j by the symmetry of the
construction of g j .

Proof. By symmetry, we have that

Vol(Eσ ) =
22p√q p

π p

∫
6

∫ ρ(θ)

0
r p−1

∏
j∈τ1

a j dr dθ ,

where ρ(θ) is the unique positive root (in r ) of the equation

r2
+

2r
σ

∑
j∈τ1

g j (θ)

a j
+

H
σ 2 − 1 = 0.

One can observe that

ρ(θ) = 1−
1
σ

∑
j∈τ1

g j (θ)

a j
+ O(σ−2).

Thus, we get that

Vol(Eσ ) =
22p

π p

∏
j∈τ1

a j

∫
6

1
p
−

1
σ

∑
j∈τ1

g j (θ)

a j
+ O(σ−2) dθ .

Integrating and replacing in the previous equation the definition of G p,q in
equation (3.4.22) yields

Vol(Eσ ) =
2p

π pωp
∏
j∈τ1

a j −
22pG p,q

π pσ

∑
j∈τ1

∏
i 6= j

ai + O(σ−2). (3.4.23)

�

Finally, we have to take into account the points that we have overcounted
with coefficient 1/2 on the hyperplanes {xi = 0}. This is given in the following
lemma.

LEMMA 3.17. The number of overcounted points on the hyperplanes {xi = 0}
is

Rτ (σ ) =
√

q p2pωp−1σ
p−1

4(2π)p−1

∑
j∈τ1

∏
i 6= j

ai + O(σ p−2). (3.4.24)

Proof. One can observe that Rτ is given by

Rτ (σ ) =
1
2

∑
i∈τ1

#{σ−1Np−1
∩ Eσ ∩ {xi = 0}}.

Since Eσ is convex, rough lattice point counting estimates due to Gauss tell us
that

Rτ (σ ) =
1
2
σ p−1

∑
i∈τ1

Volp−1(Eσ ∩ {xi = 0})+ O(σ p−2).

Computing the volumes in the same way as in the proof of the previous lemma
yields the desired result. �
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3.5. Proof of Proposition 3.1. Recall that Ñp is given by

Ñp(σ ) =
∑
τ∈Tp

Ñ τ (σ ).

Observe that ∑
τ∈Tp

2p+q
∏
j∈τ1

a j = Volp(∂
q�)

and ∑
τ∈Tp

∑
j∈τ1

∏
i 6= j

2p+qai = (q + 1)2p+q
∑

τ∈Tp−1

∏
j∈τ1

a j

= (q + 1)Volp−1(∂
q+1�). (3.5.1)

Combining these two formulas with equations (3.4.15), (3.4.20) and Lemmas
3.15, 3.17, yields

Ñp(σ ) =

√
q p

(2π)pωpVolp(∂
q�)σ p

+ cpVolp−1(∂
q+1�)σ p−1

+ O(σ p−2+2/(p+1)).

Using equation (3.5.1), we have that cp = c′p + c′′p, where

c′p = −
(q + 1)

√
q pG p,q

π p

comes from the second term in equation (3.4.21) and

c′′p = −
(q + 1)

√
q pωp−1

4(2π)p−1

is obtained from the principal term in equation (3.4.24).
We then have from equation (3.4.9) that

Np(σ ) =

√
q p

(2π)pωpVolp(∂
q�)σ p

+ cpVolp−1(∂
q+1�)σ p−1

+ O(σ ηp ),

where

ηp = max
(

p − 1− 1/p, p − 2+
2

p + 1

)
=

{
2/3 if p = 2,
p − 1− 1/p otherwise.

This completes the proof of Proposition 3.1. �

Remark 3.18. Observe that, for p > 2, studying the approximate eigenvalues
instead of the true eigenvalues yields an error which is larger than the one coming
from the standard Poisson summation formula methods.
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3.6. Proof of Theorem 1.1. Recall now that

N (σ ) =
d−1∑
p=1

Np(σ )+ O(1).

Hence, applying the previous results we get

N (σ ) = Nd−1(σ )+ Nd−2(σ )+ O(σ ηd−1)

=
1

(2π)d−1ωd−1Vold−1(∂�)σ
d−1
+ cd−1Vold−2(∂

2�)σ d−2

+
2(d−2)/2

(2π)d−2ωd−2Vold−2(∂
2�)σ d−2

+ O(σ ηd−1)

= C1Vold−1(∂�)σ
d−1
+ C2Vold−2(∂

2�)σ d−2
+ O(ηd−1).

We can write explicitly C2 = c′d−1 + cd−1′′ + (2(d−2)/2ωd−2)/((2π)d−2) to get
indeed that

C2 =
2(d−2)/2ωd−2

(2π)d−2 −
2Gd−1,1

πd−1 −
ωd−2

2(2π)d−2

when d > 3 and that

N (σ ) =
ω1

2π
Vol1(∂�)σ + O(1)

when d = 2.
We can now give explicit expressions for the constants Gp,q :

G p,q =

∫ π/2

0
· · ·

∫ π/2

0
arccot

(
1
√

q

[
1+

p−1∑
j=1

cot2 θ j
∏
i> j

csc2 θi

]1/2)

×

p−1∏
k=1

sink(θk) dθ1 · · · dθp−1

=

∫ π/2

0
· · ·

∫ π/2

0
arccot

(
1
√

q

p−1∏
j=1

csc θ j

) p−1∏
k=1

sink(θk) dθ1 · · · dθp−1.

In particular, calculating the integrals for q = 1, p = 2 and q = 1, p = 3, we
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get

G2,1 =
1
2 (−1+

√
2)π,

G3,1 =
1
8 (−2+ π)π.

This concludes the proof of Theorem 1.1. �

§4. Further results.

4.1. Concentration of eigenfunctions. In this section, we discuss the
behaviour of the eigenfunctions, more precisely how they scar on the lower-
dimensional facets of a cuboid. This is made precise in the following theorem,
where we will slightly abuse notation and denote by uk both a Steklov
eigenfunction and its boundary trace.

THEOREM 4.1. Let � ⊂ Rd be the cuboid with parameters a1, . . . , ad > 0.
Let p ∈ {1, . . . , d − 1} and let τ ∈ Tp. Consider the set

Xτ = {x = (xτ1, xτ2) ∈ ∂� : xj = ±a j for j ∈ τ2}.

Then there exists a sequence of L2(∂�)-normalized eigenfunctions {uk}

concentrating on Xτ and getting equidistributed around Xτ in the following
sense: for each measurable U ⊂ Xτ and every ε > 0, consider the set

Uε = {x = (xτ1, xτ2) ∈ ∂� : xτ1 ∈ U and dist(x,U ) < ε}.

Then, for every ε > 0,

lim
k→∞

∫
Uε

|uk(x)|2 dx =
Volp(U )
Volp(Xτ )

.

For example, on a cuboid of dimension 3, the set Xτ is a union of four parallel
edges in case p = 1, while for p = 2 it is a union of two opposite faces.

Proof. Without loss of generality, we will suppose that U is a subset of one
of the connected components of Xτ , say the one where xj = a j for all j ∈ τ2.
For k ∈ N, let k = (k, . . . , k) ∈ Rp and consider the pair (α(k),β(k)) satisfying
the compatibility and harmonicity conditions

α
(k)
i cot(α(k)i ai ) = β

(k)
j tanh(β(k)j a j ) for all i ∈ τ1, j ∈ τ2,∑

i∈τ1

(α
(k)
i )2 =

∑
j∈τ2

(β
(k)
j )2

with α(k) ∈ I2k. Note that this corresponds to choosing `(i) = 0 for all i ∈ τ1
and `( j) = 1 for all j ∈ τ2. Since

(∑
i∈τ1

(α
(k)
i )2

)1/2

= k

A︷ ︸︸ ︷(∑
i∈τ1

(
π

2ai

)2)1/2

+ O(1) = Ak + O(1)
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we have that for all j ∈ τ2,

β
(k)
j =

A
√

q
k + O(1).

Let vk(x) be the associated eigenfunction, and observe that

vk(x)2 =
∏
i∈τ1

sin2(α
(k)
i xi )

∏
j∈τ2

cosh2(β
(k)
j xj )

=
1

2p

∏
i∈τ1

(1− cos(2α(k)i xi ))
∏
j∈τ2

cosh2(β
(k)
j xj )

=
1

2p

∏
i∈τ1

(
1− cos

((
πk
ai
+ O(1)

)
xi

))
×

∏
j∈τ2

cosh2
((

A
√

q
k + O(1)

)
xj

)
.

Let us define the normalized eigenfunction

uk =
vk

‖vk‖L2(∂�)

and estimate both ‖vk‖
2
:= ‖vk‖

2
L2(∂�)

and
∫

Uε
vk(x)2 dx . For ‖vk‖

2, we have
that

‖vk‖
2
=

1
2p

∏
i∈τ1

∫ ai

−ai

1− cos
((

πk
ai
+ O(1)

)
xi

)
dxi

∏
j∈τ2

∫ a j

−a j

cosh2(β j xj ) dxj

=
1
2d (Volp(Xτ )+ o(1))

∏
j∈τ2

∫ a j

−a j

cosh2(β j xj ) dxj (4.1.1)

from the Riemann–Lebesgue lemma and the fact that

Vol(Xτ ) = 2q
∏
i∈τ1

∫ ai

−ai

dxi .

Furthermore, for all j ∈ τ2 we have that∫ a j

−a j

cosh2(β j xj ) dxj

=
1
4

∫ a j

−a j

e2((A/
√

q)k+O(1))xj + e−2((A/
√

q)k+O(1))xj + 2 dxj

=

√
q

4Ak
e2(A/

√
q)ka j (1+ o(1)). (4.1.2)

Setting C =
√

q/4A, equations (4.1.1) and (4.1.2) yield together that

‖vk‖
2
=

Cq

2dkq Volp(Xτ )
(∏

j∈τ2

e2(A/
√

q)ka j

)
(1+ o(1)). (4.1.3)
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We now also compute the integral of v2
k on Uε where we get, in a similar

fashion to (4.1.1), that∫
Uε

vk(x)2 dx =
1

2p (Volp(U )+ o(1))
∏
j∈τ2

∫ a j

a j−ε

cosh2(β j xj ) dxj . (4.1.4)

We also have that∫ a j

a j−ε

cosh2(β j xj ) dxj =
C
2

e2(A/
√

q)ka j (1+ o(1)), (4.1.5)

where once again C =
√

q/4A. Together, equations (4.1.4) and (4.1.5) yield∫
Uε

vk(x) dx =
Cq

2dkq Volp(U )
(∏

j∈τ2

e2(A/
√

q)ka j

)
(1+ o(1)). (4.1.6)

Finally, putting equations (4.1.3) and (4.1.6) together yields indeed that

lim
k→∞

∫
Uε

uk(x)2 dx = lim
k→∞

∫
Uε

vk(x)2

‖vk‖2
dx =

Volp(U )
Volp(Xτ )

,

concluding the proof. �

4.2. The first eigenfunction. In this section, we investigate the lowest non-
zero eigenvalue σ1 on the cuboid. Let us first find the form of an eigenfunction
u associated with σ1. By Courant’s nodal theorem u has exactly two nodal
domains. Thus, one of the factors u j will have two nodal domains on the interval
[−a j , a j ] and all the other factors only one nodal domain. In other words there
is one odd factor, and all the others are positive even functions. We show the
following proposition.

PROPOSITION 4.2. Suppose that a1 6 · · · 6 ad . Then there is β = (β1, . . . ,

βd−1) and αd = |β| < π/2ad such that

u(x1, . . . , xd) = sin(αd xd)

d−1∏
k=1

cosh(βk xk)

is an eigenfunction with eigenvalue σ1.

Proof. We will first show that u is a product of one sine factor and d − 1
hyperbolic cosines factors. Suppose that one of the trigonometric factors was a
cosine. Let us study the number of nodal domains of cos(αxj ) on the interval
[−a j , a j ]. By the Steklov boundary condition we have that

cos(αa j ) = −σα sin(αa j ).

There are three possible cases, whether sin(αa j ) is equal to, greater than or
smaller than 0. Since the eigenvalue σ0 = 0 is simple, if sin(αa j ) = 0 it would
imply that cos(αa j ) = 0, which is impossible.
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If sin(αa j ) > 0, we have that cos(αa j ) is negative. This would imply that
the function cos(αx) has changed sign on [0, a j ] and since it is even it will
have at least two zeroes on [−a j , a j ], that is at least three nodal domains, in
contradiction to Courant’s nodal theorem.

Finally, if sin(αa j ) < 0, this implies that αa j > π , meaning that cos(αxj )

has changed sign at least once on [0, a j ]. This implies once again that there are
at least three nodal domains, completing the proof that none of the factors are
cosines.

Since there can only be one odd factor, if one is linear all the other factors are
a combination of cosines and hyperbolic cosines. We just proved that none of the
factors are cosines, and it is impossible for a product of linear functions with only
hyperbolic cosines to respect the harmonicity condition (2.1.2). We therefore
deduce that the only odd factor of u is a sine, and by the above discussion
all the other factors are hyperbolic cosines. This implies that there exists some
16 j 6 d , α j and βk , k 6= j such that

u(x1, . . . , xd) = sin(α j xj )
∏
k 6= j

cosh(βk xk),

and α j a j < π/2. The compatibility equations (2.2.3) hence become

α j cot(α j a j ) = βk tanh(βkak),

α2
j = |β|

2
=

∑
k 6= j

β2
k ,

and σ1 is any member of the first equality. We show that σ1 is smallest when a j
is the largest side, i.e., a j = ad . Suppose not. Then there is 1 6 j 6 d − 1 such
that an eigenvalue associated with

v(x1, . . . , xd) = sin(|γ |xj )
∏
k 6= j

cosh(γ j xj ).

is smaller than the one associated with

u(x1, . . . , xd) = sin(|β|xd)
∏
k 6=d

cosh(βk xk).

The compatibility equations imply that for all k 6= j and k 6= d ,

γk tanh(γkak) < βk tanh(βkak).

Since x tanh(ax) is an increasing function, we deduce that γk 6 βk for all such k.
However, we also have that

|γ | cot(|γ |ak) < |β| cot(|β|ad)

and, since x cot(ax) is decreasing on its first period and ak 6 ad , this implies
that |γ | > |β|. From this, we therefore have that

β2
j +

∑
k 6= j,d

β2
k < γ 2

d +
∑

k 6= j,d

γ 2
k .
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Since for all k 6= j, d we have that γk < βk , we therefore deduce that β j < γd .
However, once again using the compatibility conditions, we have that

γd tanh(γdad) < β j tanh(β j a j ).

Since ad > a j , by monotonicity of x tanh(ax) we deduce that γd < β j , a
contradiction. Hence, we have that the first eigenfunction is, taking into account
that αd = |β|,

u(x1, . . . , xd) = sin(|β|xd)

d−1∏
j=1

cosh(β j xj ),

concluding the proof of the proposition. �

4.3. Proof of Theorem 1.6. The first eigenvalue is given by the following min-
max principle:

σ1(�) = inf
u∈C∞(�)∫
∂�

u=0

R�[u] = inf
u∈C∞(�)∫
∂�

u=0

∫
�
|∇u|2∫
∂�

u2 .

Denote by �0 the cube [−1, 1]d . Then for any cuboid � = [−a1, a1] × · · · ×

[−ad , ad ] we have that∫
�

f (x) dx =
∫
�0

f (a1x1, . . . , ad xd)

d∏
i=1

ai dx

and ∫
∂�

f (x) dx =
d∑

j=1

∫
∂�∩{xj=±a j }

f (x) dx

=

d∑
j=1

∫
∂�0∩{xj=±1}

f (a1x1, . . . , ad xd)
∏
i 6= j

ai dx . (4.3.1)

This allows us to consider integration only on �0 for R�. Observe that the
eigenspace of σ1(�0) has dimension d , and that a basis for it is given by

u j (x1, . . . , xd) = sin(|β|xd)
∏
i 6= j

cosh(βi xi ).

The eigenfunctions u j are orthogonal to constants in the scalar product given
by the rescaled integral (4.3.1). Indeed, on all faces where the sin factor is not
constant, the integral vanishes since it is an odd function. On the pair of faces
where the sin factor is constant, we have that u j (x1, . . . , a j , . . . , xd) = −u j (x1,

. . . ,−a j , . . . , xd) and hence the integrals cancel out on these two faces.
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Consider the eigenfunction

u =
d∑

j=1

u j .

It is easy to see that the integral of u2 on any face of�0 is identical, and we have
that R�0[u] = σ1(�0). We now compute

1
R�[u]

=

∑d
j=1

∏
i 6= j ai

∫
∂�0∩{xj=±1} u

2 dx∏d
j=1 a j

∫
�0
|∇u|2 dx

=
1

R�0[u]

(1/d)
∑d

j=1
∏

i 6= j ai∏d
j=1 a j

.

Fix the volume Vold(�) = Vold(�0), hence
∏

j a j = 1. Then, from the
inequality of arithmetic and geometric means,

R�0[u]
R�[u]

=
1
d

d∑
j=1

∏
i 6= j

ai >

( d∏
j=1

ad−1
j

)1/d

= 1,

with equality if and only if for all j, k,
∏

i 6= j ai =
∏

i 6=k ai , which is true if and
only if a j = ak for all j, k, which implies in turn that σ1(�) 6 σ1(�0), with
equality if and only if � is a cube.

On the other hand, fix the area, Vold−1(�) = Vold−1(�0), hence
∑

j
∏

i 6= j
ai = d . Then

R�0[u]
R�[u]

=

(∏
j

a j

)−1

=

( d∏
j=1

∏
i 6= j

ai

)d(1−d)/d

>

(
1
d

d∑
j=1

∏
i 6= j

ai

)(1−d)/d

= 1,

with equality in the same case as before. Once again, this implies that σ1(�) 6
σ1(�0), with equality if and only if � is a cube. This concludes the proof of
Theorem 1.6. �

4.4. Proof of Corollary 1.8. We want to show that among all rectangles,
the Steklov spectrum determines the lengths a1, a2 of its sides. From spectral
asymptotics, the perimeter of the rectangle is obtained, giving L = a1 + a2,
supposing without loss of generality that a1 6 a2. On the other hand, we have
σ1, and we know that it is the smallest root of

σ1 = α cot(αa1) = α tanh(αa2).

Rewriting these to yield a2 as a function of α, L and σ1 gives

a2 = f (α) =
1
α

arctanh
(
σ1

α

)
(4.4.1)
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and

a2 = g(α) = L −
1
α

arccot
(
σ1

α

)
. (4.4.2)

Given σ1 and L , the intersection of these curves yield possible values a2 for α.
We now show that they intersect at only one point. Equation (4.4.1) is defined
for α > σ1 and taking the derivative yields

f ′(α) = −
arctanh(σ1/α)

α2 −
σ1

α3(1− σ 2
1 /α

2)
, (4.4.3)

which is always negative for α > σ1, and hence f is decreasing. We now show
that g is increasing on [σ1,∞). We have that

g′(α) =
arccot(σ1/α)

α2 −
σ1

α3(1+ σ 2
1 /α

2)
.

Thus, g′ is positive if

α arccot
(
σ1

α

)(
1+

σ 2
1
α2

)
− σ1 > 0.

However, we have that

α arccot
(
σ1

α

)(
1+

σ 2
1
α2

)
− σ1 >

π

4
α +

π

4
σ 2

1
α2 − σ1,

and hence we need to have that α2
− 4σ1α/π +σ

2
1 > 0. This quantity is positive

at α = σ1 since 2 > 4/π , and it is increasing since

2α >
4σ1

π

for α > σ1. We conclude that g is increasing. This implies that f and g have
exactly one intersection point, say at α0. We have that a2 = f (α0) = g(α0) and
a1 = L − a2. Note that since the square maximizes σ1 and since the eigenvalues
are continuous functions of the side lengths of a rectangle this means that among
all rectangles with given area or perimeter, σ1 is a decreasing function of a2. This
concludes the proof of Corollary 1.8. �
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A. Appendix. Proof of Lemma A.1.

LEMMA A.1. Let

fi (x) = arccot
(

c
[

1+
∑
j 6=i

(
xj

xi

)2]1/2)
.

for some c > 0 and where by convention arccot(∞) = 0, and let ψ : Rp
→ Rp

be a bounded function. Then

| fi (x+ ψ(x))− fi (x)| = O(|x|−1). (A.1)

Proof. We have that

| fi (x)− fi (x0)| = O(|x− x0||∇ f (x0)|).

Consider spherical coordinates (r, θ1, . . . , θp−1)

r = |x|,
xj = r cos(θ j )

∏
i< j

sin(θi ),

where by convention θp = 0.
Denote x = (r, θ) and x+ψ(x) = (rψ , θψ ). It is clear that since ψ is bounded

we have that

|θ − θψ | = O(r−1).

Indeed, from planar geometry we get that

tan(|θ − θψ |) 6
supx∈Rp ψ(x)

r
.

One can observe that the functions in equation (A.1) depend only on θψ and θ .
Hence, showing that the gradient is bounded in θ implies that | fi (x + ψ(x)) −
fi (x)| = O(r−1).

By symmetry, we can suppose without loss of generality that i = p in
equation (A.1). Then using repeatedly the identity 1 + cot2 θ = csc2 θ we have
that

f p(x) = arccot
(

c
p−1∏
j=1

csc θ j

)
.

Now, we have that

∂θ j f p(x) = c
cot θ j

∏p−1
k=1 csc θk

1+ c2
∏p−1

k=1 csc2 θk
.

This is bounded, since when θ j → nπ the singularities are of the same order
on the numerator and denominator, while when it is any other θi → nπ the
singularities are of order 1 in the numerator and 2 in the denominator. This
concludes the proof. �
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B. Appendix. Positivity of the constant C2. We can rewrite C2 as

C2 =
(2(d+2)/2

− 2)πωd−2 − 2d+1Gd−1,1

2(2π)d−1 ,

and we need to show that C2 > 0 for d > 3. This will be done by showing that

(2(d+2)/2
− 2)πωd−2

2d+1Gd−1,1
> 1. (B.1)

Let us first observe that the integrand in Gd−1,1 is positive and that for any θ ∈

[0, π/2]d−2 we have that

arccot
(d−2∏

j=1

csc θ j

)
6 arccot(1) < 1.

Hence,

Gd−1,1 =

∫ π/2

0
· · ·

∫ π/2

0
arccot

(d−2∏
j=1

csc θ j

) d−2∏
k=1

sink(θk) dθ1 · · · dθd−2

6
d−2∏
k=1

∫ π/2

0
sink(θk) dθk

=
22−dπ (2−d)/2

0(d/2)
.

The last equality is true for d = 3, and is seen to be true for all d > 3 by induction
using the identity [7, 3.621 (1)]

∫ π/2

0
sink(θ) dθ = 2k−1 B

(
k + 1

2
,

k + 1
2

)
,

and the gamma function duplication identity

0(µ)0(µ+ 1/2) = 21−2µ√π0(2µ).

Using the fact that

ωd−2 =
π (d−2)/2

0(d/2)

and replacing in equation (B.1) we have that
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(2(d+2)/2
− 2)πωd−2

2d+1Gd−1,1
>
(2(d+2)/2

− 2)π
8

> 1

for all d > 3, concluding the proof that C2 > 0. �
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