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Eigenvalue Optimisation on Flat Tori
and Lattice Points in Anisotropically
Expanding Domains

Jean Lagacé

Abstract. his paper is concerned with the maximisation of the k-th eigenvalue of the Laplacian
amongst �at tori of unit volume in dimension d as k goes to inûnity. We show that in any dimen-
sion maximisers exist for any given k, but that any sequence of maximisers degenerates as k goes to
inûnity when the dimension is at most 10. Furthermore, we obtain speciûc upper and lower bounds
for the injectivity radius of any sequence ofmaximisers. We also prove that �atKlein bottlesmaximis-
ing the k-th eigenvalue of the Laplacian exhibit the same behaviour. hese results contrast with those
obtained recently byGittins and Larson, stating that sequences of optimal cuboids for eitherDirichlet
or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these
results viaWeyl asymptotics with explicit control of the remainder in terms of the injectivity radius.
We reduce the problem at hand to counting lattice points inside anisotropically expanding domains,
where we generalisemethods of Yu. Kordyukov and A. Yakovlev by considering domains that expand
at diòerent rates in various directions.

1 Introduction and Main Results

Let (M , g) be a smooth closed Riemannian manifold of dimension d. We study the
Laplace eigenvalue problem

∆u + λu = 0.

he eigenvalues of the Laplacian form a discrete, nondecreasing sequence, repeating
every eigenvalue according to multiplicity,

0 = λ0(M , g) ≤ λ1(M , g) ≤ ⋅ ⋅ ⋅ ↗∞,

accumulating only at inûnity.

1.1 Asymptotic Eigenvalue Optimisation

In this paper, we study themaximisation problem

(1.1) Λ⋆
k(G ) ∶= sup

g∈G
Λk(M , g) ∶= sup

g∈G
Volg(M)2/dλk(M , g),

whereG is a class ofmetrics onM. his problemhas been studied extensively for k = 1
in many settings: closed manifolds, manifolds with Neumann boundary conditions,
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andmanifolds withDirichlet boundary conditions, in which case oneminimises Λk .
Note that for closed manifolds it only makes sense to maximise Λk . Indeed, for any
k one can ûnd a sequence of metrics gn of unit volume such that Λk(M , gn) → 0 as
n → ∞ by considering a sequence of metrics that degenerate to a disjoint union of
k + 1 closedmanifolds touching at a point.
An interesting feature is that the extremisers for low eigenvalues are in general very

symmetric. Indeed, the Faber–Krahn inequality [12,23,24] and the Szegö–Weinberger
inequality [27, 28] imply that the ball is the extremiser for Λ1 with Dirichlet or
Neumann boundary conditions in any dimension. In the case of closed surfaces,
Hersch [15] has shown that the round sphere is the maximiser for Λ1 amongst two-
dimensional spheres, andNadirashvili [26] has shown that the equilateral �at torus is
themaximiser for Λ1 amongst surfaces of genus one.
For higher eigenvalues on domains, one does not expect those symmetries to

appear. Indeed, A.Berger [6] has shown that disks or unions of disks canminimiseΛk
on domains in the planewithDirichlet boundary conditions only ûnitelymany times.
Furthermore, numerical experiments of Antunes and Freitas [1] suggest that optimal
domains in R2 may not exhibit many symmetries for k ≥ 5. However, the same au-
thors investigated in [2] the behaviour of optimal domains as k goes to inûnity. More
speciûcally, they showed that amongst rectangles withDirichlet boundary condition,
the sequence of rectangles minimising Λk converges to the square in the Hausdorò
metric. his has led to a series of papers [4, 5, 13] culminating in a proof by Gittins
and Larson, who show that in any dimension and with either Neumann or Dirichlet
boundary conditions, the sequence of optimal cuboids converges to the cube.

Without any restriction on themetric, one doesnot evenhave amaximiser amongst
closedmanifolds. Indeed, Colbois andDodziuk [10]have shown that amongst allmet-
rics of ûxed volume on amanifold, one can make λ1 as large as possible. For metrics
on closed surfaces, one does not necessarily expect the sequence ofmaximising met-
rics to converge to a smooth metric. For instance, Karpukhin, Nadirashvili, Penskoi,
and Polterovich [18] obtained in a recent preprint that themaximising metric on the
two-dimensional sphere for the k-th Laplace eigenvalue degenerates to a union of k
kissing round spheres.

We study the maximisation problem (1.1) for metrics on two classes of closed
manifold. he ûrst one is the class M of �at metrics on tori in dimension d. Let
L = GLd(R)/GLd(Z) be the set of lattices in Rd equipped with the quotient topol-
ogy. We identify M with L , since

M = {TΓ = Rd/Γ ∶ Γ ∈ L }.

As such, convergence in M will be identiûed with convergence in L . We study the
properties ofmaximisers to (1.1) in L0 the subset of all latticeswith unit determinant,
which corresponds to subset M0 of �at tori with unit volume.

he second class that we study is the set E of �at metrics on Klein bottles. Flat
Klein bottles are quotients of two-dimensional �at rectangular tori, and as such are
described by the two-parameter family

E ∶= {K(a, b) ∶= (Rd/(aZ⊕ bZ))/ ∼∶ (a, b) ∈ R2
+} ,
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where ∼ is the relation (x , y) ∼ (x + a
2 , b − y). Once again, we study the properties

ofmaximisers of (1.1) in the class E0 of Klein bottles with unit volume, i.e., the family
K(a, b) where ab = 2.
Before discussing asymptotic properties of maximisers to the problem (1.1), we

start by proving that such maximisers do exist.

heorem 1.1 For all k ∈ N, there exist T⋆k ∈ M0 and K⋆
k ∈ E0 maximising the varia-

tional problems

Λ⋆
k(M ) = sup

TΓ∈M
Λk(TΓ) and Λ⋆

k(E ) = sup
K∈E

Λk(K).

he behaviour of maximisers for tori and Klein bottles contrasts both with the
results obtained for cuboids where the optimal cuboid converges to the cube and
with the degeneracy results of [10, 18]. Indeed, we show that for tori of dimension
2 ≤ d ≤ 10, the sequence of optimisers has no limit points in M0. However, we also
show that this degeneracy can happenwithout changing the curvature aswas done in
[18] or in [10].
Furthermore,we obtain a rate of degeneracy in terms of the injectivity radius. his

is similar to the results in [13], where the rate of convergence to the cube is given. he
range 2 ≤ d ≤ 10 are the dimensions for which the volume of the unit ball ωd is
larger than ω1 = 2. In higher dimensions, the same type of result may hold, but the
degeneracy certainly does not happen in the same way.

heorem 1.2 In dimension 2 ≤ d ≤ 10, there are no accumulation points in M0 of
any sequence {T⋆k}. he injectivity radius of T⋆k respects

k−
(1−d)2

d ≪ inj(T⋆k) ≪ k−
1
d .

he lower bound is valid for all dimensions d ∈ N.

Remark 1.3 In dimension 2, the lower bound and the upper bound are, at least to
polynomial order, the same. In dimensions 3 ≤ d ≤ 10 there is a discrepancy which is
due to the fact that the lower bound is obtained in a less natural way (see Section 4.2
and the extra step involving Minkowski’s successive minima theorem for the lower
bound). We conjecture that any actual sequence ofmaximisers for 2 ≤ d ≤ 10 respects
inj(T⋆k) ≍ k−

1
d .

In [17],Kao, Lai, andOsting conjectured that in dimension 2, the optimal �at torus
was given by T⋆2k = R2/Γ2k , where Γ2k is the lattice spanned over Z by the vectors

(1.2) γ(2k)1 = (k2 − 1/4)−1/4(1, 0) and γ(2k)2 = (k2 − 1/4)−1/4(1/2,
√

k2 − 1/4).

In dimension 2, �at tori of unit volume form a two-dimensional moduli space with
parameters a, b, with a ∈ (−1/2, 1/2], b > 0 such that a2 + b2 ≥ 1. he associated
lattices are spanned by

γ1(a, b) = b−1/2(1, 0) and γ2(a, b) = b−1/2(a, b).
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It is shown in [17] that the �at torus in equation (1.2) is indeed maximal for Λ2k
amongst tori for which a2 + b2 ≥ (k − 1)2. he upper bound on the injectivity ra-
dius in heorem 1.2 yields that there exists a constant c > 0 such that the same torus
has a higher Λ2k than every �at tori such that a2 + b2 ≤ ck2.

Our methods also allow us to study sequences of optimisers in the moduli space
E of �at Klein bottles. Indeed, we also have degeneracy in this case, and we can also
describe the rate of degeneracy.

heorem 1.4 here are no accumulation points in E0 of any sequence {K⋆
k }. he

injectivity radius of K⋆
k respects k−

1
2 ≪ inj(K⋆

k ) ≪ k−
1
2 .

1.2 Explicit Exponent for the Remainder in Weyl’s Law

In the papers [2,4, 5, 13] on optimal cuboids a prominent feature consisted in ûnding
uniform bounds on the eigenvalue counting function

N(λ;M) = #{λk(M) < λ}.
Weyl’s law states that for any ûxed (M , g), the counting function N(λ;M) enjoys the
asymptotics

(1.3) N(λ;M) = ωd
(2π)d λ

d
2 + R(λ;M),

where R(λ;M) = o(λ d
2 ) and ωd is the volume of a unit ball in dimension d. Under

the hypothesis that periodic geodesics have measure 0 in the cosphere bundle of M,
Duistermaat and Guillemin [11] have shown that the remainder in equation (1.3) sat-
isûes R(λ;M) = o(λ d−1

2 ). Note that the size of R(λ;M) depends on the geometry of
M in a non-trivial way. Indeed, for any ûxed λ, one can ûnd a sequence gn ofmetrics
on M such that N(λ; (M , gn))→∞ as n →∞ for the same reason one can make λk
arbitrarily small. However, one can still ask under what geometric conditions on M
does there exists a function R(λ) such that

(1.4) N(λ;M) = ωd
(2π)d λ

d
2 + R(λ)

with R(λ) = O(λτ) independent of M, with τ < d/2. he search for this type of
uniform bound was a prominent feature in the above-mentioned papers [2, 4, 5, 13].
he presence of the boundary allowed them to derive a two-term Weyl type bound;
closedmanifolds do not exhibit this behaviour.

In [8, heorem 6.2], Buser has obtained bounds on the eigenvalue λk of a closed
manifold, valid when k was large enough in terms of the injectivity radius; see also
[14, equation 1.2.5]where this result is reformulated in terms of the counting function.
he following theorem states thatwe canûnd explicit bounds on the remainder in (1.4)
depending on the injectivity radius.

heorem 1.5 here is C > 0 such that for all λ ≥ 2π and all �at tori of unit volume,
we have that

∣N(λ;TΓ) −
ωd

(2π)d λ
d/2∣ ≤ Cλ

d
2 −

d
d+1 inj(TΓ)−

2d
d+1 .
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Moreover, for any �at Klein bottle K(a, b) ∈ E0,

∣N(λ;K(a, b)) − 1
4π

λ∣ ≤ Cλ
1
3 inj(K(a, b))− 2

3 .

Wemake the following remarks as to the naturality and sharpness of those results.

Remark 1.6 he remainder in the previous theorem is natural in the following
sense. If we take the normalisation

N0(λ) = λ−
d
2 N(λ)

such that N0(λ) has a limit as λ →∞, then the remainder obtained in heorem 1.5 is
invariant under homothetic rescaling of themetric.

Remark 1.7 If inj(TΓ) is of the order of λ−1/2, the remainder in heorem 1.5 is
of the order of the principal term. his can indeed happen. As part of the proof of
heorem 1.2, we will construct an explicit sequence of �at tori Tk ∈ M0 such that

inj(Tk) =
λ2k(Tk)−1/2

2π
,

whose eigenvalue counting functions satisfy

∣N(λ2k(Tk);Tk) −
ωd

(2π)d λ2k(Tk)d/2∣ ≫ λd/2 .

In fact, one will be able to compute explicitly

∣N(λ2k(Tk);Tk) −
ω1

(2π)d λ2k(Tk)d/2∣ = 2d − 1

and ω1 ≠ ωd .
his also implies that one cannot improve the order of error term in the spectral

parameter without making it worse in terms of the injectivity radius, and vice versa.

1.3 Lattice Points Inside Domains

We translate the problems at hand in the language of lattice point counting. he spec-
trum of the Laplacian on a �at torus is given by

(1.5) σ(TΓ) = {4π2∣γ∗∣2 ∶ γ∗ ∈ Γ∗} ,
where Γ∗ is the lattice dual to Γ deûned by

Γ∗ ∶= {γ∗ ∈ Rd ∶ (γ∗ , Γ) ⊂ Z} .

Similarly, the spectrum of the Laplacian on a �at Klein bottle is given in [7] to be

(1.6) σ(K(a, b)) ∶= {4π2(m
2

a2 + n2

b2 ) ∶ (m, n) ∈ Z ×N0 , (m, n) ≠ (2ℓ + 1, 0)} .

A classical problem in the geometry of numbers consists in counting the number
of points of an isotropically shrinking lattice Γλ ∶= λ−1Γ inside a domain Ω containing
the origin as λ →∞. his dates back to theGauss circle problem and has been studied
in great details for various type of domains over the years. Denote

∣Ω∣ = Vold(Ω) and ∣Γ∣ = det(AΓ),
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where AΓ is any matrix such that AΓZd = Γ. In general, one aims for asymptotics of
the form

(1.7) N(Ω; Γλ) ∶= #(Ω ∩ Γλ) =
∣Ω∣
∣Γλ ∣

+ R(λ;Ω; Γ),

where

(1.8) R(λ;Ω; Γ) = O(∣Γλ ∣−η)
with η < 1. he implicit constant on the right-hand side of equation (1.8) depends
on the geometry of Ω, the geometry of its boundary, and on Γ. In general, given
non-compact families of lattices or domains, the implicit constant is not uniform,
and therefore formula (1.7) cannot be used directly to ûnd extremisers to N(Ω; Γλ)
for large λ. Note that maximising this counting function does not makes sense, even
while keeping the lattice determinant and the volume of the domain ûxed. Indeed,
for a ûxedΩ containing the origin and ε small enough, the lattice εd−1Z⊕ ε−1Zd−1 has
arbitrarily many points in Ω and determinant 1.

We formulate the results of the two previous sections in terms of lattices. From the
fact that

#{Zd ∩ A−1
Γ (B1)} = #{AΓZd ∩ B1},

the following two questions are equivalent.
● What’s the largest lattice determinant of a lattice with at least k points in B1?
● What’s the smallest area of an ellipsoid enclosing at least k points of the lattice Zd?
Symmetry of ellipsoids or lattices with respect to the transformation x ↦ −x means
that no generality is lost by asking these questions for only even (or odd) k. Let us
order elements of any lattice as

Γ = {γk ∶ k ∈ N0}
with γ0 = 0 and γ < γ̃ if ∣γ∣ < ∣γ̃∣, and if their norms are equal by lexicographic order.
he scaling invariance of the problem is made explicit by studying maximisers to the
functional

Λ̃k(Γ) = ∣Γ∣−1/d ∣γk ∣.
We obtain the following restatement ofheorem 1.1 in terms of lattices.

heorem 1.8 (Lattice version of heorem 1.1) For every k ∈ N, there exists Γ⋆k ∈ L

maximising Λ̃k .

Remark 1.9 he maximiser in the previous theorem is not unique, in particular
if Γ is a maximiser, then µΓ is also one. We will, depending on what is pertinent at
the right moment, either normalise them by determinant or by ∣γk ∣. Note that even
within L0, uniqueness is not guaranteed.

We now study properties of themaximisers Γ⋆k . he degeneracy of a sequence Γ⋆k
is given in terms of their successive minima, the lattice invariants µ j(Γ) deûned for
1 ≤ j ≤ d by

µ j(Γ) = inf {µ ∶ dim(span(Γ ∩ Bµ)) ≥ j} .

We prove the following restatement ofheorem 1.2.
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heorem 1.10 (Lattice version of heorem 1.2) Let {Γ⋆k } ⊂ L0 be a sequence of
maximisers of Λ̃k normalised by ∣Γ⋆k ∣ = 1, in dimension d ≤ 10. hen the following hold.
(i) he sequence Γ⋆k has no accumulation points in L0.
(ii) he successiveminima of the sequence Γ⋆k satisfy the asymptotic bounds

µ1(Γ⋆k ) ≫ k−1+ 1
d and µd(Γ⋆k ) ≫ k

1
d .

his will be proved thanks to the following restatement ofheorem 1.5 in terms of
lattices.

heorem 1.11 (Lattice version ofheorem 1.5) here exists a constant C such that for
all lattices with ∣Γ∣ ≤ 1

∣N(B1; Γ) −
ωd
∣Γ∣ ∣ ≤ C∣Γ∣

−1µd(Γ)
2d
d+1 .

1.4 Plan of the Paper and Sketch of the Proofs

We start in Section 2 by exposing general facts about lattices that will be used in the
sequel. More speciûcally,we describe the relevant lattice invariants and state theorems
ofMinkowski and Banaszczyk that are important later, for ease of reference.

In Section 3, we prove heorems 1.8 and 1.10. Inspired by a construction of Kao,
Lai, and Osting [17] in dimension 2, we produce in Section 3.2 in any dimension a
sequence of lattices Θ2k such that

∣θ2k−1∣ = ∣θ2k ∣ = (2k
ω1

)
1/d

.

However, heorem 1.11 implies that for any lattice Γ of unit determinant whose suc-
cessiveminima satisfy µd(Γ) = o(k1/d), we have that

∣γ2k−1∣ = ∣γ2k ∣ ≤ ( 2k
ωd

)
1/d

(1 + o(1)) ,

where ωd is the volume of the unit ball. One can see that while the sequence ωd
converges to 0 as d →∞, it is initially increasing. Indeed, for all 2 ≤ d ≤ 10, we have
that ωd > ω1.

In Section 4, we will show that the spectral theoretic versions ofheorems 1.1, 1.2,
and 1.5 are implied by heorems 1.8, 1.10, and 1.11 using Banaszczyk’s transference
heorem 2.2 andMinkowski’s successiveminimaheorem 2.1.

In Section 5,we switch gears and describeheorem 1.11 in terms of points ofZd sit-
ting inside anisotropically expanding domains. hesewere studied by Yu. Kordyukov
andA.Yakovlev in a series of papers [19–22], andwe generalise their results andmeth-
ods to our setting.

In Section 6, we prove the theorems about the number of points of a lattice sit-
ting inside anisotropically expanding domains using the Poisson summation formula
method. In the classical version of this problem, one uses global estimates on the
Fourier transform of the indicator of a convex set to obtain bounds on the counting
function of lattice points inside an expanding domain. It is, however, not possible
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to make these kinds of computations uniformly when the expansion is anisotropic.
he main idea, inspired by [21], is to only use Fourier transform estimates along the
subspace where the expansion is the fastest and to use trivial L∞ estimates in the or-
thogonal complement.

2 Some Facts about Lattices in Rd

Formost standard results on lattices, one can see [9]. he set of all full-rank lattices in
Rd can be realised as L = GLd(R)/GLd(Z), equippedwith the quotient topology. A
lattice Γ ∈ L is identiûedwith its generatormatrixAΓ , thematrix such thatAΓZd = Γ.
Every lattice determines uniquely a �at torus TΓ = Rd/Γ.

Two relevant lattice invariants that are of interest in this paper are the determinant
(or volume) and the successiveminima. he determinant is deûned as

∣Γ∣ ∶= detAΓ = Vold(TΓ).
By convention, we assign a volume of 1 to the trivial lattice. he successive minima
µ j(Γ) are deûned for 1 ≤ j ≤ d as

µ j(Γ) ∶= inf{µ ∶ dim(span(Γ ∩ Bµ)) ≥ j}.
Note that µ j is always attained, i.e., there is always γ ∈ Γ such that µ j(Γ) = ∣γ∣. Fur-
thermore, the ûrst successive minimum gives the injectivity radius of the associated
torus, i.e., µ1(Γ) = inj(TΓ).

he successiveminima of a lattice and the determinant are related through a the-
orem ofMinkowski.

heorem 2.1 (Minkowski’s sucessiveminima theorem) Let µ1 , . . . , µd be the succes-
siveminima of a lattice Γ. hen there exists constants c,C > 0 such that

c∣Γ∣ ≤
d

∏
j=1

µ j ≤ C∣Γ∣.

With any lattice Γ we associate the dual lattice

Γ∗ = {γ∗ ∈ Rd , (γ∗ , Γ) ⊂ Z}.
he operation ∗ is a continuous involution on L ; hence, a set K ⊂ L is compact if
and only if K ∗ is. Let AΓ be the generating matrix for Γ; then AΓ∗ = (A∗Γ)−1. From
this we infer that ∣Γ∗∣ = ∣Γ∣−1.

he following theorem from Banaszczyk [3] is also useful in the sequel and relates
the successiveminima of Γ to those of Γ∗.

heorem 2.2 (Banaszczyk’s transference theorem) For any 1 ≤ j ≤ d, the following
inequalities hold between the successiveminima of the lattices Γ and Γ∗ :

1 ≤ µ j(Γ)µd− j+1(Γ∗) ≤ d .

he lattice invariants can be used to characterise compactness in L , by Mahler’s
selection theorem [9, heorems 5.3, 5.4 and Lemma 8.3]. his theorem states that
a set K ⊂ L is compact if and only if the determinant is bounded and the ûrst
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minimum µ1 is bounded away from zero onK . Equivalently, it is compact if and only
if the determinant is bounded away from zero and µd is bounded onK . Compactness
in themoduli space of all �at tori is obtained by identifying a torus with its lattice.

Deûnition 2.3 A sequence of lattices {Γk} is said to degenerate if either ∣Γk ∣ → ∞
or if µ1(Γk)→ 0. In otherwords, it degenerates if it is not contained in some compact
set in L .

We will be interested in the number of lattice points inside the unit ball B1; denote
this quantity by N(Γ; 1). Denoting by 1S the indicator function of a set S,we have that

N(Γ; 1) =∑
γ∈Γ

1B1(γ).

Finally, we say that a subspace V ⊂ Rd is a Γ-subspace if it is spanned by a subset
of Γ. he set Γ(V) ∶= Γ ∩ V is a lattice in V .

3 Optimal Lattices

In this section, we prove heorems 1.8 and 1.10, assuming heorem 1.11. Order ele-
ments of a lattice Γ with respect to their norms and by lexicographic order whenever
the norms are equal. We write Γ = {γk ∶ k ∈ N0}. We study sequences of lattices
maximising the functionals

Λ̃k(Γ) = ∣Γ∣−1/d ∣γk ∣.

Note that for any lattice Γ and m ≥ 1 we have that Λ̃2m−1(Γ) = Λ̃2m(Γ); we will
therefore only consider maximisers for even k.

3.1 Proof of Theorem 1.8

Consider a maximising sequence {Γn} for Λ̃k . Without loss of generality, from the
deûnition of Λ̃k we can suppose that ∣Γn ∣ = 1 for all n. Suppose that µ1(Γn) → 0.
hen for some n, we have that µ1(Γn) < 1/k. Let γ ∈ Γn be a lattice point realising
µ1(Γn). hen 1 > ∣kγ∣ > ∣γk ∣. However, the k-th element of Zd has norm greater
than 1, contradicting that {Γn} was a maximising sequence. By Mahler’s selection
theorem, {Γn} has a convergent subsequence, and by continuity of the norm and the
determinant, it converges to amaximiser for Λ̃k . ∎

3.2 Lattices with Large Λ̃k

In this section we study a speciûc sequence of lattices that we will use as ameasuring
stick for other sequences of lattices. Note thatwemake no claim of these lattices being
the optimisers. Consider the lattices

Θ2k = k−1+ 1
d Z⊕ k

1
d Zd−1 .

hen we have
∣θ2k−1∣ = ∣θ2k ∣ = k1/d and ∣Θ2k ∣ = 1.
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In particular, we have that
Λ̃2k(Θ2k) = k1/d ,

which will be the quantity to beat. Observe that the sequence Θ2k degenerates and
that µd(Θ2k) = k1/d .

3.3 Proof of Theorem 1.10

Let {Γk} be a sequence of lattices of unit volume such that µd(Γk) = o(k1/d). We will
show that under such conditions, Γk cannot be a maximiser for Λ̃k inûnitely o�en.
his is done by showing that for large k and any ûxed t > 0,

#(Bk1/d−t ∩ Γ2k) > 2k,

implying that
Λ̃2k(Γ2k) ≤ k1/d − t < Λ̃2k(Θ2k).

We have that

#(Bk1/d−t ∩ Γ2k) = #(B1 ∩
1

k1/d − t
Γ2k) ,

µd(
1

k1/d − t
Γ2k) = o(1),

∣ 1
k1/d − t

Γ2k ∣ = k−1(1 − tk−1/d)−d .

hus, we satisfy the hypotheses ofheorem 1.11 and therefore get

#(Bk1/d−t ∩ Γ2k) = ωd(1 − tk−1/d)dk(1 + o(1)) .
For 2 ≤ d ≤ 10, we have that ωd > ω1 = 2. Hence, there is K such that for k > K,

#(Bk1/d−t ∩ Γ2k) > 2k,

proving that there is a ûnite number ofmaximisers in the sequence {Γk}. his implies
that there is constant c such that any sequence of normalised maximisers respects
µd(Γk) ≥ ck1/d , also implying that the sequence degenerates.
For the lower bound on µ1(Γk), any sequence Γk normalised by determinants such

that µ1(Γ2k) < k−1+1/d has that

Λ̃2k(Γ2k) ≤ kµ1(Γ2k) < Λ̃2k(Θ2k);
hence, this is not a sequence ofmaximisers. ∎

4 From Lattices to Tori

In this sectionwe prove the spectral theoretic versions ofheorems 1.1, 1.2, and 1.5, as
well as heorem 1.4. For any lattice Γ we denote by γ∗k the k-th ordered element of the
dual lattice Γ∗. Since λk(TΓ) = 4π2∣γ∗k ∣2 and Vol(TΓ) = ∣Γ∗∣−1, we have that

Λk(TΓ) = (2πΛ̃k(Γ∗))
2
.

Since these quantities are positive, the problem of maximising Λk on �at tori is the
same as the problem ofmaximising Λ̃k on the dual lattices of those tori.
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4.1 Proof of Theorem 1.1

By heorem 1.8, there exists a lattice Γ⋆k maximising Λ̃k . he torus with lattice
Γ = (Γ⋆k )∗ is therefore amaximiser for Λk .
For �at Klein bottles, we have from equation (1.6) that the eigenvalues of K(a, b)

are continuous in the parameters a and b. Normalising by ab = 2, it is easy to see
that for any k, λk(K(a, b)) goes to 0 when either a or b goes to zero. Hence, for any
ûxed k we can restrict ourselves to a compact subset of the parameters a, b, and the
maximiser exists. ∎

4.2 Proof of Theorem 1.2

Denote by Γ⋆k a sequence of optimal lattices with unit determinant for Λk and de-
note by T⋆k the corresponding optimal torus T⋆

k = Rd/(Γ⋆k )∗. Since compactness of
a set K ⊂ L0 is equivalent to compactness of the set of duals K ∗, we have that the
sequence of optimal tori degenerates.

We now turn to the geometric constraints. Recall that inj(T⋆k) = µ1((Γ⋆k )∗). By
Banaszczyk’s transference theorem, we have that

µ1((Γ⋆k )∗) ≤
d

µd(Γ⋆k )
.

Hence, from the lower bound for µd(Γ⋆k ) in heorem 1.10, we have that

inj(T⋆k) = µ1((Γ⋆k )∗) ≪ k−1/d .

On the other hand, byMinkowski’s successiveminima theorem, there is a constant C
such that

µd(Γ⋆k ) ≤ Cµ1(Γ⋆k )1−d ≤ k
(1−d)2

d .
Once again, Banaszczyk’s transference theorem yields

inj(T⋆
k ) ≥ k−

(1−d)2
d ,

ûnishing the proof. ∎

4.3 Proof of Theorem 1.4

For �at Klein bottles, observe that the injectivity radius of K(a, b) is given by

inj(K(a, b)) = min(a, b/2).
Let Γ(a, b) be the lattice deûned by

Γ(a, b) ∶= 2π
a
Z⊕ 2π

b
Z.

It is not hard to see that Γ(a, b) has the property

N(λ;K(a, b)) = 1
2
#(Γ(a, b) ∩ B√λ) + O(1).

Indeed, let Ξ(a, b) be the set

Ξ(a, b) ∶= (2π
a
Z⊕ 2π

b
N0) ∖ {2π

a
(2ℓ + 1, 0) ∶ ℓ ∈ Z} .
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hen the spectrum of K(a, b) is the same as the square of the norm of elements of
Ξ(a, b). However, it is easy to see that if we take the union of Ξ(a, b) and −Ξ(a, b),
we recover Γ(a, b) except for points of the form (2(2ℓ + 1)π/a, 0), but the elements
of the form (4πℓ/a, 0) are added twice. Hence, we have that

∣#(Γ(a, b) ∩ B√λ) − #(Ξ(a, b) ∩ B√λ) − #(− Ξ(a, b) ∩ B√λ) ∣ ≤ 3.

Now, for rectangular lattices, we have that

µ1(Γ(a, b)) = 2πmin(a−1 , b−1) and µ2(Γ(a, b)) = 2πmax(a−1 , b−1).
he rest of the analysis is performed exactly in the same way as for �at tori. ∎

4.4 Proof of Theorem 1.5

Let TΓ be any �at torus of unit volume. Observe that, by Banaszczyk’s transference
theorem, we have that inj(TΓ) ≍ µd(Γ∗)−1 . We have from equation (1.5) that

N(λ;TΓ) = #(2πλ−1/2Γ∗ ∩ B1).
Denote by Γ∗λ the rescaled lattice 2πλ−1/2Γ∗. By heorem 1.11, we have that

(4.1) N(λ;TΓ) =
ωd
∣Γ∗λ ∣

+ O(∣Γ∗λ ∣−1µd(Γλ)
2d
d+1 ) .

We have that

µd(Γ∗λ ) = 2πλ−1/2µd(Γ∗) and ∣Γ∗λ ∣ =
(2π)d
λd/2

.

Inserting those values into equation (4.1) yields the desired asymptotic inheorem1.5.
∎

5 Anisotropically Expanding Domains

Wenow ground the statement ofheorem1.11 in terms of the counting of lattice points
sitting inside anisotropically expanding domains developped by Yu. Kordyukov and
A. Yakovlev in [19–22]. Consider the decomposition of Rd as

Rd ∶= E ∶=
d
⊕
j=1

Vj .

Wewill use E to refer to a speciûc decomposition forRd . For ε = (ε1 , . . . , εd) consider
the linear transformation Tε given by

Tε =
d

∑
j=1
ε−1
j x j ,

with x j ∈ Vj . Without loss of generality, we suppose that ε1 ≤ ⋅ ⋅ ⋅ ≤ εd . We denote
the set of all such transformations by TE and the union of all such transformations
over decompositions E by T , and we say that Tε is anisotropic whenever not all ε j
are equal.
For Ω a bounded subset of Euclidean space and Γ ∈ L , let

nε(Ω; Γ; y) ∶= #(Γ ∩ (TεΩ + y)) = #(T−1
ε (Γ − y) ∩Ω) .
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Kordyukov andYakovlev have studied asymptotics for nε in the speciûc casewhere
a subspace V of Rd is ûxed, and Ω is stretched along its orthogonal complement. In
our notation, this corresponds to E = V1 ⊕ V2 with ε1 → 0 and ε2 = 1.

In our case, the expansion is happening at diòerent rates along diòerent subspaces.
We split the remainder of this section in three parts. First,we describe asymptotics for
nε in terms of the decomposition E with an explicit dependence on the ε j . hen we
show that from the perspective of the counting function, we can describe any lattice
using the transformations Tε . Finally, we deriveheorem 1.11 from heorem 5.1.

5.1 Lattice Points Inside Anisotropically Expanding Domains

We start by ûxing some notation. Denote ∣ε∣ = detTε =∏ j ε j ; asymptotic results will
be given in terms of ∣ε∣ as it goes to zero, and in terms of how fast the ε j ’s goes to zero
in relation to ∣ε∣. Let us split the decomposition E into three parts. We ûrst write

V0 = ⊕
j∶ε j=0

Vj ,

and let W be the maximal Γ∗-subspace in V0, and write dW = dim(W) and
ΓW = Γ∗(V)∗. We further decompose E as

E = V ⊕ V ′ ⊕W

in such a way that Γ∗ ∩ V ′ = {0}. We set dV = dim(V) and dV ′ analogously. Finally,
denote by

δV = ∥T−1
ε ∥V

the norm of T−1
ε restricted to V .1 We obtain the following theorem.

heorem 5.1 Suppose that Ω is a bounded open subset of Rd with smooth boundary
such that for all γ ∈ ΓW , Ω ∩ (γ +W⊥) is strictly convex. hen,

(5.1) nε(Ω; Γ; y) = ∣ε∣−1∣ΓW ∣
∣Γ∣ ∑

γ∈ΓW
Vol(Ω ∩ (γ +W⊥)) + (∣ε∣−1δ

2dV
1+dV+2dV′
V ) ,

with the implicit constant only dependant on ΓW , V ′ and Ω.

Remark 5.2 IfW = ΓW = {0}, the condition on Ω becomes strict convexity, and
the asymptotic formula becomes

nε(Ω; Γ; y) = ∣Ω∣
∣Γ∣ ∣ε∣

−1 + (∣ε∣−1δ
2dV

1+dV+2dV′
V )

with the implicit constants dependant on V ′ and Ω.
Furthermore, from [22, Section 3.2], this is the only casewe need to prove. Indeed,

they show that there are yγ such that

nε(Ω; Γ; y) = ∑
γ∈ΓW

nε(Ω ∩ (γ +W⊥); Γ(W⊥); yγ) .

1If V = Vj1 ⊕ ⋅ ⋅ ⋅ ⊕ Vjm with the indices in increasing order, this is equal to ε jm .
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hey then show in [22, Lemma 3.3] that Γ(W⊥)∗ ∩ (V ′ ∩W⊥) = {0}. Since the sum
in equation (5.1) is ûnite, we obtain the desired result by applying heorem 5.1 with
W = {0} term by term.

5.2 From T to Lattices

We start by showing thatwe can restrict ourselves to lattices of the form T−1
ε Zd in our

investigation ofheorem 1.11.

Lemma 5.3 For every Γ ∈ L , there exists a decomposition

Rd = E =
d
⊕
j=1

Vj

and Tε ∈ TE such that

(5.2) N(Γ;B1) = nε(B1;Zd ; 0).
For every Tε ∈ T , there exists Γ, such that equation (5.2) holds.

Proof Let AΓ ∈ GLd(R) be such that AΓZd = Γ. hen

∑
γ∈Γ

1B1(γ) =∑
γ∈Γ

1AΓ(B1)(A−1
Γ γ) = ∑

n∈Zd
1AΓ(B1)(n)

Observe now that since B1 = {x ∈ Rd ∶ x∗x ≤ 1},
AΓ(B1) = {x ∈ Rd ∶ x∗(A∗Γ)−1A−1

Γ x ≤ 1} .

Since (AΓA∗Γ)−1 is symmetric deûnite positive, it can be diagonalised as

(AΓA∗Γ)−1 = U∗D1/2D1/2U

with U orthogonal. Let ε = diag(D1/2) and Vj be eigenspaces of (AΓA∗Γ)−1. Since
N(Γ;B1) is invariant under orthogonal transformations of Γ, we have that

N(Γ; 1) = N(UΓ; 1) = #{A−1
Γ UΓ ∩ A−1

Γ B1} = nε(B1).
On the other hand, this process can be inverted. Given Tε , we take Γ to be the lattice
with generating matrix T−1

ε . ∎

he previous lemma allows us to consider only the lattices of the form Γ = T−1
ε Zd .

he following lemma relates the lattice invariants to the associated transformation Tε .

Lemma 5.4 Let Γ be a lattice in L . hen for any Tε ∈ T such that Γ = T−1
ε UZd for

some orthogonal transformation U , we have that

∣Γ∣ = det(T−1
ε ) = ∣ε∣.

and that the following bounds hold for the successiveminima µ1(Γ) and µd(Γ):
ε1 ≤ µ1(Γ) ≤ µd(Γ) ≤ εd .

Furthermore, one can choose Tε such that Γ = T−1
ε UZd and

µ1(Γ) ≤
d5/2

2
ε1 and µd(Γ) ≥

2
d3/2 εd .
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Proof Without loss of generality, since the determinant and successiveminima are
invariant under orthogonal transformations, we suppose that U = I. he assertion
on determinants holds by deûnition. Let n be any non-zero element of Zd , and write
n = n1 + ⋅ ⋅ ⋅ + nd with n j ∈ Vj . hen

∣T−1
ε n∣2 =

d

∑
j=1
ε2j ∣n j ∣2 ≥ ε21

d

∑
j=1

∣n j ∣2 = ε21 ∣n∣2 .

Since n ≠ 0, we have that µ1(Γ) ≥ ε1. For the upper bound on µd , observe that any Tε
sends bases of Rd to bases of Rd . As such, from the deûnition of µd , we have that

µd(Γ) ≤ sup
n∈Zd∖{0}

∣T−1
ε n∣
∣n∣ , ≤ εd .

We now obtain the lower bound on µd for a speciûc Tε . here is a basis of Γ
whose elements all have norm smaller than dµd(Γ)/2 [9, Lemma V.8]. Let T−1

ε ,Γ be
the square root of the diagonalised Gram matrix GΓ associated with that basis. By
Cauchy–Schwartz, the entries of the Gram matrices GΓ all bounded by

d2 µd(Γ)2

4 . Let
νd(GΓ) be the largest eigenvalue of GΓ . It satisûes the bound

νd(GΓ) ≤
√

tr(G∗
ΓGΓ) ≤

d3µd(Γ)2

4
.

Note that the eigenvalues of GΓ are the same as those of T−2
ε ,Γ , hence we have that

εd ≤
d3/2

2
µd(Γ),

yielding the desired result. For the upper bound on µ1, observe that a generating
matrix for Γ∗ is Tε . Hence, by the previous argument we have that

µd(Γ∗) ≥
2
d3/2 ε

−1
1 .

From Banaszczyk’s transference theorem, we can then infer that

µ1(Γ) ≤ dµd(Γ∗)−1 ≤ d
5/2

2
ε1 ,

ûnishing the proof. ∎

5.3 Proof of Theorem 1.11

Given lattice Γ with ∣Γ∣ < 1, we know from Lemma 5.3 that one can ûnd a decomposi-
tion E of Rd and a transformation Tε ∈ TE such that

N(Γ;B1) = nε(B1;Zd ; 0).

Furthermore, from Lemma 5.4 we get that one can choose Tε in such a way that

εd ≤
d3/2

2
µd(Γ).
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We therefore satisfy the hypotheses of Proposition 5.1withV = E, V ′ =W = {0}, and
δE = εd , and we deduce that

N(Γ;B1) = ωd ∣ε∣−1 + O(ε−1ε
2d
1+d
d ) .

Plugging in ∣Γ∣ = ∣ε∣ and µd ≍ εd gives the desired asymptotics. ∎

6 Asymptotic Estimates

In this section, we prove heorem 5.1 using the Poisson summation formula. We
follow the structure set out by the author and Parnovski [25]. he ûrst thing we have
to do is a molliûcation of 1Ω so that it is smooth enough for the Poisson summation
formula to beused, andwewill get estimates from above and belowusing themolliûed
functions. In the second part, we obtain estimates on partial Fourier transforms of
such functions. Finally,we use the Poisson summation formula to obtain asymptotics
for the counting function.

6.1 Mollification

Let ρ ∈ C∞c (Rd) be a non-negative bump function supported in the unit ball and such
that

∫
Rd

ρ(x)dx = 1.

We also let h = (h1 , . . . , hd) be a set of parameters to be ûxed later, and we set

ρh(x) =
1

h1 ⋅ ⋅ ⋅ hd
ρ(Th(x)) .

Note that ρh is supported in the ellipsoid

Eh = {x ∈ V ∶ ∥Thx∥ < 1} .

For any function f ∶ Rd → R, let f (h) be themolliûcation of f by ρh, that is,

f (h)(x) = [ f ∗ ρh](x) = ∫
Rd
f (x − y)ρh(y)dy.

Let us now approximate 1Ω by smooth functions. For any set B, deûne the sets

Bh = ⋃
x∈B

(x + Eh) and B−h = Rd ∖ (Rd ∖ B)h .

he following lemma will be needed regarding these sets.

Lemma 6.1 Let εh = (ε1h1 , . . . , εdhd) and B ⊂ V . hen

Tε(B)±h = Tε(B±εh).

Proof his follows simply from linearity of Tε and the fact that TεEh = Eεh. ∎

We now prove that 1(h) provides a good approximation to 1.

Lemma 6.2 Let Ω ⊂ Rd and x ∈ Rd . hen

(6.1) 1(h)Tε(Ω)−h
(x) ≤ 1Tε(Ω)(x) ≤ 1(h)Tε(Ω)h

(x).
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Proof For any set B, we have that 0 ≤ 1(h)B ≤ 1. Hence, to show the rightmost in-
equality in (6.1) it suõces to show that for any x ∈ Tε(Ω),we have that 1(h)Tε(Ω)h

(x) = 1.
By deûnition x + Eh ⊂ Tε(Ω)h, hence

1(h)
(TεΩ)h

(x) = ∫
Eh

ρh(y)dy = 1.

To prove the le�most inequality in (6.1), it suõces to show that for any x ∈ E ∖
Tε(Ω), we have that 1(h)Tε(Ω)−h

(x) = 0. We have that

x + Eh ⊂ (Rd ∖ Tε(Ω)) h ,

and 1(Tε(Ω))−h is supported in the complement of that set. Hence,

1(h)
(Tε(Ω))h

(x) = ∫
Eh
1Tε(Ω)−h(x − y)ρh(y)dy = 0,

ûnishing the proof. ∎

he following corollary follows directly from the previous lemma.

Corollary 6.3 Deûning

n±ε (Ω) =∑
γ∈Γ

1(h)Tε(Ω)±h
(γ),

the inequalities n−ε (Ω) ≤ nε(Ω) ≤ n+ε (Ω) hold for all ε.

6.2 Fourier Transform Estimates

Let V be a subspace of Rd and write x = xV + x′ for any x ∈ Rd . We deûne the
V-Fourier transform of a suõciently rapidly decaying function f as

[FV f ](ξV , x′) = ∫
V
e−2πixV ⋅ξV f (xV , x′)dxV .

When V = Rd , we will write [F f ] ∶= [FRd f ]. We obtain estimates for the decay of
[F f ](x) in terms of [FV f ]. Observe that

∣[F f ](ξ)∣ = ∣∫
Rd
e−2πix⋅ξ f (x)dx∣(6.2)

= {∫
V⊥
e−2πix′⋅ξ′ ∫

V
e−2πixV ⋅ξV f (x)dxV dx′}

= {∫
V⊥
e−2πix′⋅ξ′[FV f ](ξV , x′)dx′}

≤ ∫
V⊥

∣[FV f ](ξV , x′)∣dx′ .

From this we get the following lemma.

Lemma 6.4 Let Ω be a bounded domain, and let V be a subspace of dimension dV
such that the intersection Ω ∩ V is strictly convex. hen

[F1Ω](ξ) = O(∣ξV ∣−
dV+1

2 ) .
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Proof Standard results about the Fourier transformof the indicator of a strictly con-
vex set (see, e.g., [16,heorem 2.29]) tell us that

[FV 1Ω](ξV , x′) = Ox′(∣ξV ∣−
dV+1

2 ) .
From equation (6.2), we have that

∣[F1]Ω(ξ)∣ ≤ ∫
V⊥

∣[FV 1]Ω(ξV , x′)∣dx′ .

Since [FV 1Ω](ξV , x′) is compactly supported in x′, we obtain the desired result, ûn-
ishing the proof. ∎

6.3 Poisson Summation Formula

Let us apply the Poisson summation formula to the smoothed sums n±ε (Ω; Γ; y). De-
note Γ′ = Γ∗ ∖ {0} to obtain

n±ε (Ω, y; 0) =∑
γ∈Γ

1(h)Tε(Ω)±h+y
(γ) = 1

∣Γ∣ ∑γ∗∈Γ∗
[1(h)Tε(Ω)±h+y

](γ∗);(6.3)

= 1
∣Γ∣

[1(h)Tε(Ω)±h+y
](0) + Σ(ε, h, y).

Observe that

(6.4) [1(h)Tε(Ω)±h+y
](ξ) = e iy⋅ξ[1(h)Tε(Ω)±h+y

](ξ)[ρh](ξ − y).

Since we will only ûnd bounds using the absolute values of the terms in the previous
equation, and since

[F1(h)Tε(Ω)±h+y
](0) = [1(h)Tε(Ω)±h

](0),
we suppose without loss of generality that y = 0.

We ûrst turn our attention to [1(h)Tε(Ω)±h
](0). Using properties of the Fourier trans-

form and Lemma 6.1, we have that

[1Tε(Ω)±h](ξ) = ∣ε∣−1[1Ωεh](Tε(ξ))
and from equation (6.1) that

(6.5) [ρh](ξ) = [ρ](T−1
h (ξ)) .

Hence, the ûrst term in equation (6.3) is given by

[1(h)Tε(Ω)±h
](0) = ∣ε∣−1

∣Γ∣ [F1Ωεh](Tε(0))[Fρ](T−1
h (0)) = ∣ε∣−1

∣Γ∣ Vol(Ω±εh)

As long as all the ε jh j remain bounded, we have that there exists a constant C such
that

Vol(Ωεh ∖Ω) ≤ C(
d

∑
j=1
ε jh j) , and Vol(Ω ∖Ω−εh) ≤ C(

d

∑
j=1
ε jh j) ,

hence, writing Ωεh = Ω ∪ (Ωεh ∖Ω) and Ω = Ω−εh ∪ (Ω ∖Ω−εh), we have

[1(h)Tε(Ω)±h
](0) = ∣ε∣−1

∣Γ∣ Vol(Ω) + (∣ε∣−1
d

∑
k=1
εkhk) .
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Let us now study Σ(ε, h, 0) in equation (6.3). Using equations (6.4) and (6.5) we
deduce that

Σ(ε, h, 0) = ∣ε∣−1 ∑
γ∗∈Γ′

[F1Ωεh](Tε(γ∗))[Fρ](T−1
h (γ∗)) .

We have that [Fρh] is a Schwartz function; i.e., for any N

[Fρh](ξ) = O((1 + ∣ξ∣)−N).
Hence, we have that

Σ(ε, h, 0) = ∣ε∣−1 ∑
γ∗∈Γ′

[F1Ωεh](Tε(γ∗))
(1 + (h1x1)N + ⋅ ⋅ ⋅ + (hdxd)N) .

6.4 Proof of Proposition 5.1

All that remains is to bound Σ(ε, h, 0) and to balance it with the error term coming
from the Fourier transform evaluated at 0. Let

jV = argmax( j ∶ Vj ⊂ V),
and set hV = h jV . Choose

hk = δ
2dV

1+dV+2dV′
V ε−1

k ,

hence,

∣h∣ = δ
2dV (dV+dV′ )
1+dV+2dV′

V ∣ε∣−1 .

For all γ∗ ∈ Γ′, we have that γ∗V ≠ 0. From Lemma 6.4, we obtain the bound

Σ(ε, h, 0) ≪ ∣ε∣−1 ∑
γ∗∈Γ′

δ
dV+1

2
V

∣γ∗V ∣
m+1
2 (1 + (h1γ∗1 )N + ⋅ ⋅ ⋅ + (hdγ∗d)N)

≪ δ
dV+1

2
V ∣ε∣−1 ∫

Rd
∣xV ∣−

dV+1
2

(1 + (h1x1)N + ⋅ ⋅ ⋅ + (hdxd)N) dx

≪ (δVhV)−
dV+1

2 ∣ε∣−1∣h∣−1 .

Combining with the estimate on [F1(h)Tε(Ω)±h
](0), we have that

(6.6) n±ε (Ω) = ∣ε∣−1

∣Γ∣ Vol(Ω) + (∣ε∣−1
d

∑
k=1
εkhk) + ((δVhV)−

dV+1
2 ∣ε∣−1∣h∣−1) .

Using the fact that ∣ε∣ ≤ δdVV , we obtain that equation (6.6) reduces to

n±ε (Ω) = ∣ε∣−1

∣Γ∣ Vol(Ω)+(∣ε∣−1δ
2dV

1+dV+2dV′
V ) . ∎
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