Maximization of Neumann eigenvalues under diameter constraint

Marco Michetti

Université Paris Saclay

In this talk we study the maximization problem of the Neumann eigenvalues under diameter constraint. We start by presenting a sequence of domains Ω_{ϵ} for which $D(\Omega_{\epsilon})^2 \mu_1(\Omega_{\epsilon})$ goes to infinity.

We then define the profile function f associated to a domain $\Omega \subset \mathbb{R}^d$, assuming that this function is β -concave, with $0 < \beta \leq 1$, we will give sharp upper bounds of the quantity $D(\Omega)^2 \mu_k(\Omega)$ in terms of β . The bounds will go to infinity when β goes to zero. This will also give a new proof of a result by Kröger, namely sharp upper bounds for $D(\Omega)^2 \mu_k(\Omega)$ when Ω is convex (that correspond to $\beta = (d-1)^{-1}$). The proof of this results are based on a maximization problem for relaxed Sturm-Liouville eigenvalues.

This talk is based on a joint work with Antoine Henrot.