MAXIMIZATION OF NEUMANN EIGENVALUES

Dorin Bucur

Université de Savoie

May 23, 2022

We discuss the maximization of the k-th eigenvalue of the Laplace operator with Neumann boundary conditions among domains of \mathbb{R}^N with prescribed measure. We relax the problem to the class of (possibly degenerate) densities in \mathbb{R}^N with prescribed mass and prove the existence of an optimal density. For k = 1, 2 the two problems are equivalent and the maximizers are known to be one and two equal balls, respectively. For $k \ge 3$ this question remains open, except in one dimension of the space where we prove that the maximal densities correspond to a union of k equal segments. This result provides sharp upper bounds for Sturm-Liouville eigenvalues and proves the validity of the Pólya conjecture in the class of densities in \mathbb{R} .

Based on the relaxed formulation, we provide numerical approximations of optimal densities for k = 1, ..., 8 in \mathbb{R}^2 .

This is a joint work with E. Martinet and E. Oudet.