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Eigenvalues of the Laplacian

Consider the eigenvalue problem:

∆f = λf

on a compact Riemannian manifold (M, g) without boundary.

The spectrum is discrete, and the eigenvalues form a sequence

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 · · · ↗ +∞

Set
λ̄k(M, g) = λk(M, g) Vol(M, g)2/d ,

where d = dimM. This quantity is invariant under rescaling.
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Geometric optimization of eigenvalues

Consider λ̄k(M, g) as a functional on the space of Riemannian
metrics on M.

g 7−→ λ̄k(M, g)

A natural geometric optimization problem: find

Λk(M) = sup
g
λ̄k(M, g),

Colbois-Dodziuk (1994): If dimM ≥ 3, Λk(M) = +∞.

Need further restrictions, such as fixed conformal class.

From now on, assume that M is a surface. A metric realizing the
supremum (if exists!) is called a maximal metric.
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Topological upper bounds for λ̄1

• Yang–Yau (1980), El Soufi–Ilias (1984): for an orientable
surface M of genus γ we have

λ̄1(M, g) 6 8π

[
γ + 3

2

]
.

Karpukhin (2019): strict inequality for γ 6= 0, 2.

• Karpukhin (2016): for a non-orientable surface M of genus γ
we have

λ̄1(M, g) 6 16π

[
γ + 3

2

]
.

Here γ is the genus of the orientable double cover.
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Topological upper bounds for λ̄k

• Korevaar (1993): there exists a constant C > 0 such that on
any (orientable) surface M of genus γ,

λ̄k(M) ≤ Ck(γ + 1).

Conjectured by Yau (1982); discussed by Gromov (1993),
generalized by Grigor’yan–Netrusov–Yau (1999, 2004).

• Hassannezhad (2011):

λ̄k(M) ≤ C (k + γ).

Question: Can C be made explicit?

6 / 32



Topological upper bounds for λ̄k

• Korevaar (1993): there exists a constant C > 0 such that on
any (orientable) surface M of genus γ,

λ̄k(M) ≤ Ck(γ + 1).

Conjectured by Yau (1982); discussed by Gromov (1993),
generalized by Grigor’yan–Netrusov–Yau (1999, 2004).

• Hassannezhad (2011):

λ̄k(M) ≤ C (k + γ).

Question: Can C be made explicit?

6 / 32



Topological upper bounds for λ̄k

• Korevaar (1993): there exists a constant C > 0 such that on
any (orientable) surface M of genus γ,

λ̄k(M) ≤ Ck(γ + 1).

Conjectured by Yau (1982); discussed by Gromov (1993),
generalized by Grigor’yan–Netrusov–Yau (1999, 2004).

• Hassannezhad (2011):

λ̄k(M) ≤ C (k + γ).

Question: Can C be made explicit?

6 / 32



Topological upper bounds for λ̄k

• Korevaar (1993): there exists a constant C > 0 such that on
any (orientable) surface M of genus γ,

λ̄k(M) ≤ Ck(γ + 1).

Conjectured by Yau (1982); discussed by Gromov (1993),
generalized by Grigor’yan–Netrusov–Yau (1999, 2004).

• Hassannezhad (2011):

λ̄k(M) ≤ C (k + γ).

Question: Can C be made explicit?

6 / 32



Maximal metrics for λ1: examples

• Hersch (1970): Λ1(S2) = 8π and the maximum is achieved on
the standard metric on S2.

• Li–Yau (1982): Λ1(RP2) = 12π and the maximum is achieved
on the standard metric on RP2.

• Nadirashvili (1996): Λ1(T2) = 8π2
√
3

and the maximum is

achieved on the flat equilateral torus.
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Examples: continued

• Jakobson–Nadirashvili–P. (2006), El Soufi–Giacomini–Jazar
(2006), Karpukhin–Cianci–Medvedev (2019):

Λ1(K) = λ̄1(K, gτ̃3,1) = 12πE
(
2
√
2

3

)
, where τ3,1 is a Lawson

bipolar surface (a Klein bottle of revolution), and E is a
complete elliptic integral of the second kind.

• Jakobson–Levitin–Nadirashvili–Nigam–P. (2005),
Nayatani–Shoda (2017): Λ1(Σ2) = 16π. A maximal metric for
the first eigenvalue on the surface of genus two Σ2 is a metric
with conical singularities on the Bolza surface induced from
the canonical metric on the sphere using the standard
branched double covering. Maximal metric is not unique.
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Maximization of eigenvalues in a conformal class: first
eigenvalue

Given a conformal class C on a surface M, set

Λk(M, C) = sup
g∈C

λ̄k(g).

Theorem (Nadirashvili-Sire, Petrides, 2010s)

(i) For any conformal class C of Riemannian metrics on a closed
surface M, there exists a metric g ∈ C, possibly with a finite
number of conical singularities, such that

Λ1(M, C) = λ̄1(M, g).
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Remarks

• Metrics with conical singularities arising in this context:
g = α(x)g0, where g0 is a constant curvature metric, and
α(x) ≥ 0 is a smooth function with finitely many zeros.

• The cone angle is equal to 2π(r + 1), where r is the order of
vanishing at the zero point.

• The example of the genus 2 surface shows that conical
singularities may indeed occur.

• New proof by Karpukhin–Stern (2020) using min-max energy
for harmonic maps.

• Matthiesen–Siffert (2019): On any surface M there exists a
globally maximizing metric g , smooth outside a finite number
of conical singularities , such that Λ1(M) = λ̄1(M, g).
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Maximization of eigenvalues in a conformal class: higher
eigenvalues

(ii) For any conformal class C of Riemannian metrics on M and for
any k > 1, either one has

Λk(M, C) = Λk−1(M, C) + 8π,

or there exists a metric g ∈ C, possibly with a finite number of
conical singularities, such that

Λk(M, C) = λ̄k(M, g) > Λk−1(M) + 8π.
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Existence vs bubbling

The previous result can be interpreted as follows: for a given k ,
either

• there exists a maximal metric for λk which is smooth outside
a finite number of conical singularities, or

• the maximum of λk is attained in the limit by a sequence of
metrics exhibiting bubbling, that is, concentration of measure
at certain points. Bubbles can be viewed as spheres blown out
of some points of the original surface.

It is easy to see from the variational principle that the number of
bubbles is at most k .
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Maximization of eigenvalues on the sphere

Theorem [KNPP1] Let (S2, g) be the sphere endowed with a
metric g which is smooth outside a finite number of conical
singularities. Then

λ̄k(S2, g) ≤ 8πk , k > 1.

For k > 2 the inequality is strict, and the equality is attained in the

limit by a sequence of metrics degenerating to a union of k
touching identical round spheres.

In particular,
Λk(S2) = 8πk , k > 1.
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Historical remarks

• This result was conjectured by Nadirashvili (2002).

• k = 2: Nadirashvili (2002), Petrides (2014).

• k = 3: Nadirashvili–Sire (2017).

• Numerical evidence: Kao–Lai–Osting (2017).
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Maximization of eigenvalues on the projective plane

Theorem (Karpukhin, 2019) The equality

Λk(RP2) = 4π(2k + 1)

holds for any k > 1. For k > 2 the supremum can not be attained
on a smooth metric, and is realized in the limit by a sequence of
metrics degenerating to a union of k − 1 identical round spheres
and a standard projective plane touching each other, such that the
ratio of the areas of the projective plane and the spheres is 3 : 2.

Proved for k = 2 by Nadirashvili–Penskoi (2018). Conjectured for
all k in [KNPP1].
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Explicit Korevaar-type inequality for higher eigenvalues

Theorem [KNPP2] (i) Let M be an orientable surface of genus γ.
Then

Λk(M) 6 8πk

[
γ + 3

2

]
, k > 1.

(ii) Let M be an non-orientable surface, and let γ be the genus of
its orientable double cover. Then

Λk(M) 6 16πk

[
γ + 3

2

]
, k > 1.

Proof is based on Yang–Yau method and its adaptation by
Karpukhin to the nonorientable case combined with the explicit
bounds for the sphere and the projective plane.
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Maximization on spheres: ideas of the proof

By gluing techniques (see Colbois-El Soufi, 2003)

Λk(S2) ≥ 8πk , k > 1.

Suppose for some k > 1 we have a strict inequality

Λk(S2) > 8πk

From the existence vs bubbling argument, it means that for the
smallest k with this property there exists a maximal metric g
(possibly with conical singularities) such that

λ̄k(S2, g) > 8πk .

Let us show this is impossible.
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Minimal immersions

Let M and N be smooth manifolds and h be a Riemannian metric
on N. An immersion f : M # N is called minimal f if it is
extremal for the volume functional

V [f ] =

∫
M

dVolf ∗h.

The manifold M is endowed with a Riemannian metric f ∗h and is
referred to as (immersed) minimal submanifold.

18 / 32



Extremality condition

Takahashi’s theorem (1966): an isometric immersion
f : M # Rn+1, f = (f 1, . . . , f n+1), by Laplace eigenfunctions f i

with a common eigenvalue yields a minimal immersion into an
n-dimensional sphere.

Theorem (Nadirashvili, 1996; El Soufi-Ilias, 2008) If a metric g on
a compact surface M is extremal for the eigenvalue λk then there
exists an isometric minimal immersion M # SnR to the sphere of
some dimension n ≥ 2 of radius R =

√
2/λk(M, g) by the

corresponding eigenfunctions.
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Harmonic maps

Let (M, g) and (N, h) be Riemannian manifolds. A smooth map
f : M −→ N is called harmonic if f is extremal for the energy
functional

E [f ] =
1

2

∫
M
traceg f

∗h dVolg ,

In local coordinates

traceg f
∗h = gkl ∂f

i

∂xk
∂f j

∂x l
hij .
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Minimal immersions and harmonic maps

Minimal immersions and harmonic maps are closely related.

Example A submanifold M # Rn is minimal if and only if the
coordinate functions x i are harmonic (in the usual sense) with
respect to the Laplace-Beltrami operator on M.

In general, the following result holds:

Theorem Let f : (M, g)# (N, h) be an isometric immersion.
Then f is minimal if and only if it is harmonic.

Branched harmonic immersions give rise to metrics with conical
singularities, which occur at points where df = 0.
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Harmonic degree and small eigenvalues

Theorem (Calabi, Barbosa) Let f : S2 −→ Sn be a harmonic
immersion (possibly, with branch points). Then

Area(S2, f ∗gSn) = 4πd

for some d ∈ N.

The integer d is called the harmonic degree of f .

Key observation: (Ejiri, 1998; case n = 2 due to Montiel–Ros and
Nayatani): large harmonic degree implies many small eigenvalues.

In particular, if k > 1, for any λk -extremal metric

λk(S2, g)area(S2, g) < 8πk .
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Nadirashvili–Sire–Petrides theorem:
ideas of the proof following [KNPP2]

• From eigenvalues of metrics to eigenvalues of Radon measures
(cf. Kokarev, 2014).

∆u = λVu, g -fixed background Riemannian metric, V ≥ 0,
V ∈ L1(M, g).

• Auxiliary optimization problem in terms of potentials of
Schrödinger operators. Potentials are allowed to take negative
values to have more freedom for perturbations. L∞-norm of
the potentials bounded by N > 0. We are interested in the
limit as N →∞.

Grigor’yan-Nadirashvili-Sire (2016) : maximizing potentials
turn out to be non-negative.
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Construction of the maximizing sequence

For each k ≥ 1, there exist maps

φm,k = (u1m,k , . . . , u
d
m,k) : M → Rd

for some d ∈ N, such that as m→∞ :

(1) ∆φm,k = Λm
k Vm,k φm,k , Λm

k → Λk := Λk(M, C).

(2) There exists a weak limit φm,k ⇀ φk = (u1k , . . . , u
d
k ) in H1

and φm,k → φk in L2.

(3) |φk | = 1 dvg -a.e. (essentially, φk is a map to a sphere!)

(4) Vm,k dvg ⇀
∗ dµk for some Radon measure dµk .
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Why is this not good enough?

Problem: weak convergence in H1 does not imply that the limiting
functions φk are eigenfunctions of the limiting problem.∫

∇φm,k∇ψ dvg Λm
k

∫
φm,k ψ Vm,kdvg∫

∇φk∇ψ dvg Λk

∫
φk ψ dµk

m→∞ m→∞?

?

On the right-hand side we need stronger convergence, like uniform.
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Strong convergence of the maximizing sequence

• Good and bad points.

Bad points have arbitrary small
neighborhoods Ω with λD1 (Ω,Vm,k) not large enough.

There are at most k bad points. As it turns out, these are
precisely the points admitting concentration of measure in
arbitrary small neighborhoods (bubbles).

• Proposition Given a good point p, there exists a
neighborhood Ω 3 p such that φm,k → φk in H1(Ω).

This could be viewed as an ε-regularity type statement:
weak convergence implies strong convergence, provided
certain parameter is small. Small parameter: 1/λD1 (Ω,Vm,k).
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neighborhood Ω 3 p such that φm,k → φk in H1(Ω).

This could be viewed as an ε-regularity type statement:
weak convergence implies strong convergence, provided
certain parameter is small. Small parameter: 1/λD1 (Ω,Vm,k).
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Behaviour away from bad points

Corollary In a neighborhood of a good point, φm,k ⇒ φk except
on a set of arbitrary small capacity.

Combining this with the results (1) and (4) of Part I:

∆φm,k = Λm
k Vm,k φm,k , |φk | = 1, dvg − a.e.

we obtain that on the set G ⊂ M of good points

dµk =
|∇φk |2

Λk
dvg

and φk is a weak solution of

∆φk =
|∇φk |2

Λk
φk .
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Decomposition of the limiting measure

This means that φk is a weakly harmonic map to Sd−1.

Regularity results imply that φk extends to a smooth harmonic
map M → Sd−1.

Theorem There exist at most k points p1, . . . , pl , l 6 k and a
harmonic map φk : M → Sd−1 such that

dµk =
|∇φk |2

Λk
dvg +

l∑
i=1

wiδpi ,

where wi ≥ 0.

The points where |∇φk | = 0 correspond to the conical singularities
of the limiting metric.
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Dealing with the bubbles: first eigenvalue

Theorem (Petrides, 2014) Λ1(M,C ) > 8π on any conformal class
on any surface M 6= S2.

Proposition (Nadirashvili, 1996; Girouard, 2008; Kokarev, 2014)
If a sequence of measures µn converges to a Dirac measure, then
lim supλ1(µn) ≤ 8π.

Lemma (Kokarev, 2014) If µ is a discontinuous Radon measure
which is not a Dirac measure, then λ1(µ) = 0.

Putting this together implies that the limiting measure has no
bubbles unless we are on a sphere, where we know the answer by
Hersch’s theorem.

29 / 32



Dealing with the bubbles: first eigenvalue

Theorem (Petrides, 2014) Λ1(M,C ) > 8π on any conformal class
on any surface M 6= S2.

Proposition (Nadirashvili, 1996; Girouard, 2008; Kokarev, 2014)
If a sequence of measures µn converges to a Dirac measure, then
lim supλ1(µn) ≤ 8π.

Lemma (Kokarev, 2014) If µ is a discontinuous Radon measure
which is not a Dirac measure, then λ1(µ) = 0.

Putting this together implies that the limiting measure has no
bubbles unless we are on a sphere, where we know the answer by
Hersch’s theorem.

29 / 32



Dealing with the bubbles: first eigenvalue

Theorem (Petrides, 2014) Λ1(M,C ) > 8π on any conformal class
on any surface M 6= S2.

Proposition (Nadirashvili, 1996; Girouard, 2008; Kokarev, 2014)
If a sequence of measures µn converges to a Dirac measure, then
lim supλ1(µn) ≤ 8π.

Lemma (Kokarev, 2014) If µ is a discontinuous Radon measure
which is not a Dirac measure, then λ1(µ) = 0.

Putting this together implies that the limiting measure has no
bubbles unless we are on a sphere, where we know the answer by
Hersch’s theorem.

29 / 32



Dealing with the bubbles: first eigenvalue

Theorem (Petrides, 2014) Λ1(M,C ) > 8π on any conformal class
on any surface M 6= S2.

Proposition (Nadirashvili, 1996; Girouard, 2008; Kokarev, 2014)
If a sequence of measures µn converges to a Dirac measure, then
lim supλ1(µn) ≤ 8π.

Lemma (Kokarev, 2014) If µ is a discontinuous Radon measure
which is not a Dirac measure, then λ1(µ) = 0.

Putting this together implies that the limiting measure has no
bubbles unless we are on a sphere, where we know the answer by
Hersch’s theorem.

29 / 32



Dealing with the bubbles: higher eigenvalues

• Rescaling of the metric near a bubble.

Bubble tree
construction (cf. Parker, 1996).

• After an appropriate rescaling, each bubble can be viewed as a
sphere, on which we can repeat the previous construction and
choose the maximizing sequence of potentials.

• If secondary bubbles appear, we apply the process inductively.
Since the sequence is maximizing, small bubbles can be
ignored, and therefore the process will eventually stop.
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Some open questions

• Do smooth metrics with conical singularities ever arise as
global maximizers for higher eigenvalues on surfaces?

• Which singularities may conformally maximal metrics for the
first eigenvalue have in dimensions ≥ 3?

• Is there an analogue of the existence vs. bubbling result for
conformally maximal metrics for higher eigenvalues in
dimensions ≥ 3?
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Thank you for your attention!
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