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Classical Mechanics on a Surface M

Let M be a compact Riemannian surface.

State of Motion: a possible position x ∈ M and momentum
ξ ∈ S∗x M.

Phase Space: set of all possible states of motion S∗M.

Classical Dynamics: motion of a particle over time as governed
by Newton’s laws, that is, via the geodesic flow gt : S∗M → S∗M.
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Quantum Mechanics on a Surface M

State of Motion: a wave function φ : M × [0,∞)→ C of position
and time, so that the probability of a particle with wave duality φ
being in a region B ⊂ M at time t is∫

B |φ(x , t)|2 dvol(x)∫
M |φ(x , t)|2 dvol(x) .

Space of States: Hilbert space L2(M, dvol) of square-integrable
functions.

Quantum Dynamics: evolution of a wave function over time as
governed by Schrödinger’s equation

i~∂φ
∂t = −∆φ.
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Stationary States

Stationary states are normalised states φ such that the probability
densities |φ(x , t)|2 dvol(x) are independent of time, so that there
exists some λ ∈ R such that

φ(x , t) = φ(x)e−
iλ
~ t .

These correspond to solutions of the eigenvalue problem

∆φ+ λφ = 0.
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Stationary States

Theorem
Let M be a compact Riemannian manifold, and consider the
eigenvalue problem ∆φ+ λφ = 0 on M. There exists a discrete
spectrum of eigenvalues 0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · tending to
infinity, and a corresponding sequence of eigenfunctions {φj}∞j=1
forming a complete orthonormal basis of L2(M, dvol).

Thus all states can be represented as linear combinations of
stationary states.
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Semiclassical Limit

Heuristically, the classical model should appear as the limiting
behaviour of the quantum model: we expect the limiting nature of
the quantum dynamics to be similar to that of the classical
dynamics.

Mathematically, we wish to show that the limiting behaviour of the
Laplacian eigenfunctions {φj} somehow reflects the properties of
the geodesic flow.

Conjecture (Berry (1977))
Geodesic flow on S∗M is ergodic =⇒ Laplacian eigenfunctions
behave randomly in the large eigenvalue limit.
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Equidistribution

Let M be a topological space and µ a probability measure on M.
Let {µT} be a family of probability measures on M.

Definition
The family of probability measures {µT} equidistribute on M
w.r.t. µ if

lim
T→∞

µT (B) = µ(B)

for every continuity set B ⊂ M (boundary has µ-measure zero).
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Equidistribution

Let M be a topological space and µ a probability measure on M.
Let {µT} be a family of probability measures on M.

Definition
The family of probability measures {µT} equidistribute on M
w.r.t. µ if

lim
T→∞

∫
M

f (x) dµT (x) =
∫

M
f (x) dµ(x)

for all f ∈ Cb(M) (continuous bounded).
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Classical Ergodicity

Definition
A classical system is ergodic if the orbit of almost every
(x , ξ) ∈ S∗M under the classical dynamics of geodesic flow is
equidistributed in S∗M.
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Classical Dynamics on the Bunimovich Stadium
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Classical Dynamics on the Bunimovich Stadium
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Classical Dynamics on the Bunimovich Stadium
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Quantum Ergodicity

Definition
A quantum system is (uniquely) ergodic if the probability densities
|φj(x)|2 of the stationary states become equidistributed as
λj →∞.

That is, for all continuity sets B ⊂ M,∫
B |φj(x)|2 dvol(x)∫
M |φj(x)|2 dvol(x) →

vol(B)
vol(M) as λj →∞.

Equivalently, the probability measures dµj(x) = |φj(x)|2 dvol(x)
converge in the weak-∗ topology to the normalised uniform volume
measure dµ = dvol.
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Quantum Unique Ergodicity

Conjecture (QUE on Configuration Space)
Let M be a compact Riemannian surface whose geodesic flow is
ergodic. Then the probability densities |φj(x)|2 of the stationary
states become equidistributed as λj →∞.

This is QUE on configuration space. Stronger formulation is QUE
on phase space: probability measures |φj(x)|2 dvol(x) replaced
with microlocal lifts on S∗M; equidistribution w.r.t. Liouville
measure.
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Quantum Ergodicity

Theorem (Shnirelman (1974), Colin de Verdière (1985), Zelditch
(1987))
Let M be a compact Riemannian manifold whose geodesic flow is
ergodic. Then there exists a subsequence {jk} of density 1 of the
probability densities |φj(x)|2 of the stationary states that become
equidistributed as λjk →∞.

A subsequence {jk} has density α ∈ [0, 1] if

#{k : jk ≤ N}
N → α as N →∞
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Berry’s Random Wave Model
QE and QUE are manifestations of Berry’s random wave
conjecture.

Conjecture (Berry (1977))
As λj →∞, Laplacian eigenfunctions on surfaces with chaotic
classical dynamics are well-modelled by random waves.

Random waves are functions of the form∑
j∈J

ajφj ,

where {φj} is an orthonormal basis of Laplacian eigenfunctions,
{aj} are i.i.d. Gaussian random variables, and J ⊂ N.

This model allows us to study Laplacian eigenfunctions in the large
eigenvalue limit probabilistically (see work of de Courcy-Ireland,
Han–Tacy).
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Semiclassical Limit on the Torus
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Semiclassical Limit on the Bunimovich Stadium
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Counterexample to QUE: the Bunimovich Stadium

Theorem (Hassell (2010))
For the Bunimovich stadium, there exist subsequences {jk} of
density 0 of the probability densities |φj(x)|2 of the stationary
states that scar in certain regions as λjk →∞.
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Refinement of Quantum Unique Ergodicity

Conjecture (Rudnick–Sarnak (1994))
Let M be a compact Riemannian surface of negative sectional
curvature. Then the probability densities |φj(x)|2 of the stationary
states become equidistributed as λj →∞.

Negative sectional curvature implies that the geodesic flow is
ergodic (and much more).

Conjecture is completely open except for arithmetic surfaces.
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Rate of Equidistribution: Decay of Error Term

What is the rate of equidistribution of µj on M w.r.t. µ?

Goal
Find the most rapidly decreasing function α(j) for which

µj(B) = vol(B) + OB(α(j))

for a fixed continuity set B ⊂ M.

Informally, determine how quickly the L2-mass of Laplacian
eigenfunctions spread out randomly on M.
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Rate of Equidistribution: Decay of Error Term

Heuristic
Like for random waves, we should expect square-root cancellation:
since the Planck scale is ~ = λ

−1/2
j , we should hope for

α(j) ≈ λ−1/4
j .

Conjecture (QUE at an optimal rate)
Let M be a compact Riemannian surface of negative sectional
curvature. Then the probability densities |φj(x)|2 of the stationary
states equidistribute on any fixed ball BR(y) ⊂ M as λj →∞ with
an error term of size Oε(λ−1/4+ε

j ).

Best known result: QE at a rate O((log λj)−1) (Zelditch).
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Rate of Equidistribution: Small Scale Equidistribution

What is the rate of equidistribution of µj on M w.r.t. µ?

Goal
Find the most rapidly decreasing function α(j) for which

µj(BRj (y))
µ(BRj (y)) → 1

for a sequence of radii Rj = α(j).

Informally, determine the scale at which Laplacian eigenfunctions
no longer look random.

How small does a ball have to be to not contain the expected
amount of L2-mass of a Laplacian eigenfunction?
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Rate of Equidistribution: Small Scale Equidistribution

Heuristic
Like for random waves, we should expect small scale
equidistribution provided we are at a scale above the Planck scale
~ = λ

−1/2
j .

Conjecture (Planck scale QUE)
Let M be a compact Riemannian surface of negative sectional
curvature. Then the probability densities |φj(x)|2 of the stationary
states equidistribute on shrinking balls BRj (y) with fixed centre as

λj →∞ provided that Rj � ~1−δ = λ
− 1−δ

2
j for some fixed δ > 0.

Best known result: QE at a rate O((log λj)−δ) for some small
δ > 0 (Han, Hezari–Rivière).
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Rate of Equidistribution

One can think of small scale equidistribution in terms of random
variables. Define Xj;Rj : M → [0,∞) by

Xj;Rj (y) ··=
µj(BRj (y))
µ(BRj (y)) ,

where Rj shrinks at some rate α(j) as j →∞.
Equidistribution implies this has expectation 1.
Small scale equidistribution is the pointwise convergence of
this random variable to 1.
Small scale equidistribution almost everywhere

µ

({
y ∈ M :

∣∣∣∣∣µj(BRj (y))
µ(BRj (y)) − 1

∣∣∣∣∣ > ε

})
→ 0

is convergence in probability of this random variable to 1.
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Gaussian Moments Conjecture

Heuristic
Like random waves, Laplacian eigenfunctions should exhibit
Gaussian random behaviour in the large eigenvalue limit.

Conjecture (Gaussian Moments Conjecture)
For every nonnegative integer n,

lim
j→∞

∫
M
φj(x)n dvol(x) = 1√

2π

∫ ∞
−∞

xne−
x2
2 dx

=


2n/2
√
π

Γ
(n + 1

2

)
if n is even,

0 if n is odd.

Sogge gives upper bounds. Trivial for n ∈ {0, 1, 2}; unknown
otherwise. . . unless M is arithmetic.
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Geodesic Flow on Γ\H
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Eigenfunctions of the Laplacian on Γ\H
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Eigenfunctions of the Laplacian on Γ\H

M = Γ\H: Laplacian eigenfunctions are smooth functions
φ : H→ C satisfying

φ

(az + b
cz + d

)
= φ(z) for all

(
a b
c d

)
∈ Γ ··= SL2(Z),

∆φ(z) ··= y2
(
∂2

∂x2 + ∂2

∂y2

)
φ(z) = −λφφ(z) for some

λφ ≥ 0.

Γ\H has constant negative curvature (which implies geodesic flow
is ergodic), is noncompact, but of finite volume: vol(Γ\H) = 1
with respect to the measure dvol(z) = dµ(z) ··= 3

πy−2 dx dy .
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Spectral Decomposition of Γ\H

Γ\H not compact =⇒ spectrum of the Laplacian not discrete.
L2-spectral decomposition is

f (z) = 〈f , 1〉+
∑
ψ∈B
〈f , ψ〉ψ(z)

+ 1
12

∫ ∞
−∞

〈
f ,E

(
·, 1

2 + it
)〉

E
(

z , 1
2 + it

)
dt.

Converges uniformly for f ∈ C∞c (Γ\H).
B orthonormal basis of Hecke–Maaß cusp forms / nonconstant
Laplacian eigenfunctions (complicated number theoretically),
E (z , 1/2 + it) Eisenstein series / generalised eigenfunction
(complicated analytically), with Laplacian eigenvalue
λ = 1/4 + t2,

〈ψ1, ψ2〉 ··=
∫

Γ\H
ψ1(z)ψ2(z) dµ(z).
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Quantum Unique Ergodicity for Γ\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
For φj ∈ B with Laplacian eigenvalue λj = 1/4 + t2

j ,

lim
tj→∞

∫
B
|φj(z)|2 dµ(z) = vol(B)

for every continuity set B ⊂ Γ\H.
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Quantum Unique Ergodicity for Γ\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
For φj ∈ B with Laplacian eigenvalue λj = 1/4 + t2

j ,

lim
tj→∞

∫
Γ\H

f (z)|φj(z)|2 dµ(z) =
∫

Γ\H
f (z) dµ(z)

for all f ∈ Cb(Γ\H).
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Quantum Unique Ergodicity for Γ\H

Theorem (Luo–Sarnak (1995))
For E (z , 1/2 + it) with Laplacian eigenvalue λ = 1/4 + t2,

lim
t→∞

1
log λ

∫
B

∣∣∣∣E (z , 1
2 + it

)∣∣∣∣2 dµ(z) = vol(B)

for every compact continuity set B ⊂ Γ\H.
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Quantum Unique Ergodicity for Γ\H

Theorem (Luo–Sarnak (1995))
For E (z , 1/2 + it) with Laplacian eigenvalue λ = 1/4 + t2,

lim
t→∞

1
log λ

∫
Γ\H

f (z)
∣∣∣∣E (z , 1

2 + it
)∣∣∣∣2 dµ(z) =

∫
Γ\H

f (z) dµ(z)

for all f ∈ Cc(Γ\H).
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Quantum Unique Ergodicity for Γ\H

Strategy of Proof.
QUE needs to be proven for every function f ∈ Cb(Γ\H). Spectral
decomposition of L2(Γ\H) allows us to approximate f by linear
combinations of the constant function, Laplacian eigenfunctions
ψ ∈ B, and direct integrals of Eisenstein series E (z , 1/2 + it).

This reduces QUE to showing that for ψ ∈ B and t ∈ R,∫
Γ\H

ψ(z)|φj(z)|2 dµ(z) = 〈ψ, |φj |2〉 → 0,∫
Γ\H

E
(

z , 1
2 + it

)
|φj(z)|2 dµ(z) =

〈
E
(
·, 1

2 + it
)
, |φj |2

〉
→ 0

as tj →∞.

Similar process with E (z , 1/2 + it) in place of φj , with additional
care for integrating triple product of Eisenstein series.

Peter Humphries The Random Wave Conjecture and Arithmetic Quantum Chaos



The Watson–Ichino Formula

Theorem (Watson (2002), Ichino (2008))
For ψ, φj ∈ B,

〈|φj |2, ψ〉 = Aφj ,ψ · Sφj ,ψ,

where Aφj ,ψ is the arithmetic part and Sφj ,ψ is the spectral part.

A similar identity holds when either ψ or φj is replaced by an
Eisenstein series (Rankin–Selberg).

Proof is via representation-theoretic methods.

Relies heavily on the arithmeticity of Γ\H, as well as the fact that
H ∼= SL2(R)/SO(2) is a symmetric space.
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The Watson–Ichino Formula: the Spectral Part

The spectral part Sφj ,ψ depends only on tj and tψ and can be
written explicitly in terms of products of the gamma function. By
Stirling’s formula,

|Sφj ,ψ|
2 ≈ 1

(1 + tψ)(|4t2
j − t2

ψ|+ 1)1/2×
{

1 if 0 < tψ < 2tj ,
e−π(tψ−2tj ) if tψ ≥ 2tj .

Polynomial decay if ψ oscillates slower than |φj |2: tψ
2tj
→ 0,

Constructive interference if ψ oscillates at the same frequency
as |φj |2: tψ � 2tj ,
Exponential decay if ψ oscillates faster than |φj |2: tψ

2tj
→∞.
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The Watson–Ichino Formula: the Arithmetic Part

The arithmetic part is related to L-functions:

|Aφj ,ψ|
2 =

L( 1
2 , ψ)L( 1

2 , sym2φj ⊗ ψ)
L(1, sym2ψ)L(1, sym2φj)2 .

Denominator is harmless: t−εj �ψ,ε · · · �ψ,ε tεj .

Generalisations of the Riemann zeta function ζ(s) =
∏

p
1

1−p−s :

L(s, ψ) =
∏
p

∏
k∈{1,−1}

1
1− αk

ψ(p)p−s ,

L(s, sym2φj ⊗ ψ) =
∏
p

∏
k∈{1,−1}

∏
`∈{2,0,−2}

1
1− αk

ψ(p)α`φj
(p)p−s ,

where each αψ(p), αφj (p) ∈ C has absolute value 1.
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Consequences of the Watson–Ichino Formula

Combining the Watson–Ichino formula with the asymptotics for
the spectral part yields the following.

Corollary
QUE for Γ\H with rate O(t−δj ) follows from the bounds

L
(1

2 , sym2φj ⊗ ψ
)
�tψ t1−2δ

j .

In particular, QUE for Γ\H with an optimal rate Oε(t−1/2+ε
j )

follows from the bounds

L
(1

2 , sym2φj ⊗ ψ
)
�tψ ,ε tεj .

Optimal! Cannot replace tεj with 1.
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Subconvexity

Lemma (Convexity bound)
We have that

L
(1

2 , sym2φj ⊗ ψ
)
� (tψ + 1)1/2(|4t2

j − t2
ψ|+ 1)1/2 �tψ tj .

Replacing tj with t1−δ
j is known as a subconvex bound.

Unknown in this generality!

Conjecture (Generalised Lindelöf Hypothesis)
We have that

L
(1

2 , sym2φj ⊗ ψ
)
�ε (tψ + 1)ε(|4t2

j − t2
ψ|+ 1)ε �tψ ,ε tεj .

Consequence of the generalised Riemann hypothesis. Optimal!
Cannot replace tεj with 1.
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Planck Scale QUE

Conjecture (Planck scale QUE)
The L2-mass |φj |2 of Laplacian eigenfunctions φj on Γ\H
equidistribute on shrinking balls BR(w) with fixed centre w ∈ Γ\H
as tj →∞ provided that R � t−1+δ

j for some fixed δ > 0:

lim
tj→∞

1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z) = 1.
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Failure of QUE at the Planck Scale

Theorem (H. (2018))
There exists a countable dense collection of points w ∈ Γ\H such
that for R � (log tj)At−1

j ,

1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z)

does not converge to 1 as tj →∞.
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Small Scale QUE: Conditional Results

Theorem (Young (2016))
For any sequence of φj ∈ B and assuming GLH, QUE holds for balls
BR(w) centred at a fixed point w of radius R � t−δj with δ < 1/3.

Theorem (H. (2018))
For any sequence of φj ∈ B and assuming GLH, QUE holds in
almost every ball of radius R � t−δj with δ < 1.
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Small Scale QUE: Unconditional Results

Theorem (Young (2016))
For E (z , 1/2 + it), QUE holds for balls BR(w) centred at a fixed
point w of radius R � t−δ with δ < 1/9.

Theorem (H. (2018))
For E (z , 1/2 + it), QUE holds in almost every ball of radius
R � t−δ with δ < 1.

Theorem (H.–Khan (2020))
For a sequence of dihedral φj ∈ B, QUE holds in almost every ball
of radius R � t−δj with δ < 1.
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Gaussian Moments Conjecture

Conjecture (Fourth Moment Conjecture)
We have that

lim
tj→∞

∫
Γ\H
|φj(z)|4 dµ(z) = 3.
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Asymptotics for the Fourth Moment

Theorem (Buttcane–Khan (2017))
The fourth moment conjecture holds for any sequence of φj ∈ B
under the assumption of GLH.

Theorem (Djanković–Khan (2018))
A regularised version of the fourth moment conjecture holds for
E (z , 1/2 + it):

lim
t→∞

1
(log λ)2

∫ reg

Γ\H

∣∣∣∣E (z , 1
2 + it

)∣∣∣∣4 dµ(z) ∼ 6.

Theorem (H.–Khan (2020))
The fourth moment conjecture holds for any sequence of dihedral
φj ∈ B.

Peter Humphries The Random Wave Conjecture and Arithmetic Quantum Chaos



Sketch of Proofs

Sketch of proofs:
1 Small scale QUE,
2 Small scale QUE almost everywhere,
3 Asymptotics for the fourth moment.
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Small Scale QUE
Small scale QUE for Maaß forms:

1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z)→ 1

as tj →∞ with R � t−δj for δ < 1/3.

Define

KR(z ,w) ··=


1

vol(BR) if dist(z ,w) ≤ R,

0 otherwise.
Parseval’s identity gives

1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z) = 1 +
∑
ψ∈B
〈|φj |2, ψ〉〈ψ,KR(·,w)〉

+ 1
12

∫ ∞
−∞

〈
|φj |2,E

(
·, 1

2 + it
)〉〈

E
(
·, 1

2 + it
)
,KR(·,w)

〉
dt.

Need to show latter two terms are o(1).
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The Selberg–Harish-Chandra Transform

Lemma
Let ψ be a Laplacian eigenfunction with eigenvalue λψ = 1/4 + t2

ψ.
Then

1
vol(BR)

∫
BR (w)

ψ(z) dµ(z) = 〈ψ,KR(·,w)〉 = hR(tψ)ψ(w)

where the Selberg–Harish-Chandra transform hR of KR satisfies

hR(t) =


1 + o(1) if t � R−1,

O
( 1

(Rt)3/2

)
if t � R−1.

Heuristic
Laplacian eigenfunctions essentially satisfy the mean-value property
on balls of radius R � λ−1/2.

Proof uses the fact that H ∼= SL2(R)/SO(2) is a symmetric space.
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Small Scale QUE

Sketch of proof of small scale QUE.
Spectral expansion is

1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z)

= 1 +
∑
ψ∈B
〈|φj |2, ψ〉hR(tψ)ψ(w)

+ 1
12

∫ ∞
−∞

〈
|φj |2,E

(
·, 1

2 + it
)〉

hR(t)E
(

w , 1
2 + it

)
dt.

Use Watson–Ichino to write 〈|φj |2, ψ〉 = Aφj ,ψ · Sφj ,ψ, GLH to
bound Aφj ,ψ, Stirling’s approximation to bound Sφj ,ψ, asymptotics
for hR(tψ), and the Weyl law: the latter two terms are o(1) as
tj →∞ provided that R � t−δj with δ < 1/3.

We fall short of the Planck scale: unable to make use of additional
cancellation in the spectral sum.
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Small Scale QUE Almost Everywhere

Small scale QUE almost everywhere for Maaß forms:

vol
({

w ∈ Γ\H :
∣∣∣∣∣ 1
vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z)− 1
∣∣∣∣∣ > ε

})
→ 0

as tj →∞ with R � t−δj for δ < 1.

Implied by Var(φj ; R)→ 0, where

Var(φj ; R) ··=
∫

Γ\H

(
1

vol(BR)

∫
BR (w)

|φj(z)|2 dµ(z)− 1
)2

dµ(w).
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Spectral Expansion of the Variance

For the variance, we subtract off the main term 1, square, and
integrate over w ∈ Γ\H. Parseval then gives

Var(φj ; R) =
∑
ψ∈B

∣∣∣〈|φj |2, ψ〉
∣∣∣2 |hR(tψ)|2

+ 1
12

∫ ∞
−∞

∣∣∣∣〈|φj |2,E
(
·, 1

2 + it
)〉∣∣∣∣2 |hR(t)|2 dt.

Need to show that if R � t−δj with δ < 1, both terms are o(1) as
tj →∞.

Spectral sum only involves nonnegative terms, so no unexploited
additional cancellation to stop us from getting to the Planck scale.
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Small Scale QUE Almost Everywhere
Asymptotics for hR(t): small if t � R−1, so we only need to worry
about ψ ∈ B with tψ � R−1.

For |〈|φj |2, ψ〉|2, Watson–Ichino gives

|〈|φj |2, ψ〉|2 = |Aφj ,ψ|
2|Sφj ,ψ|

2.

Spectral part satisfies

|Sφj ,ψ|
2 ≈ 1

(1 + tψ)(|4t2
j − t2

ψ|+ 1)1/2×
{

1 if 0 < tψ < 2tj ,
e−π(tψ−2tj ) if tψ ≥ 2tj .

Assuming GLH, arithmetic part satisfies

|Aφj ,ψ|
2 �ε (|4t2

j − t2
ψ|+ 1)ε.

So only range in which this is not so small as to be innocuous is
tψ � 2tj : constructive interference.
Does not occur if R � t−δj with δ < 1!
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Small Scale QUE Almost Everywhere

Upshot: GLH implies that for R bigger than the Planck scale,

Var(φj ; R) =
∑
ψ∈B

∣∣∣〈|φj |2, ψ〉
∣∣∣2 |hR(tψ)|2

+ 1
12

∫ ∞
−∞

∣∣∣∣〈|φj |2,E
(
·, 1

2 + it
)〉∣∣∣∣2 |hR(t)|2 dt

involves terms that are small, and so Var(φj ; R) = o(1).
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Spectral Expansion of the Fourth Moment
For the fourth moment, Parseval gives∫

Γ\H
|φj(z)|4 dµ(z) = 1 +

∑
ψ∈B

∣∣∣〈|φj |2, ψ〉
∣∣∣2

+ 1
12

∫ ∞
−∞

∣∣∣∣〈|φj |2,E
(
·, 1

2 + it
)〉∣∣∣∣2 dt.

Same as Var(φj ; R), except additional term 1 and no |hR(t)|2.

Need to show latter two terms are 2 + o(1) as tj →∞.
By the same argument as for the variance, the only range that is
not small is tψ � 2tj . Watson–Ichino, Stirling, GLH, and Weyl law
show that ∫

Γ\H
|φj(z)|4 dµ(z)�ε tεj .

More work to treat the range tψ � 2tj yields the desired
asymptotic; uses heavily arithmetic nature of Aφj ,ψ.
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Unconditional Results
Required GLH in order to satisfactorily bound Aφj ,ψ. Can we say
anything unconditionally?
Divide up spectral sum into dyadic ranges!

Quantification of rate of equidistribution for QUE: the rate
R = t−δj for small scale QUE almost everywhere is equivalent to
average bounds ∑

ψ∈B
T≤tψ≤2T

|Aφj ,ψ|
2 � Tt1−δ′

j

uniformly in T � R−1 (any δ′ > 0 suffices!). The larger the value
of T , the better the rate.

Best known unconditional bound for |Aφj ,ψ|2 is the convexity
bound:

|Aφj ,ψ|
2 � (tψ + 1)(|4t2

j − t2
ψ|+ 1)1/2.

Gives no nontrivial information.
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Unconditional Results

For φj(z) = E (z , 1/2 + itj) an Eisenstein series or φj a dihedral
Maaß form associated to a Größencharakter of a real quadratic
field Q(

√
D), such average bounds can be proven.

Reason: the degree 6 L-function L(1/2, sym2φj ⊗ ψ) factorises as
the product of three degree 2 L-functions if φj is an Eisenstein
series,
the product of a degree 2 and a degree 4 L-function if φj is
dihedral.

These L-functions are much less complicated.
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Unconditional Results

Reason for success in bounds for sums of |Aφj ,ψ|2 when φj is
Eisenstein or dihedral: many ways to apply Hölder’s inequality due
to factorisation of L(1/2, sym2φj ⊗ ψ).

Proof uses deep pre-existing results on subconvexity
(Michel–Venkatesh), plus many arithmetic tools:

Kuznetsov trace formula,
approximate functional equation,
Voronŏı summation formula,
spectral decomposition of sums of Kloosterman sums,
spectral large sieve. . .
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Nonarithmetic Surfaces

Results depend heavily on tools from analytic number theory; only
applicable when M = Γ\H is an arithmetic surface.

These results look hopelessly difficult to prove in nonarithmetic
settings.

Question
Can one show the failure of QUE at scales below the Planck scale
for nonarithmetic surfaces?
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Thank you!
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