Min-max harmonic maps and extremal metrics for Laplacian eigenvalues (joint with Mikhail Karpukhin)

Daniel Stern

University of Toronto

June 29, 2020

On a closed (2-dimensional) surface (M^2, g) , consider the Laplacian

$$\Delta_g = d^*d$$

with positive spectrum

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \leq \lambda_2(M,g) \leq \cdots.$$

On a closed (2-dimensional) surface (M^2, g) , consider the Laplacian

$$\Delta_g = d^*d$$

with positive spectrum

$$0 = \lambda_0(M,g) < \lambda_1(M,g) \le \lambda_2(M,g) \le \cdots.$$

Denote by

$$ar{\lambda}_k(M,g) := \mathit{Area}(M,g) \lambda_k(M,g)$$

the scale-invariant normalized eigenvalues.

On a closed (2-dimensional) surface (M^2, g) , consider the Laplacian

$$\Delta_g = d^*d$$

with positive spectrum

$$0 = \lambda_0(M, g) < \lambda_1(M, g) \le \lambda_2(M, g) \le \cdots.$$

Denote by

$$ar{\lambda}_k(M,g) := Area(M,g) \lambda_k(M,g)$$

the scale-invariant normalized eigenvalues.

'Isoperimetric' Problem:

- Find upper bounds for $\bar{\lambda}_k$ over all metrics of fixed conformal type, or over all metrics on a surface M of fixed topology.
- Identify/characterize maximizing metrics, or maximizing sequences saturating these bounds.

Given M^2 and conformal class [g], define the *conformal eigenvalues*

$$\Lambda_k(M,[g]) := \sup_{g \in [g]} \bar{\lambda}_k(M,g)$$

and the topological eigenvalues

$$\Lambda_k(M) := \sup_{g \in Met(M)} \bar{\lambda}_k(M, g).$$

Given M^2 and conformal class [g], define the conformal eigenvalues

$$\Lambda_k(M,[g]) := \sup_{g \in [g]} \bar{\lambda}_k(M,g)$$

and the topological eigenvalues

$$\Lambda_k(M) := \sup_{g \in Met(M)} \bar{\lambda}_k(M, g).$$

Study of these maximization problems on closed surfaces begins with the classical result of Hersch:

Theorem (Hersch '70)

The round metric maximizes $\bar{\lambda}_1(S^2,g)$ among all metrics on S^2 . I.e., $\Lambda_1(S^2)=8\pi$.

Proof Idea: For any conformal diffeomorphism

$$\Phi: (S^2,g) \to S^2_{std} \subset \mathbb{R}^3,$$

can compose with $F \in Conf(S^2_{std})$ such that the components Ψ^i of the composition $\Psi = F \circ \Phi$ satisfy $\int_{S^2} \Psi^i dv_g = 0$.

Proof Idea: For any conformal diffeomorphism

$$\Phi: (S^2,g) \to S^2_{std} \subset \mathbb{R}^3,$$

can compose with $F \in Conf(S^2_{std})$ such that the components Ψ^i of the composition $\Psi = F \circ \Phi$ satisfy $\int_{S^2} \Psi^i dv_g = 0$. By the variational characterization

$$\lambda_1(M,g) := \inf\{ \frac{\|d\varphi\|_{L^2(M,g)}^2}{\|\varphi\|_{L^2(M,g)}^2} \mid \int_M \varphi dv_g = 0 \}$$

of $\lambda_1(M,g)$, we then have

$$\int |d\Psi^i|^2 \geq \lambda_1(M,g) \int_{S^2} |\Psi^i|^2 dv_g,$$

and summing over i = 1, 2, 3 gives

$$2 \cdot Area(S_{std}^2) = \int |d\Psi|^2 \ge \lambda_1(M,g)Area(S^2,g). \ \Box$$

The same balancing trick for conformal maps to S^2 was applied by Yang & Yau to obtain (non-sharp) upper bounds on $\bar{\lambda}_1(M,g)$ for any closed, orientable surface M depending only on the genus.

The same balancing trick for conformal maps to S^2 was applied by Yang & Yau to obtain (non-sharp) upper bounds on $\bar{\lambda}_1(M,g)$ for any closed, orientable surface M depending only on the genus.

This approach was then refined by Li & Yau, who observed that balanced conformal maps to *higher-dimensional* spheres may be used in place of Hersch's S^2 -valued maps.

The same balancing trick for conformal maps to S^2 was applied by Yang & Yau to obtain (non-sharp) upper bounds on $\bar{\lambda}_1(M,g)$ for any closed, orientable surface M depending only on the genus.

This approach was then refined by Li & Yau, who observed that balanced conformal maps to *higher-dimensional* spheres may be used in place of Hersch's S^2 -valued maps.

Namely, given a branched conformal immersion $\phi: (M^2, g) \to S^n$, one can always find $F \in Conf(S^n)$ for which

$$\int_{M} (F \circ \phi)^{1} dv_{g} = \cdots = \int_{M} (F \circ \phi)^{n+1} dv_{g} = 0,$$

so that

$$Area(F \circ \phi(M)) = E(F \circ \phi) \geq \frac{1}{2}\lambda_1(M,g)Area(M,g).$$

$$V_c(n, M, [g]) := \inf_{\phi \in Conf(M, S^n)} \sup_{F \in Conf(S^n)} E(F \circ \phi).$$

$$V_c(n, M, [g]) := \inf_{\phi \in Conf(M, S^n)} \sup_{F \in Conf(S^n)} E(F \circ \phi).$$

Theorem (P. Li-S.T. Yau '82)

For any conformal structure (M,[g]), and any $g \in [g]$,

$$2V_c(n,M,[g]) \geq \bar{\lambda}_1(M,g),$$

with equality if and only if g is induced by a minimal immersion $M \to S^n$ by first eigenfunctions.

$$V_c(n, M, [g]) := \inf_{\phi \in Conf(M, S^n)} \sup_{F \in Conf(S^n)} E(F \circ \phi).$$

Theorem (P. Li-S.T. Yau '82)

For any conformal structure (M,[g]), and any $g \in [g]$,

$$2V_c(n,M,[g]) \geq \bar{\lambda}_1(M,g),$$

with equality if and only if g is induced by a minimal immersion $M \to S^n$ by first eigenfunctions.

▶ Since the coordinates of the minimal embedding $\mathbb{RP}^2 \to S^4$ are first eigenfunctions, the round metric maximizes $\bar{\lambda}_1(M,g)$ among metrics on \mathbb{RP}^2 .

$$V_c(n, M, [g]) := \inf_{\phi \in Conf(M, S^n)} \sup_{F \in Conf(S^n)} E(F \circ \phi).$$

Theorem (P. Li-S.T. Yau '82)

For any conformal structure (M,[g]), and any $g \in [g]$,

$$2V_c(n,M,[g]) \geq \bar{\lambda}_1(M,g),$$

with equality if and only if g is induced by a minimal immersion $M \to S^n$ by first eigenfunctions.

- ▶ Since the coordinates of the minimal embedding $\mathbb{RP}^2 \to S^4$ are first eigenfunctions, the round metric maximizes $\bar{\lambda}_1(M,g)$ among metrics on \mathbb{RP}^2 .
- $V_c(n,M,[g])$ also gives a lower bound for the Willmore energy of conformal immersions $M \to S^n$, linking maximization of $\bar{\lambda}_1$ and minimization of W.

▶ (Korevaar '93): There is a universal constant *C* such that

$$\bar{\lambda}_k(M,g) \leq C(\gamma+1)k$$

for any metric g on a closed, orientable surface M of genus γ . In particular, $\Lambda_k(M) < \infty$ for every k.

 \blacktriangleright (Korevaar '93): There is a universal constant C such that

$$\bar{\lambda}_k(M,g) \leq C(\gamma+1)k$$

for any metric g on a closed, orientable surface M of genus γ . In particular, $\Lambda_k(M) < \infty$ for every k.

• (Nadirashvili '96): $\Lambda_1(T^2) = \frac{8\pi^2}{\sqrt{3}}$; the equilateral flat torus maximizes $\bar{\lambda}_1$ on T^2 .

 \blacktriangleright (Korevaar '93): There is a universal constant C such that

$$\bar{\lambda}_k(M,g) \leq C(\gamma+1)k$$

for any metric g on a closed, orientable surface M of genus γ . In particular, $\Lambda_k(M) < \infty$ for every k.

• (Nadirashvili '96): $\Lambda_1(T^2) = \frac{8\pi^2}{\sqrt{3}}$; the equilateral flat torus maximizes $\bar{\lambda}_1$ on T^2 .

The latter result was the first to rely on *existence theory* for maximizing metrics—a subject which has exploded over the last decade.

By work of Petrides and (via different techniques) Nadirashvili-Sire and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence theory for metrics achieving $\Lambda_k(M,[g])$ is fairly well-understood: in general,

By work of Petrides and (via different techniques) Nadirashvili-Sire and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence theory for metrics achieving $\Lambda_k(M,[g])$ is fairly well-understood: in general,

By work of Petrides and (via different techniques) Nadirashvili-Sire and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence theory for metrics achieving $\Lambda_k(M,[g])$ is fairly well-understood: in general,

- Strict inequality implies the existence of a maximizing metric $g \in [g]$ (possibly with conical singularities), admitting a map $\Phi: (M,g) \to S^{N([g])}$ by kth eigenfunctions.

By work of Petrides and (via different techniques) Nadirashvili-Sire and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence theory for metrics achieving $\Lambda_k(M,[g])$ is fairly well-understood: in general,

- Strict inequality implies the existence of a maximizing metric $g \in [g]$ (possibly with conical singularities), admitting a map $\Phi: (M,g) \to S^{N([g])}$ by kth eigenfunctions.
- For k=1 and $M \neq S^2$, strict inequality $(\Lambda_1 > 8\pi)$ holds; hence, every conformal class on a closed Riemannian surface admits a $\bar{\lambda}_1$ -maximizing metric.

By work of Petrides and (via different techniques) Nadirashvili-Sire and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence theory for metrics achieving $\Lambda_k(M,[g])$ is fairly well-understood: in general,

- Strict inequality implies the existence of a maximizing metric $g \in [g]$ (possibly with conical singularities), admitting a map $\Phi: (M,g) \to S^{N([g])}$ by kth eigenfunctions.
- For k=1 and $M \neq S^2$, strict inequality $(\Lambda_1 > 8\pi)$ holds; hence, every conformal class on a closed Riemannian surface admits a $\bar{\lambda}_1$ -maximizing metric.

Existence theory for conformal maximizers also plays a key role in the existence theory for *topological* maximizers—as in Mathiessen-Siffert's work establishing the existence of globally maximizing metrics for $\bar{\lambda}_1(M,g)$.

In particular, for every conformal structure (M,c), maximization of $\bar{\lambda}_k$ gives rise (modulo bubbling phenomena for $k\geq 2$) to a harmonic sphere-valued map $\Phi:M\to S^{N(c)}$ of energy

$$E(\Phi) := \frac{1}{2} \int_{M} |d\Phi|^2 dv_g = \frac{1}{2} \Lambda_k(M, c),$$

from which one recovers the associated maximal metric \bar{g} by setting

$$\bar{g} := |d\Phi|_g^2 g$$
 for some (any) $g \in c$.

In particular, for every conformal structure (M,c), maximization of $\bar{\lambda}_k$ gives rise (modulo bubbling phenomena for $k\geq 2$) to a harmonic sphere-valued map $\Phi:M\to S^{N(c)}$ of energy

$$E(\Phi) := \frac{1}{2} \int_{M} |d\Phi|^2 dv_g = \frac{1}{2} \Lambda_k(M, c),$$

from which one recovers the associated maximal metric \bar{g} by setting

$$\bar{g}:=|d\Phi|_g^2g$$
 for some (any) $g\in c$.

Recall that a sphere-valued map $\Phi:(M,g)\to S^n$ is harmonic if (and only if) it is a critical point of the Dirichlet energy

$$E(\Phi) := \frac{1}{2} \int_{M} |d\Phi|^{2},$$

viewed as a functional on S^N -valued maps; equivalently,

$$\Delta_g \Phi = |d\Phi|_g^2 \Phi$$
 as maps $M \to \mathbb{R}^{n+1}$.

Question

Can the harmonic maps associated to maximization of $\bar{\lambda}_k(M,g)$ be produced by natural variational methods for the Dirichlet energy?

Question

Can the harmonic maps associated to maximization of $\bar{\lambda}_k(M,g)$ be produced by natural variational methods for the Dirichlet energy?

► For the first two eigenvalues, yes: $\Lambda_1(M,c)$ and $\Lambda_2(M,c)$ can be identified with natural min-max energies associated to certain families of sphere-valued maps.

Question

Can the harmonic maps associated to maximization of $\bar{\lambda}_k(M,g)$ be produced by natural variational methods for the Dirichlet energy?

- ▶ For the first two eigenvalues, yes: $\Lambda_1(M,c)$ and $\Lambda_2(M,c)$ can be identified with natural min-max energies associated to certain families of sphere-valued maps.
- ▶ Using the min-max characterization, we can show that extremal metrics satisfy a stronger maximization property, allowing us to compare the quantities $\Lambda_k(M,c)$ to the spectra of some other natural pseudodifferential operators.

Min-max characterization of $\Lambda_1(M, c)$.

For $n \ge 2$, consider a weakly continuous family of maps

$$\bar{B}^{n+1} \ni a \mapsto F_a \in W^{1,2}(M,S^n)$$

satisfying

$$F_a \equiv a \text{ for } a \in S^n$$
.

Min-max characterization of $\Lambda_1(M, c)$.

For $n \ge 2$, consider a weakly continuous family of maps

$$\bar{B}^{n+1}
i a \mapsto F_a \in W^{1,2}(M,S^n)$$

satisfying

$$F_a \equiv a \text{ for } a \in S^n$$
.

Example: One could take $F_a = G_a \circ \phi$, where $\phi : M \to S^n$ is a branched conformal immersion and $G_a(x) = a + \frac{(1-|a|^2)}{|x+a|^2}(x+a)$. Note that the maps G_a generate the conformal automorphisms of S^n modulo isometries.

Min-max characterization of $\Lambda_1(M, c)$.

For $n \ge 2$, consider a weakly continuous family of maps

$$\bar{B}^{n+1} \ni a \mapsto F_a \in W^{1,2}(M,S^n)$$

satisfying

$$F_a \equiv a \text{ for } a \in S^n$$
.

Example: One could take $F_a = G_a \circ \phi$, where $\phi : M \to S^n$ is a branched conformal immersion and $G_a(x) = a + \frac{(1-|a|^2)}{|x+a|^2}(x+a)$. Note that the maps G_a generate the conformal automorphisms of S^n modulo isometries.

The map

$$ar{B}^{n+1}
ightarrow a\mapsto rac{1}{Area(M)}\int_M F_a dv_g\in \mathbb{R}^{n+1}$$

is continuous, and restricts to the identity $S^n \to S^n$, so there must be $a \in B^{n+1}$ for which $\int_M F_a = 0 \in \mathbb{R}^{n+1}$.

In particular, for any such family $\overline{B}^{n+1} \ni a \mapsto F_a$, we see that

$$\lambda_1(M,g)$$
Area $(M,g)=\lambda_1(M,g)\int_M |F_a|^2 \leq \int_M |dF_a|^2$

at the point $a \in \overline{B}^{n+1}$ where $\int_M F_a = 0 \in \mathbb{R}^{n+1}$.

In particular, for any such family $\overline{B}^{n+1} \ni a \mapsto F_a$, we see that

$$\lambda_1(M,g)$$
Area $(M,g) = \lambda_1(M,g) \int_M |F_a|^2 \le \int_M |dF_a|^2$

at the point $a \in \overline{B}^{n+1}$ where $\int_M F_a = 0 \in \mathbb{R}^{n+1}$. Hence, defining a min-max energy

$$\mathcal{E}_n(M,g) := \inf_{F} \sup_{a \in B^{n+1}} E(F),$$

over the collection of all such families, it follows that

$$\bar{\lambda}_1(M,g) \leq 2\mathcal{E}_n(M,g).$$

In particular, for any such family $\overline{B}^{n+1} \ni a \mapsto F_a$, we see that

$$\lambda_1(M,g)$$
Area $(M,g) = \lambda_1(M,g) \int_M |F_a|^2 \le \int_M |dF_a|^2$

at the point $a \in \overline{B}^{n+1}$ where $\int_M F_a = 0 \in \mathbb{R}^{n+1}$. Hence, defining a min-max energy

$$\mathcal{E}_n(M,g) := \inf_F \sup_{a \in B^{n+1}} E(F),$$

over the collection of all such families, it follows that

$$\bar{\lambda}_1(M,g) \leq 2\mathcal{E}_n(M,g).$$

Noting that $\mathcal{E}_n(M,g)$ is conformally invariant, we see that

$$\frac{1}{2}\Lambda_1(M,[g]) \leq \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g]).$$

In practice, we opt for a slightly different definition of $\mathcal{E}_n(M,[g])$, which we can identify as the energy of a harmonic map via min-max methods...

Ingredients for classical min-max methods:

Ingredients for classical min-max methods:

▶ Reasonably smooth (at least C^1) functional $f: X \to \mathbb{R}$ on a Hilbert manifold X.

Ingredients for classical min-max methods:

- ▶ Reasonably smooth (at least C^1) functional $f: X \to \mathbb{R}$ on a Hilbert manifold X.
- ▶ A nontrivial family $\Gamma \subset X^X$ of compact subsets of X preserved by the gradient flow of f.

Ingredients for classical min-max methods:

- ▶ Reasonably smooth (at least C^1) functional $f: X \to \mathbb{R}$ on a Hilbert manifold X.
- ▶ A nontrivial family $\Gamma \subset X^X$ of compact subsets of X preserved by the gradient flow of f.
- A compactness condition on f called the *Palais-Smale* condition: any sequence $x_j \in X$ with $||df(x_j)||_{X^*} \to 0$ and $|f(x_j)| \le C$ contains a convergent subsequence.

Ingredients for classical min-max methods:

- ▶ Reasonably smooth (at least C^1) functional $f: X \to \mathbb{R}$ on a Hilbert manifold X.
- ▶ A nontrivial family $\Gamma \subset X^X$ of compact subsets of X preserved by the gradient flow of f.
- A compactness condition on f called the *Palais-Smale* condition: any sequence $x_j \in X$ with $||df(x_j)||_{X^*} \to 0$ and $|f(x_j)| \le C$ contains a convergent subsequence.

Modulo technicalities, if all three are satisfied, then the quantity

$$c := \inf_{A \in \Gamma} \max_{a \in A} f(a)$$

is achieved as $f(x_{\Gamma})$ for a critical point $x_{\Gamma} \in Crit(f)$.

Ingredients for classical min-max methods:

- ▶ Reasonably smooth (at least C^1) functional $f: X \to \mathbb{R}$ on a Hilbert manifold X.
- ▶ A nontrivial family $\Gamma \subset X^X$ of compact subsets of X preserved by the gradient flow of f.
- A compactness condition on f called the *Palais-Smale* condition: any sequence $x_j \in X$ with $||df(x_j)||_{X^*} \to 0$ and $|f(x_j)| \le C$ contains a convergent subsequence.

Modulo technicalities, if all three are satisfied, then the quantity

$$c := \inf_{A \in \Gamma} \max_{a \in A} f(a)$$

is achieved as $f(x_{\Gamma})$ for a critical point $x_{\Gamma} \in Crit(f)$. (Intuitively, otherwise we could use the gradient flow to find a family $A \in \Gamma$ with $\max_{a \in A} f(a) < c$.)

Idea: Mollify the *discontinuous* families in $W^{1,2}(M,S^n)$ to produce continuous families in $W^{1,2}(M,\mathbb{R}^{n+1})$ lying close to S^n in an integral sense.

Idea: Mollify the *discontinuous* families in $W^{1,2}(M,S^n)$ to produce continuous families in $W^{1,2}(M,\mathbb{R}^{n+1})$ lying close to S^n in an integral sense.

Given $\epsilon>0$ and $F:M\to\mathbb{R}^{n+1}$, consider the *Ginzburg-Landau* energy

$$E_{\epsilon}(F) := \int_{M} \frac{1}{2} |dF|^2 + \frac{(1-|F|^2)^2}{4\epsilon^2}.$$

Idea: Mollify the *discontinuous* families in $W^{1,2}(M,S^n)$ to produce continuous families in $W^{1,2}(M,\mathbb{R}^{n+1})$ lying close to S^n in an integral sense.

Given $\epsilon>0$ and $F:M\to\mathbb{R}^{n+1}$, consider the *Ginzburg-Landau* energy

$$E_{\epsilon}(F) := \int_{M} \frac{1}{2} |dF|^2 + \frac{(1-|F|^2)^2}{4\epsilon^2}.$$

Let $\Gamma_n(M)$ denote the collection of *continuous* families $\bar{B}^{n+1} \ni a \mapsto F_a \in W^{1,2}(M,\mathbb{R}^{n+1})$ such that $F_a \equiv a$ for $a \in S^n$.

Idea: Mollify the *discontinuous* families in $W^{1,2}(M,S^n)$ to produce continuous families in $W^{1,2}(M,\mathbb{R}^{n+1})$ lying close to S^n in an integral sense.

Given $\epsilon>0$ and $F:M\to\mathbb{R}^{n+1}$, consider the *Ginzburg-Landau* energy

$$E_{\epsilon}(F) := \int_{M} \frac{1}{2} |dF|^2 + \frac{(1-|F|^2)^2}{4\epsilon^2}.$$

Let $\Gamma_n(M)$ denote the collection of *continuous* families $\bar{B}^{n+1}\ni a\mapsto F_a\in W^{1,2}(M,\mathbb{R}^{n+1})$ such that $F_a\equiv a$ for $a\in S^n$. Set $\mathcal{E}_{n,\epsilon}(M,g):=\inf_{F\in\Gamma_n}\max_{a\in B^{n+1}}E_\epsilon(F_a)$, and define

$$\mathcal{E}_n(M,[g]) := \sup_{\epsilon > 0} \mathcal{E}_{n,\epsilon}(M,g) = \lim_{\epsilon \to 0} \mathcal{E}_{n,\epsilon}(M,g).$$

Idea: Mollify the *discontinuous* families in $W^{1,2}(M,S^n)$ to produce continuous families in $W^{1,2}(M,\mathbb{R}^{n+1})$ lying close to S^n in an integral sense.

Given $\epsilon>0$ and $F:M\to\mathbb{R}^{n+1}$, consider the *Ginzburg-Landau* energy

$$E_{\epsilon}(F) := \int_{M} \frac{1}{2} |dF|^2 + \frac{(1-|F|^2)^2}{4\epsilon^2}.$$

Let $\Gamma_n(M)$ denote the collection of *continuous* families $\bar{B}^{n+1}\ni a\mapsto F_a\in W^{1,2}(M,\mathbb{R}^{n+1})$ such that $F_a\equiv a$ for $a\in S^n$. Set $\mathcal{E}_{n,\epsilon}(M,g):=\inf_{F\in\Gamma_n}\max_{a\in B^{n+1}}E_\epsilon(F_a)$, and define

$$\mathcal{E}_n(M,[g]) := \sup_{\epsilon > 0} \mathcal{E}_{n,\epsilon}(M,g) = \lim_{\epsilon \to 0} \mathcal{E}_{n,\epsilon}(M,g).$$

For $n \ge 2$, it's still easy to check that

$$\frac{1}{2}\Lambda_1(M,[g]) \leq \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g]).$$

For $n \ge 2$, it's still easy to check that

$$\frac{1}{2}\Lambda_1(M,[g]) \leq \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g]).$$

Proposition

For each $\epsilon > 0$, $\mathcal{E}_{n,\epsilon}(M^2, g)$ is achieved by a critical point $\Phi_{\epsilon} \in C^{\infty}(M, \mathbb{R}^{n+1})$ for E_{ϵ} of Morse index $\leq n+1$.

For $n \ge 2$, it's still easy to check that

$$\frac{1}{2}\Lambda_1(M,[g]) \leq \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g]).$$

Proposition

For each $\epsilon > 0$, $\mathcal{E}_{n,\epsilon}(M^2,g)$ is achieved by a critical point $\Phi_{\epsilon} \in C^{\infty}(M,\mathbb{R}^{n+1})$ for E_{ϵ} of Morse index $\leq n+1$. For $n \geq 2$, taking $\epsilon \to 0$ (appealing to results of Lin–Wang), we find harmonic maps $\Phi: M \to S^n$ and $\phi_1, \ldots, \phi_k: S^2 \to S^n$ satisfying

$$E(\Phi) + \sum_{i=1}^{k} E(\phi_i) = \mathcal{E}_n(M, [g])$$

and the Morse index bound

$$ind_E(\Phi) + \sum_{i=1}^k ind_E(\phi_i) \leq n+1.$$

Aside: Formally identical constructions in the cases n = 0, 1.

Aside: In the scalar-valued (n=0) case, the min-max energies $\mathcal{E}_{n,\epsilon}(M,g)$ were introduced by Marco Guaraco in his thesis work. In this case, the energies blow up like $\frac{1}{\epsilon}$ as $\epsilon \to 0$, and critical points concentrate along minimal hypersurfaces in M (geodesic networks, if M is a surface).

Aside: Formally identical constructions in the cases n = 0, 1.

Aside: In the scalar-valued (n=0) case, the min-max energies $\mathcal{E}_{n,\epsilon}(M,g)$ were introduced by Marco Guaraco in his thesis work. In this case, the energies blow up like $\frac{1}{\epsilon}$ as $\epsilon \to 0$, and critical points concentrate along minimal hypersurfaces in M (geodesic networks, if M is a surface).

In the complex-valued case (n=1), the energies $\mathcal{E}_{n,\epsilon}$ have been studied by Da Rong Cheng and myself. In this case, $\mathcal{E}_{n,\epsilon}(M,g)$ blows up like $\log(1/\epsilon)$ as $\epsilon \to 0$, and critical points exhibit energy concentration along (weak) minimal submanifolds of codimension two in M (or a collection of points critical for a certain interaction energy, if $\dim(M)=2$).

▶ (El Soufi) Any nontrivial harmonic map $\Phi: M^2 \to S^n$ has $ind_E(\Phi) \ge n-2$.

- ▶ (El Soufi) Any nontrivial harmonic map $\Phi: M^2 \to S^n$ has $ind_E(\Phi) \ge n-2$.
- ▶ (Barbosa, Karpukhin) If $\phi: S^2 \to S^n$ is harmonic and $ind_E(\phi) \le n+1$, then ϕ is an equatorial embedding.

- ▶ (El Soufi) Any nontrivial harmonic map $\Phi: M^2 \to S^n$ has $ind_E(\Phi) \ge n-2$.
- ▶ (Barbosa, Karpukhin) If $\phi: S^2 \to S^n$ is harmonic and $ind_E(\phi) \le n+1$, then ϕ is an equatorial embedding.
- ▶ (Petrides) If M has positive genus, then $\Lambda_1(M,[g]) > 8\pi$ for any conformal class [g].

- ▶ (El Soufi) Any nontrivial harmonic map $\Phi: M^2 \to S^n$ has $ind_E(\Phi) \ge n-2$.
- ▶ (Barbosa, Karpukhin) If $\phi: S^2 \to S^n$ is harmonic and $ind_E(\phi) \le n+1$, then ϕ is an equatorial embedding.
- ▶ (Petrides) If M has positive genus, then $\Lambda_1(M,[g]) > 8\pi$ for any conformal class [g].

In particular, since our min-max harmonic map $\Phi:M\to S^n$ and bubble maps $\phi_1,\ldots,\phi_k:S^2\to S^n$ satisfy

$$E(\Phi) + \sum_{i=1}^k E(\phi_i) \ge \frac{1}{2} \Lambda_1(M, [g])$$

and

$$ind_E(\Phi) + \sum_{i=1}^k ind_E(\phi_i) \leq n+1,$$

we can rule out the presence of bubbles for n sufficiently large...

For every conformal structure (M,[g]) on a closed surface, if n > 5, there exists a harmonic map $\Phi_n : M \to S^n$ of energy

$$\frac{1}{2}\Lambda_1(M,[g]) \leq E(\Phi_n) = \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g])$$

and index

$$ind_E(\Phi_n) \leq n+1.$$

For every conformal structure (M,[g]) on a closed surface, if n > 5, there exists a harmonic map $\Phi_n : M \to S^n$ of energy

$$\frac{1}{2}\Lambda_1(M,[g]) \leq E(\Phi_n) = \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g])$$

and index

$$ind_E(\Phi_n) \leq n+1.$$

The key claim now is that \mathcal{E}_n coincides with $\frac{1}{2}\Lambda_1$ for n large. To this end, we first show that the maps Φ_n stabilize in an appropriate sense as $n \to \infty$.

For every conformal structure (M,[g]) on a closed surface, if n > 5, there exists a harmonic map $\Phi_n : M \to S^n$ of energy

$$\frac{1}{2}\Lambda_1(M,[g]) \leq E(\Phi_n) = \mathcal{E}_n(M,[g]) \leq V_c(n,M,[g])$$

and index

$$ind_E(\Phi_n) \leq n+1.$$

The key claim now is that \mathcal{E}_n coincides with $\frac{1}{2}\Lambda_1$ for n large. To this end, we first show that the maps Φ_n stabilize in an appropriate sense as $n \to \infty$.

Proposition

For any conformal class [g] on M and any $K < \infty$, there exists $N(M,[g],K) \in \mathbb{N}$ such that every sphere-valued harmonic map $\Phi: M \to S^n$ of energy $E(\Phi) \le K$ factors through a totally geodesic embedding $M \to S^N \hookrightarrow S^n$.

$$\bar{g}_n := \frac{1}{2} |d\Phi_n|_g^2 g.$$

$$\bar{g}_n:=\frac{1}{2}|d\Phi_n|_g^2g.$$

In this metric, the components of Φ_n are Laplacian eigenfunctions with common eigenvalue $\lambda=2$.

$$\bar{g}_n:=\frac{1}{2}|d\Phi_n|_g^2g.$$

In this metric, the components of Φ_n are Laplacian eigenfunctions with common eigenvalue $\lambda=2$.

The smallest integer k such that $\lambda_k(M, \bar{g}_n) = 2$ is called the spectral index ind_S (Φ_n) . Equivalently, for any metric $g \in [g]$, it is the index of the Schrödinger operator $\Delta_g - |d\Phi|_g^2$.

$$\bar{g}_n:=\frac{1}{2}|d\Phi_n|_g^2g.$$

In this metric, the components of Φ_n are Laplacian eigenfunctions with common eigenvalue $\lambda=2$.

The smallest integer k such that $\lambda_k(M, \bar{g}_n) = 2$ is called the spectral index ind $_S(\Phi_n)$. Equivalently, for any metric $g \in [g]$, it is the index of the Schrödinger operator $\Delta_g - |d\Phi|_g^2$.

For $k = ind_S(\Phi_n)$, note that

$$\bar{\lambda}_k(M,\bar{g}_n) = 2\mathcal{E}_n(M,[g]) \geq \Lambda_1(M,[g]).$$

If we can show that k=1, then $\bar{\lambda}_1(M,\bar{g}_n) \leq \Lambda_1(M,[g])$ as well, and we arrive at the desired equality

$$\mathcal{E}_n = 2\Lambda_1$$
.

To show that $ind_S(\Phi_n) = 1$ for n large, we note that $\mathcal{E}_n(M,[g])$ is decreasing in n, so that $\mathcal{E}_n(M,[g]) \leq K$ for all $n \geq 2$.

To show that $ind_S(\Phi_n) = 1$ for n large, we note that $\mathcal{E}_n(M, [g])$ is decreasing in n, so that $\mathcal{E}_n(M, [g]) \leq K$ for all $n \geq 2$. By the stabilization lemma, there exists N = N(M, [g]) such that, for n > N, the maps $\Phi_n : M \to S^n$ factor

$$\Phi_n = \iota \circ \Psi_n$$

through a harmonic map $\Psi_n: M \to S^N$ and an equatorial embedding $\iota: S^N \to S^n$.

To show that $ind_S(\Phi_n)=1$ for n large, we note that $\mathcal{E}_n(M,[g])$ is decreasing in n, so that $\mathcal{E}_n(M,[g])\leq K$ for all $n\geq 2$.

By the stabilization lemma, there exists N=N(M,[g]) such that, for n>N, the maps $\Phi_n:M\to S^n$ factor

$$\Phi_n = \iota \circ \Psi_n$$

through a harmonic map $\Psi_n: M \to S^N$ and an equatorial embedding $\iota: S^N \to S^n$.

Comparing the Morse indices $ind_E(\Phi_n)$ and $ind_E(\Psi_n)$ as critical points of the energy functional, one finds

$$ind_E(\Phi_n) = ind_E(\Psi_n) + (n - N)ind_S(\Phi_n).$$

To show that $ind_S(\Phi_n)=1$ for n large, we note that $\mathcal{E}_n(M,[g])$ is decreasing in n, so that $\mathcal{E}_n(M,[g])\leq K$ for all $n\geq 2$.

By the stabilization lemma, there exists N = N(M, [g]) such that, for n > N, the maps $\Phi_n : M \to S^n$ factor

$$\Phi_n = \iota \circ \Psi_n$$

through a harmonic map $\Psi_n: M \to S^N$ and an equatorial embedding $\iota: S^N \to S^n$.

Comparing the Morse indices $ind_E(\Phi_n)$ and $ind_E(\Psi_n)$ as critical points of the energy functional, one finds

$$ind_E(\Phi_n) = ind_E(\Psi_n) + (n - N)ind_S(\Phi_n).$$

In particular, it follows that

$$(n+1) \geq ind_E(\Phi_n) \geq (n-N)ind_S(\Phi_n),$$

and consequently $ind_S(\Phi_n) = 1$ for n > 2N + 1.

For n sufficiently large, $\mathcal{E}_n(M,[g]) = \frac{1}{2}\Lambda_1(M,[g])$, and the metric $g_{\Phi_n} = \frac{1}{2}|d\Phi_n|_g^2 g$ associated to the harmonic map $\Phi_n: M \to S^n$ maximizes $\bar{\lambda}_1(M,g)$ in [g].

For n sufficiently large, $\mathcal{E}_n(M,[g]) = \frac{1}{2}\Lambda_1(M,[g])$, and the metric $g_{\Phi_n} = \frac{1}{2}|d\Phi_n|_g^2 g$ associated to the harmonic map $\Phi_n: M \to S^n$ maximizes $\bar{\lambda}_1(M,g)$ in [g].

Most technical ingredient was the stabilization lemma: a family of harmonic maps Φ_n to spheres of (a priori) varying dimension with uniform energy bounds $E(\Phi_n) \leq K$ all take values in a subsphere of fixed dimension $N_0([g], K)$.

For n sufficiently large, $\mathcal{E}_n(M,[g]) = \frac{1}{2}\Lambda_1(M,[g])$, and the metric $g_{\Phi_n} = \frac{1}{2}|d\Phi_n|_g^2 g$ associated to the harmonic map $\Phi_n: M \to S^n$ maximizes $\bar{\lambda}_1(M,g)$ in [g].

Most technical ingredient was the stabilization lemma: a family of harmonic maps Φ_n to spheres of (a priori) varying dimension with uniform energy bounds $E(\Phi_n) \leq K$ all take values in a subsphere of fixed dimension $N_0([g], K)$.

Rough proof idea: If not, we could find infinitely many $n \in \mathbb{N}$ and harmonic maps $\Phi_n : M \to S^n$ with $E(\Phi_n) \leq K$, for which the kernel of $\Delta_g - |d\Phi_n|_g^2$ has dimension $\geq n+1$.

Theorem (Karpukhin-S. '20)

For n sufficiently large, $\mathcal{E}_n(M,[g]) = \frac{1}{2}\Lambda_1(M,[g])$, and the metric $g_{\Phi_n} = \frac{1}{2}|d\Phi_n|_g^2g$ associated to the harmonic map $\Phi_n: M \to S^n$ maximizes $\bar{\lambda}_1(M,g)$ in [g].

Most technical ingredient was the stabilization lemma: a family of harmonic maps Φ_n to spheres of (a priori) varying dimension with uniform energy bounds $E(\Phi_n) \leq K$ all take values in a subsphere of fixed dimension $N_0([g], K)$.

Rough proof idea: If not, we could find infinitely many $n \in \mathbb{N}$ and harmonic maps $\Phi_n : M \to S^n$ with $E(\Phi_n) \leq K$, for which the kernel of $\Delta_g - |d\Phi_n|_g^2$ has dimension $\geq n+1$.

By a variant of the usual bubbling analysis for harmonic maps, we deduce the existence of a function $\rho \in L^p(M \cup S^2 \cup \cdots \cup S^2)$ (p>1) such that the Schrödinger operator $\Delta-\rho$ has infinitely

many eigenvalues \leq 0. This cannot occur. \square

Applications of the min-max characterization

By definition, $\Lambda_1(M,[g])$ is the supremum of $\bar{\lambda}_1(M,g)$ among all $g \in [g]$. Using the min-max characterization, we can identify $\Lambda_1(M,[g])$ as the supremum of a much larger class of "first eigenvalues" generalizing $\bar{\lambda}_1(M,g)$.

Applications of the min-max characterization

By definition, $\Lambda_1(M,[g])$ is the supremum of $\bar{\lambda}_1(M,g)$ among all $g \in [g]$. Using the min-max characterization, we can identify $\Lambda_1(M,[g])$ as the supremum of a much larger class of "first eigenvalues" generalizing $\bar{\lambda}_1(M,g)$.

Following G. Kokarev, given a conformal class (M,c) and a Radon probability measure $\mu \in [C^0(M)]^*$, one may define a "first eigenvalue"

$$\lambda_1(M,c,\mu) := \inf\{\frac{\int_M |d\varphi|^2 dv_g}{\|\varphi\|_{L^2(\mu)}^2} \mid \int_M \varphi d\mu = 0\}, \tag{1}$$

where $g \in c$ is arbitrary.

Applications of the min-max characterization

By definition, $\Lambda_1(M,[g])$ is the supremum of $\bar{\lambda}_1(M,g)$ among all $g \in [g]$. Using the min-max characterization, we can identify $\Lambda_1(M,[g])$ as the supremum of a much larger class of "first eigenvalues" generalizing $\bar{\lambda}_1(M,g)$.

Following G. Kokarev, given a conformal class (M,c) and a Radon probability measure $\mu \in [C^0(M)]^*$, one may define a "first eigenvalue"

$$\lambda_1(M,c,\mu) := \inf\{\frac{\int_M |d\varphi|^2 dv_g}{\|\varphi\|_{L^2(\mu)}^2} \mid \int_M \varphi d\mu = 0\}, \tag{1}$$

where $g \in c$ is arbitrary.

If $\mu=\rho^2 dv_g$ for $0<\rho\in C^\infty(M)$, this is just the first eigenvalue $\lambda_1(M,\rho^2g)$, but the definition includes some other quantities of geometric interest.

Example: If (M,g) is a surface with boundary (normalized to have unit length) and $\mu=\mathcal{H}^1|_{\partial M}$, then $\lambda_1(M,c,\mu)=\sigma_1(M,c)$ is precisely the *first Steklov eigenvalue* of (M,g)-that is, the first eigenvalue of the Dirichlet-to-Neumann map

$$C^{\infty}(\partial M) \ni u \mapsto \frac{\partial \hat{u}}{\partial \nu} \in C^{\infty}(\partial M)$$
, where $\Delta \hat{u} = 0$ in M .

Example: If (M,g) is a surface with boundary (normalized to have unit length) and $\mu=\mathcal{H}^1|_{\partial M}$, then $\lambda_1(M,c,\mu)=\sigma_1(M,c)$ is precisely the first Steklov eigenvalue of (M,g)—that is, the first eigenvalue of the Dirichlet-to-Neumann map

$$C^{\infty}(\partial M) \ni u \mapsto \frac{\partial \hat{u}}{\partial \nu} \in C^{\infty}(\partial M)$$
, where $\Delta \hat{u} = 0$ in M .

Kokarev studied the problem of maximizing $\lambda_1(M,c,\mu)$ (and higher eigenvalues $\lambda_k(M,c,\mu)$, defined analogously) among certain classes of probability measures, as a generalization of the isoperimetric problem for $\bar{\lambda}_1(M,g)$.

Example: If (M,g) is a surface with boundary (normalized to have unit length) and $\mu=\mathcal{H}^1|_{\partial M}$, then $\lambda_1(M,c,\mu)=\sigma_1(M,c)$ is precisely the *first Steklov eigenvalue* of (M,g)—that is, the first eigenvalue of the Dirichlet-to-Neumann map

$$C^{\infty}(\partial M) \ni u \mapsto \frac{\partial \hat{u}}{\partial \nu} \in C^{\infty}(\partial M)$$
, where $\Delta \hat{u} = 0$ in M .

Kokarev studied the problem of maximizing $\lambda_1(M,c,\mu)$ (and higher eigenvalues $\lambda_k(M,c,\mu)$, defined analogously) among certain classes of probability measures, as a generalization of the isoperimetric problem for $\bar{\lambda}_1(M,g)$.

Among other results, he observed that the Li–Yau conformal volume bound extends to arbitrary probability measures, so that

$$\lambda_1(M, c, \mu) \leq 2V_c(M, c).$$

Definition

Call a Radon measure μ admissible if the map $C^1(M) \to L^2(\mu)$ extends to a compact map $W^{1,2}(M) \to L^2(\mu)$.

Definition

Call a Radon measure μ admissible if the map $C^1(M) \to L^2(\mu)$ extends to a compact map $W^{1,2}(M) \to L^2(\mu)$.

Theorem (Karpukhin-S. '20)

For any admissible probability measure μ , $\lambda_1(M,c,\mu) \leq 2\mathcal{E}_n(M,c)$, with equality only if $\mu = \frac{1}{2E(\Phi)}|d\Phi|_g^2 dv_g$ for a harmonic map $\Phi: M \to S^n$ of spectral index one. In particular,

$$\lambda_1(M, c, \mu) \leq \Lambda_1(M, c),$$

and every maximizer is given by the energy measure of a sphere-valued harmonic map.

Definition

Call a Radon measure μ admissible if the map $C^1(M) \to L^2(\mu)$ extends to a compact map $W^{1,2}(M) \to L^2(\mu)$.

Theorem (Karpukhin-S. '20)

For any admissible probability measure μ , $\lambda_1(M,c,\mu) \leq 2\mathcal{E}_n(M,c)$, with equality only if $\mu = \frac{1}{2E(\Phi)}|d\Phi|_g^2 dv_g$ for a harmonic map $\Phi: M \to S^n$ of spectral index one. In particular,

$$\lambda_1(M, c, \mu) \leq \Lambda_1(M, c),$$

and every maximizer is given by the energy measure of a sphere-valued harmonic map.

In particular, we see that maximizers of $\lambda_1(M,c,\mu)$ coincide with maximizers of $\bar{\lambda}_1(M,g)$, establishing regularity of arbitrary maximizing measures.

Steklov applications

For any domain $\Omega \subset (M,g)$, it's easy to see that

$$|\partial\Omega|\sigma_1(\Omega,g) \leq \lambda_1(M,[g],\frac{\mathcal{H}^1\lfloor\partial\Omega}{|\partial\Omega|}),$$

and therefore

$$|\partial\Omega|\sigma_1(\Omega,g)\leq \Lambda_1(M,[g]).$$

Steklov applications

For any domain $\Omega \subset (M,g)$, it's easy to see that

$$|\partial\Omega|\sigma_1(\Omega,g)\leq \lambda_1(M,[g],\frac{\mathcal{H}^1\lfloor\partial\Omega}{|\partial\Omega|}),$$

and therefore

$$|\partial\Omega|\sigma_1(\Omega,g)\leq \Lambda_1(M,[g]).$$

Now, note that any metric on the surface $M_{\gamma,k}$ with genus γ and k boundary components may be realized as a subdomain of the closed surface M_{γ} of genus γ with *some* metric.

Steklov applications

For any domain $\Omega \subset (M,g)$, it's easy to see that

$$|\partial\Omega|\sigma_1(\Omega,g)\leq \lambda_1(M,[g],rac{\mathcal{H}^1\lfloor\partial\Omega}{|\partial\Omega|}),$$

and therefore

$$|\partial\Omega|\sigma_1(\Omega,g)\leq \Lambda_1(M,[g]).$$

Now, note that any metric on the surface $M_{\gamma,k}$ with genus γ and k boundary components may be realized as a subdomain of the closed surface M_{γ} of genus γ with *some* metric. Letting

$$\Sigma_1(M_{\gamma,k}) := \sup_{g \in Met(M_{\gamma,k})} Length(\partial M_{\gamma,k}, g) \sigma_1(M_{\gamma,k}, g),$$

it follows that

$$\Sigma_1(M_{\gamma,k}) \leq \Lambda_1(M_{\gamma}).$$

At the same time, Girouard and Lagacé showed that the *opposite* bound holds as $k \to \infty$. (Indeed, they show that any closed surface (M,g) contains a sequence of subdomains Ω_k for which $|\partial\Omega_k|\sigma_1(\Omega_k,g) \to Area(M)\lambda_1(M,g)$.)

At the same time, Girouard and Lagacé showed that the *opposite* bound holds as $k \to \infty$. (Indeed, they show that any closed surface (M,g) contains a sequence of subdomains Ω_k for which $|\partial\Omega_k|\sigma_1(\Omega_k,g) \to Area(M)\lambda_1(M,g)$.) Combining our results:

Corollary

$$\lim_{k\to\infty} \Sigma_1(M_{\gamma,k}) = \sup_{k\in\mathbb{N}} \Sigma_1(M_{\gamma,k}) = \Lambda_1(M_{\gamma}). \tag{2}$$

At the same time, Girouard and Lagacé showed that the *opposite* bound holds as $k \to \infty$. (Indeed, they show that any closed surface (M,g) contains a sequence of subdomains Ω_k for which $|\partial\Omega_k|\sigma_1(\Omega_k,g) \to Area(M)\lambda_1(M,g)$.) Combining our results:

Corollary

$$\lim_{k \to \infty} \Sigma_1(M_{\gamma,k}) = \sup_{k \in \mathbb{N}} \Sigma_1(M_{\gamma,k}) = \Lambda_1(M_{\gamma}). \tag{2}$$

The study of maximal metrics for σ_1 has received significant attention following the work of Fraser-Schoen, who observed that maximizing metrics are induced by free-boundary minimal immersions $M_{\gamma,k}\to B^n$ into Euclidean balls.

At the same time, Girouard and Lagacé showed that the *opposite* bound holds as $k \to \infty$. (Indeed, they show that any closed surface (M,g) contains a sequence of subdomains Ω_k for which $|\partial\Omega_k|\sigma_1(\Omega_k,g)\to Area(M)\lambda_1(M,g)$.) Combining our results:

Corollary

$$\lim_{k \to \infty} \Sigma_1(M_{\gamma,k}) = \sup_{k \in \mathbb{N}} \Sigma_1(M_{\gamma,k}) = \Lambda_1(M_{\gamma}). \tag{2}$$

The study of maximal metrics for σ_1 has received significant attention following the work of Fraser-Schoen, who observed that maximizing metrics are induced by free-boundary minimal immersions $M_{\gamma,k} \to B^n$ into Euclidean balls.

Very recently, Mathiessen and Petrides have shown that every $M_{\gamma,k}$ admits a σ_1 -maximizing metric.

At the same time, Girouard and Lagacé showed that the *opposite* bound holds as $k \to \infty$. (Indeed, they show that any closed surface (M,g) contains a sequence of subdomains Ω_k for which $|\partial\Omega_k|\sigma_1(\Omega_k,g)\to Area(M)\lambda_1(M,g)$.) Combining our results:

Corollary

$$\lim_{k \to \infty} \Sigma_1(M_{\gamma,k}) = \sup_{k \in \mathbb{N}} \Sigma_1(M_{\gamma,k}) = \Lambda_1(M_{\gamma}). \tag{2}$$

The study of maximal metrics for σ_1 has received significant attention following the work of Fraser-Schoen, who observed that maximizing metrics are induced by free-boundary minimal immersions $M_{\gamma,k} \to B^n$ into Euclidean balls.

Very recently, Mathiessen and Petrides have shown that every $M_{\gamma,k}$ admits a σ_1 -maximizing metric.

Equation (2) tells us that, for fixed genus γ , the areas of the associated f.b.m.s's are bounded above by the area of the minimal surface of genus γ in S^n realizing $\Lambda_1(M_\gamma)$, with inequality approaching equality as $\#(\text{boundary components}) \to \infty$.

Second eigenvalues

Taking intuition from arguments used by Nadirashvili and Petrides to characterize $\Lambda_2(S^2)$, we define a collection $\Gamma_{n,2}(M)$ of weakly continuous families

$$[\overline{B}^{n+1}]^2 \ni (a,b) \mapsto F_{a,b} \in W^{1,2}(M,S^n)$$

characterized by the boundary conditions

Second eigenvalues

Taking intuition from arguments used by Nadirashvili and Petrides to characterize $\Lambda_2(S^2)$, we define a collection $\Gamma_{n,2}(M)$ of weakly continuous families

$$[\overline{B}^{n+1}]^2 \ni (a,b) \mapsto F_{a,b} \in W^{1,2}(M,S^n)$$

characterized by the boundary conditions

$$F_{a,b} \equiv a \text{ when } |a| \equiv 1$$

and

$$F_{a,b} = \tau_b \circ F_{\tau_b(a),-b}$$
 when $|b| \equiv 1$,

where $\tau_b \in O(n+1)$ denotes reflection through the hyperplane perpendicular to b.

Second eigenvalues

Taking intuition from arguments used by Nadirashvili and Petrides to characterize $\Lambda_2(S^2)$, we define a collection $\Gamma_{n,2}(M)$ of weakly continuous families

$$[\overline{B}^{n+1}]^2 \ni (a,b) \mapsto F_{a,b} \in W^{1,2}(M,S^n)$$

characterized by the boundary conditions

$$F_{a,b} \equiv a \text{ when } |a| \equiv 1$$

and

$$F_{a,b} = \tau_b \circ F_{\tau_b(a),-b}$$
 when $|b| \equiv 1$,

where $\tau_b \in O(n+1)$ denotes reflection through the hyperplane perpendicular to b. Roughly, we define

$$\mathcal{E}_{n,2}(M,[g]) := \inf_{F \in \Gamma_{n,2}(M)} \sup_{(a,b)} E(F_{a,b}).$$

To see that $\mathcal{E}_{n,2}(M,[g]) \geq \frac{1}{2}\Lambda_2(M,[g])$, for any metric $g \in [g]$ with first eigenfunction ϕ_1 , we wish to show that the map

$$\mathcal{I}: [\overline{B}^{n+1}]^2 \to \mathbb{R}^{2(n+1)}, \ \mathcal{I}(a,b) := -\left(\int_M F_{a,b} dv_g, \int_M \phi_1 F_{a,b}\right)$$

has a zero for every $F \in \Gamma_{n,2}(M)$.

To see that $\mathcal{E}_{n,2}(M,[g]) \geq \frac{1}{2}\Lambda_2(M,[g])$, for any metric $g \in [g]$ with first eigenfunction ϕ_1 , we wish to show that the map

$$\mathcal{I}: [\overline{B}^{n+1}]^2 \to \mathbb{R}^{2(n+1)}, \ \mathcal{I}(a,b) := -\left(\int_M F_{a,b} dv_g, \int_M \phi_1 F_{a,b}\right)$$

has a zero for every $F \in \Gamma_{n,2}(M)$. Indeed, if $\mathcal{I}(a,b) = 0$, then the estimate

$$2E(F_{a,b}) \geq \lambda_2(M,g) \int_M |F_{a,b}|^2 = \lambda_2(M,g) Area(M,g)$$

follows immediately from the variational characterization of λ_2 .

To see that $\mathcal{E}_{n,2}(M,[g]) \geq \frac{1}{2}\Lambda_2(M,[g])$, for any metric $g \in [g]$ with first eigenfunction ϕ_1 , we wish to show that the map

$$\mathcal{I}: [\overline{B}^{n+1}]^2 \to \mathbb{R}^{2(n+1)}, \ \mathcal{I}(a,b) := -\left(\int_M F_{a,b} dv_g, \int_M \phi_1 F_{a,b}\right)$$

has a zero for every $F \in \Gamma_{n,2}(M)$. Indeed, if $\mathcal{I}(a,b) = 0$, then the estimate

$$2E(F_{a,b}) \geq \lambda_2(M,g) \int_M |F_{a,b}|^2 = \lambda_2(M,g) Area(M,g)$$

follows immediately from the variational characterization of λ_2 .

Suppose, to the contrary, that $\mathcal I$ has no zeroes. Then, identifying $[B^{n+1}]^2$ and B^{2n+2} via

$$\beta: [B^{n+1}]^2 \to B^{2n+2}, \ \beta(a,b) := \frac{|(a,b)|}{\max\{|a|,|b|\}}(a,b),$$

we can define a map $\mathcal{J}:\overline{B}^{2n+2} o S^{2n+1}$ by

$$\mathcal{J}(a,b) = \frac{\mathcal{I}(\beta^{-1}(a,b))}{|\mathcal{I}(\beta^{-1}(a,b))|}.$$

However, by the symmetry conditions characterizing $F \in \Gamma_{n,2}$, it's not hard to see that *fixed points of* $\mathcal{J}|_{S}$ *come in pairs*.

However, by the symmetry conditions characterizing $F \in \Gamma_{n,2}$, it's not hard to see that *fixed points of* $\mathcal{J}|_{\mathcal{S}}$ *come in pairs*.

By the Lefschetz-Hopf fixed point theorem, a generic null-homotopic self-map of the sphere must have an *odd number* of fixed points.

However, by the symmetry conditions characterizing $F \in \Gamma_{n,2}$, it's not hard to see that *fixed points of* $\mathcal{J}|_{\mathcal{S}}$ *come in pairs*.

By the Lefschetz-Hopf fixed point theorem, a generic null-homotopic self-map of the sphere must have an *odd number* of fixed points.

Thus, (modulo some technical work of ensuring transversality conditions), we reach a contradiction, and conclude that the original map $\mathcal I$ must have a zero. In particular,

$$\mathcal{E}_{n,2}(M,[g]) \geq \frac{1}{2}\Lambda_2(M,[g]).$$

Of course, we also need to show that families $F \in \Gamma_{n,2}(M)$ satisfying these conditions *exist*.

Of course, we also need to show that families $F \in \Gamma_{n,2}(M)$ satisfying these conditions *exist*.

Following ideas of Nadirashvili, one can construct explicit families of maps in $\Gamma_{n,2}(M)$ via a composition

$$F_{a,b} = G_a \circ \Psi_b \circ \phi,$$

where

- $\phi: M \to S^n$ is a branched conformal immersion,
- ▶ G_a is the familiar (n+1)-parameter family of conformal dilations.
- ▶ the maps Ψ_b are defined by fixing some spherical cap C_b and acting on its complement by conformal reflection.

Of course, we also need to show that families $F \in \Gamma_{n,2}(M)$ satisfying these conditions *exist*.

Following ideas of Nadirashvili, one can construct explicit families of maps in $\Gamma_{n,2}(M)$ via a composition

$$F_{a,b} = G_a \circ \Psi_b \circ \phi,$$

where

- $\phi: M \to S^n$ is a branched conformal immersion,
- ▶ G_a is the familiar (n+1)-parameter family of conformal dilations.
- ▶ the maps Ψ_b are defined by fixing some spherical cap C_b and acting on its complement by conformal reflection.

In this way, one finds that $\Gamma_{n,2}(M) \neq \emptyset$, and moreover,

$$\frac{1}{2}\Lambda_2(M,[g]) \leq \mathcal{E}_{n,2}(M,[g]) \leq 4V_c(n,M,[g]).$$

Applying the same machinery from before, we show that

Theorem (Karpukhin-S. '20)

For any closed Riemann surface (M,[g]) and $n \geq 9$, there exists a harmonic map $\Psi_n: M \to S^n$ such that either

$$\frac{1}{2}\Lambda_2(M,[g]) \leq \mathcal{E}_{n,2}(M,[g]) = E(\Psi_n) \text{ and } ind_E(\Psi_n) \leq 2n+2$$

or

$$\frac{1}{2}\Lambda_2(M,[g]) \leq \mathcal{E}_{n,2}(M,[g]) = E(\psi_n) + 4\pi \text{ and } ind_E(\Psi_n) \leq n+4.$$

Applying the same machinery from before, we show that

Theorem (Karpukhin-S. '20)

For any closed Riemann surface (M,[g]) and $n \geq 9$, there exists a harmonic map $\Psi_n: M \to S^n$ such that either

$$\frac{1}{2}\Lambda_2(M,[g]) \leq \mathcal{E}_{n,2}(M,[g]) = E(\Psi_n) \text{ and } ind_E(\Psi_n) \leq 2n+2$$

or

$$\frac{1}{2}\Lambda_2(M,[g]) \leq \mathcal{E}_{n,2}(M,[g]) = E(\psi_n) + 4\pi \text{ and } ind_E(\Psi_n) \leq n+4.$$

Theorem (Karpukhin-S. '20)

For $n \geq N(M, [g])$ sufficiently large,

$$\mathcal{E}_{n,2}(M,[g]) = \frac{1}{2}\Lambda_2(M,[g]).$$

We can then argue as we did for the first eigenvalue to see that

▶ $\Lambda_2(M,[g])$ is an upper bound for $\lambda_2(M,[g],\mu)$ for all admissible probability measures μ . (With equality only for the energy densities of harmonic maps of spectral index 2.)

We can then argue as we did for the first eigenvalue to see that

- ▶ $\Lambda_2(M,[g])$ is an upper bound for $\lambda_2(M,[g],\mu)$ for all admissible probability measures μ . (With equality only for the energy densities of harmonic maps of spectral index 2.)
- $ightharpoonup \Lambda_2(M_\gamma)$ is an upper bound for the maximal Steklov eigenvalues $\Sigma_2(M_{\gamma,k})$. Again, results of Girouard-Lagacé show that this bound is sharp as $k \to \infty$.

We can then argue as we did for the first eigenvalue to see that

- ▶ $\Lambda_2(M,[g])$ is an upper bound for $\lambda_2(M,[g],\mu)$ for all admissible probability measures μ . (With equality only for the energy densities of harmonic maps of spectral index 2.)
- ho $\Lambda_2(M_\gamma)$ is an upper bound for the maximal Steklov eigenvalues $\Sigma_2(M_{\gamma,k})$. Again, results of Girouard-Lagacé show that this bound is sharp as $k \to \infty$.

We expect that similar min-max characterizations can be obtained for the higher eigenvalues $\Lambda_k(M,[g])$. If this is correct, then all of the applications–Steklov bounds, characterization of λ_k -maximal measures–should extend to the full spectrum.

Thank you!