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Isoperimetric problems for Laplacian eigenvalues

On a closed (2-dimensional) surface (M2, g), consider the
Laplacian

∆g = d∗d

with positive spectrum

0 = λ0(M, g) < λ1(M, g) ≤ λ2(M, g) ≤ · · · .

Denote by
λ̄k(M, g) := Area(M, g)λk(M, g)

the scale-invariant normalized eigenvalues.

‘Isoperimetric’ Problem:

I Find upper bounds for λ̄k over all metrics of fixed conformal
type, or over all metrics on a surface M of fixed topology.

I Identify/characterize maximizing metrics, or maximizing
sequences saturating these bounds.
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Isoperimetric problems for Laplacian eigenvalues

Given M2 and conformal class [g ], define the conformal eigenvalues

Λk(M, [g ]) := sup
g∈[g ]

λ̄k(M, g)

and the topological eigenvalues

Λk(M) := sup
g∈Met(M)

λ̄k(M, g).

Study of these maximization problems on closed surfaces begins
with the classical result of Hersch:

Theorem (Hersch ’70)

The round metric maximizes λ̄1(S2, g) among all metrics on S2.
I.e., Λ1(S2) = 8π.
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Proof Idea: For any conformal diffeomorphism

Φ : (S2, g)→ S2
std ⊂ R3,

can compose with F ∈ Conf (S2
std) such that the components Ψi of

the composition Ψ = F ◦ Φ satisfy
∫
S2 Ψidvg = 0.

By the variational characterization

λ1(M, g) := inf{
‖dϕ‖2

L2(M,g)

‖ϕ‖2
L2(M,g)

|
∫
M
ϕdvg = 0}

of λ1(M, g), we then have∫
|dΨi |2 ≥ λ1(M, g)

∫
S2

|Ψi |2dvg ,

and summing over i = 1, 2, 3 gives

2 · Area(S2
std) =

∫
|dΨ|2 ≥ λ1(M, g)Area(S2, g). �
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The same balancing trick for conformal maps to S2 was applied by
Yang & Yau to obtain (non-sharp) upper bounds on λ̄1(M, g) for
any closed, orientable surface M depending only on the genus.

This approach was then refined by Li & Yau, who observed that
balanced conformal maps to higher-dimensional spheres may be
used in place of Hersch’s S2-valued maps.

Namely, given a branched conformal immersion φ : (M2, g)→ Sn,
one can always find F ∈ Conf (Sn) for which∫

M
(F ◦ φ)1dvg = · · · =

∫
M

(F ◦ φ)n+1dvg = 0,

so that

Area(F ◦ φ(M)) = E (F ◦ φ) ≥ 1

2
λ1(M, g)Area(M, g).
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Li–Yau define the nth conformal volume Vc(n,M, [g ]) of a
conformal class [g ] on a surface M by

Vc(n,M, [g ]) := inf
φ∈Conf (M,Sn)

sup
F∈Conf (Sn)

E (F ◦ φ).

Theorem (P. Li–S.T. Yau ’82)

For any conformal structure (M, [g ]), and any g ∈ [g ],

2Vc(n,M, [g ]) ≥ λ̄1(M, g),

with equality if and only if g is induced by a minimal immersion
M → Sn by first eigenfunctions.

I Since the coordinates of the minimal embedding RP2 → S4

are first eigenfunctions, the round metric maximizes λ̄1(M, g)
among metrics on RP2.

I Vc(n,M, [g ]) also gives a lower bound for the Willmore energy
of conformal immersions M → Sn, linking maximization of λ̄1

and minimization of W.
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In the years since, a large literature has grown up around these
problems; let’s quickly highlight a few key contributions. (For a
nice overview, check out the slides or video from Iosif Polterovich’s
May 25 talk in this seminar.)

I (Korevaar ’93): There is a universal constant C such that

λ̄k(M, g) ≤ C (γ + 1)k

for any metric g on a closed, orientable surface M of genus γ.
In particular, Λk(M) <∞ for every k .

I (Nadirashvili ’96): Λ1(T 2) = 8π2
√

3
; the equilateral flat torus

maximizes λ̄1 on T 2.

The latter result was the first to rely on existence theory for
maximizing metrics–a subject which has exploded over the last
decade.
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Existence theory for conformally maximal metrics

By work of Petrides and (via different techniques) Nadirashvili-Sire
and Karpukhin-Nadirashvili-Penskoi-Polterovich, the existence
theory for metrics achieving Λk(M, [g ]) is fairly well-understood: in
general,

I Λk(M, [g ]) ≥ Λk−1(M, [g ]) + 8π for every k ≥ 1.

I Strict inequality implies the existence of a maximizing metric
g ∈ [g ] (possibly with conical singularities), admitting a map
Φ : (M, g)→ SN([g ]) by kth eigenfunctions.

I For k = 1 and M 6= S2, strict inequality (Λ1 > 8π) holds;
hence, every conformal class on a closed Riemannian surface
admits a λ̄1-maximizing metric.

Existence theory for conformal maximizers also plays a key role in
the existence theory for topological maximizers–as in
Mathiessen-Siffert’s work establishing the existence of globally
maximizing metrics for λ̄1(M, g).
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Existence theory for conformally maximal metrics
In particular, for every conformal structure (M, c), maximization of
λ̄k gives rise (modulo bubbling phenomena for k ≥ 2) to a
harmonic sphere-valued map Φ : M → SN(c) of energy

E (Φ) :=
1

2

∫
M
|dΦ|2dvg =

1

2
Λk(M, c),

from which one recovers the associated maximal metric ḡ by
setting

ḡ := |dΦ|2gg for some (any) g ∈ c .

Recall that a sphere-valued map Φ : (M, g)→ Sn is harmonic if
(and only if) it is a critical point of the Dirichlet energy

E (Φ) :=
1

2

∫
M
|dΦ|2,

viewed as a functional on SN -valued maps; equivalently,

∆gΦ = |dΦ|2gΦ as maps M → Rn+1.
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As critical points of the Dirichlet energy, harmonic maps arise
naturally from variational methods–i.e., minimization, or (more
generally) Morse-theoretic/min-max methods–applied to the
energy functional an appropriate space of maps.

Question
Can the harmonic maps associated to maximization of λ̄k(M, g) be
produced by natural variational methods for the Dirichlet energy?

I For the first two eigenvalues, yes: Λ1(M, c) and Λ2(M, c) can
be identified with natural min-max energies associated to
certain families of sphere-valued maps.

I Using the min-max characterization, we can show that
extremal metrics satisfy a stronger maximization property,
allowing us to compare the quantities Λk(M, c) to the spectra
of some other natural pseudodifferential operators.
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Min-max characterization of Λ1(M , c).

For n ≥ 2, consider a weakly continuous family of maps

B̄n+1 3 a 7→ Fa ∈W 1,2(M, Sn)

satisfying
Fa ≡ a for a ∈ Sn.

Example: One could take Fa = Ga ◦ φ, where φ : M → Sn is a

branched conformal immersion and Ga(x) = a + (1−|a|2)
|x+a|2 (x + a).

Note that the maps Ga generate the conformal automorphisms of
Sn modulo isometries.
The map

B̄n+1 3 a 7→ 1

Area(M)

∫
M
Fadvg ∈ Rn+1

is continuous, and restricts to the identity Sn → Sn, so there must
be a ∈ Bn+1 for which

∫
M Fa = 0 ∈ Rn+1.
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In particular, for any such family B
n+1 3 a 7→ Fa, we see that

λ1(M, g)Area(M, g) = λ1(M, g)

∫
M
|Fa|2 ≤

∫
M
|dFa|2

at the point a ∈ B
n+1

where
∫
M Fa = 0 ∈ Rn+1.

Hence, defining a min-max energy

En(M, g) := inf
F

sup
a∈Bn+1

E (F ),

over the collection of all such families, it follows that

λ̄1(M, g) ≤ 2En(M, g).

Noting that En(M, g) is conformally invariant, we see that

1

2
Λ1(M, [g ]) ≤ En(M, [g ]) ≤ Vc(n,M, [g ]).

In practice, we opt for a slightly different definition of En(M, [g ]),
which we can identify as the energy of a harmonic map via
min-max methods...
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which we can identify as the energy of a harmonic map via
min-max methods...



Min-max methods (cartoon version)

Ingredients for classical min-max methods:

I Reasonably smooth (at least C 1) functional f : X → R on a
Hilbert manifold X .

I A nontrivial family Γ ⊂ XX of compact subsets of X preserved
by the gradient flow of f .

I A compactness condition on f called the Palais-Smale
condition: any sequence xj ∈ X with ‖df (xj)‖X∗ → 0 and
|f (xj)| ≤ C contains a convergent subsequence.

Modulo technicalities, if all three are satisfied, then the quantity

c := inf
A∈Γ

max
a∈A

f (a)

is achieved as f (xΓ) for a critical point xΓ ∈ Crit(f ). (Intuitively,
otherwise we could use the gradient flow to find a family A ∈ Γ
with maxa∈A f (a) < c .)
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Since the space W 1,2(M,Sn) with the weak topology is far from a
Banach/Hilbert manifold (and the Dirichlet energy is not a
smooth, Palais-Smale functional on this space), we define our
min-max energies by a regularization procedure.

Idea: Mollify the discontinuous families in W 1,2(M,Sn) to produce
continuous families in W 1,2(M,Rn+1) lying close to Sn in an
integral sense.
Given ε > 0 and F : M → Rn+1, consider the Ginzburg-Landau
energy

Eε(F ) :=

∫
M

1

2
|dF |2 +

(1− |F |2)2

4ε2
.

Let Γn(M) denote the collection of continuous families
B̄n+1 3 a 7→ Fa ∈W 1,2(M,Rn+1) such that Fa ≡ a for a ∈ Sn.
Set En,ε(M, g) := infF∈Γn maxa∈Bn+1 Eε(Fa), and define

En(M, [g ]) := sup
ε>0
En,ε(M, g) = lim

ε→0
En,ε(M, g).
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For n ≥ 2, it’s still easy to check that

1

2
Λ1(M, [g ]) ≤ En(M, [g ]) ≤ Vc(n,M, [g ]).

Proposition

For each ε > 0, En,ε(M2, g) is achieved by a critical point
Φε ∈ C∞(M,Rn+1) for Eε of Morse index ≤ n + 1. For n ≥ 2,
taking ε→ 0 (appealing to results of Lin–Wang), we find harmonic
maps Φ : M → Sn and φ1, . . . , φk : S2 → Sn satisfying

E (Φ) + Σk
i=1E (φi ) = En(M, [g ])

and the Morse index bound

indE (Φ) + Σk
i=1indE (φi ) ≤ n + 1.
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Aside: Formally identical constructions in the cases
n = 0, 1.

Aside: In the scalar-valued (n = 0) case, the min-max energies
En,ε(M, g) were introduced by Marco Guaraco in his thesis work.
In this case, the energies blow up like 1

ε as ε→ 0, and critical
points concentrate along minimal hypersurfaces in M (geodesic
networks, if M is a surface).

In the complex-valued case (n = 1), the energies En,ε have been
studied by Da Rong Cheng and myself. In this case, En,ε(M, g)
blows up like log(1/ε) as ε→ 0, and critical points exhibit energy
concentration along (weak) minimal submanifolds of codimension
two in M (or a collection of points critical for a certain interaction
energy, if dim(M) = 2).
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Now, to say more about our min-max harmonic maps M → Sn,
let’s record a few facts about sphere-valued harmonic maps:

I (El Soufi) Any nontrivial harmonic map Φ : M2 → Sn has
indE (Φ) ≥ n − 2.

I (Barbosa, Karpukhin) If φ : S2 → Sn is harmonic and
indE (φ) ≤ n + 1, then φ is an equatorial embedding.

I (Petrides) If M has positive genus, then Λ1(M, [g ]) > 8π for
any conformal class [g ].

In particular, since our min-max harmonic map Φ : M → Sn and
bubble maps φ1, . . . , φk : S2 → Sn satisfy

E (Φ) + Σk
i=1E (φi ) ≥

1

2
Λ1(M, [g ])

and
indE (Φ) + Σk

i=1indE (φi ) ≤ n + 1,

we can rule out the presence of bubbles for n sufficiently large...
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Theorem (Karpukhin-S. ’20)

For every conformal structure (M, [g ]) on a closed surface, if
n > 5, there exists a harmonic map Φn : M → Sn of energy

1

2
Λ1(M, [g ]) ≤ E (Φn) = En(M, [g ]) ≤ Vc(n,M, [g ])

and index
indE (Φn) ≤ n + 1.

The key claim now is that En coincides with 1
2 Λ1 for n large. To

this end, we first show that the maps Φn stabilize in an appropriate
sense as n→∞.

Proposition

For any conformal class [g ] on M and any K <∞, there exists
N(M, [g ],K ) ∈ N such that every sphere-valued harmonic map
Φ : M → Sn of energy E (Φ) ≤ K factors through a totally
geodesic embedding M → SN ↪→ Sn.
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For the harmonic maps Φn : M → Sn constructed above, consider
the associated metrics (possibly with conical singularities)

ḡn :=
1

2
|dΦn|2gg .

In this metric, the components of Φn are Laplacian eigenfunctions
with common eigenvalue λ = 2.
The smallest integer k such that λk(M, ḡn) = 2 is called the
spectral index indS(Φn). Equivalently, for any metric g ∈ [g ], it is
the index of the Schrödinger operator ∆g − |dΦ|2g .
For k = indS(Φn), note that

λ̄k(M, ḡn) = 2En(M, [g ]) ≥ Λ1(M, [g ]).

If we can show that k = 1, then λ̄1(M, ḡn) ≤ Λ1(M, [g ]) as well,
and we arrive at the desired equality

En = 2Λ1.
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To show that indS(Φn) = 1 for n large, we note that En(M, [g ]) is
decreasing in n, so that En(M, [g ]) ≤ K for all n ≥ 2.

By the stabilization lemma, there exists N = N(M, [g ]) such that,
for n > N, the maps Φn : M → Sn factor

Φn = ι ◦Ψn

through a harmonic map Ψn : M → SN and an equatorial
embedding ι : SN → Sn.
Comparing the Morse indices indE (Φn) and indE (Ψn) as critical
points of the energy functional, one finds

indE (Φn) = indE (Ψn) + (n − N)indS(Φn).

In particular, it follows that

(n + 1) ≥ indE (Φn) ≥ (n − N)indS(Φn),

and consequently indS(Φn) = 1 for n > 2N + 1.
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Theorem (Karpukhin-S. ’20)

For n sufficiently large, En(M, [g ]) = 1
2 Λ1(M, [g ]), and the metric

gΦn = 1
2 |dΦn|2gg associated to the harmonic map Φn : M → Sn

maximizes λ̄1(M, g) in [g ].

Most technical ingredient was the stabilization lemma: a family of
harmonic maps Φn to spheres of (a priori) varying dimension with
uniform energy bounds E (Φn) ≤ K all take values in a subsphere
of fixed dimension N0([g ],K ).
Rough proof idea: If not, we could find infinitely many n ∈ N and
harmonic maps Φn : M → Sn with E (Φn) ≤ K , for which the
kernel of ∆g − |dΦn|2g has dimension ≥ n + 1.
By a variant of the usual bubbling analysis for harmonic maps, we
deduce the existence of a function ρ ∈ Lp(M ∪ S2 ∪ · · · ∪ S2)
(p > 1) such that the Schrödinger operator ∆− ρ has infinitely
many eigenvalues ≤ 0. This cannot occur. �
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Applications of the min-max characterization

By definition, Λ1(M, [g ]) is the supremum of λ̄1(M, g) among all
g ∈ [g ]. Using the min-max characterization, we can identify
Λ1(M, [g ]) as the supremum of a much larger class of “first
eigenvalues” generalizing λ̄1(M, g).

Following G. Kokarev, given a conformal class (M, c) and a Radon
probability measure µ ∈ [C 0(M)]∗, one may define a “first
eigenvalue”

λ1(M, c, µ) := inf{
∫
M |dϕ|

2dvg

‖ϕ‖2
L2(µ)

|
∫
M
ϕdµ = 0}, (1)

where g ∈ c is arbitrary.
If µ = ρ2dvg for 0 < ρ ∈ C∞(M), this is just the first eigenvalue
λ1(M, ρ2g), but the definition includes some other quantities of
geometric interest.
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Example: If (M, g) is a surface with boundary (normalized to have
unit length) and µ = H1|∂M , then λ1(M, c, µ) = σ1(M, c) is
precisely the first Steklov eigenvalue of (M, g)–that is, the first
eigenvalue of the Dirichlet-to-Neumann map

C∞(∂M) 3 u 7→ ∂û

∂ν
∈ C∞(∂M), where ∆û = 0 in M.

Kokarev studied the problem of maximizing λ1(M, c , µ) (and
higher eigenvalues λk(M, c, µ), defined analogously) among certain
classes of probability measures, as a generalization of the
isoperimetric problem for λ̄1(M, g).
Among other results, he observed that the Li–Yau conformal
volume bound extends to arbitrary probability measures, so that

λ1(M, c , µ) ≤ 2Vc(M, c).
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Definition
Call a Radon measure µ admissible if the map C 1(M)→ L2(µ)
extends to a compact map W 1,2(M)→ L2(µ).

Theorem (Karpukhin-S. ’20)

For any admissible probability measure µ, λ1(M, c , µ) ≤ 2En(M, c),
with equality only if µ = 1

2E(Φ) |dΦ|2gdvg for a harmonic map
Φ : M → Sn of spectral index one. In particular,

λ1(M, c , µ) ≤ Λ1(M, c),

and every maximizer is given by the energy measure of a
sphere-valued harmonic map.

In particular, we see that maximizers of λ1(M, c , µ) coincide with
maximizers of λ̄1(M, g), establishing regularity of arbitrary
maximizing measures.
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Steklov applications

For any domain Ω ⊂ (M, g), it’s easy to see that

|∂Ω|σ1(Ω, g) ≤ λ1(M, [g ],
H1b∂Ω

|∂Ω|
),

and therefore
|∂Ω|σ1(Ω, g) ≤ Λ1(M, [g ]).

Now, note that any metric on the surface Mγ,k with genus γ and k
boundary components may be realized as a subdomain of the
closed surface Mγ of genus γ with some metric.
Letting

Σ1(Mγ,k) := sup
g∈Met(Mγ,k )

Length(∂Mγ,k , g)σ1(Mγ,k , g),

it follows that
Σ1(Mγ,k) ≤ Λ1(Mγ).
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At the same time, Girouard and Lagacé showed that the opposite
bound holds as k →∞. (Indeed, they show that any closed
surface (M, g) contains a sequence of subdomains Ωk for which
|∂Ωk |σ1(Ωk , g)→ Area(M)λ1(M, g).)

Combining our results:

Corollary

lim
k→∞

Σ1(Mγ,k) = sup
k∈N

Σ1(Mγ,k) = Λ1(Mγ). (2)

The study of maximal metrics for σ1 has received significant
attention following the work of Fraser-Schoen, who observed that
maximizing metrics are induced by free-boundary minimal
immersions Mγ,k → Bn into Euclidean balls.
Very recently, Mathiessen and Petrides have shown that every Mγ,k

admits a σ1-maximizing metric.
Equation (2) tells us that, for fixed genus γ, the areas of the
associated f.b.m.s’s are bounded above by the area of the minimal
surface of genus γ in Sn realizing Λ1(Mγ), with inequality
approaching equality as #(boundary components)→∞.
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Second eigenvalues

Taking intuition from arguments used by Nadirashvili and Petrides
to characterize Λ2(S2), we define a collection Γn,2(M) of weakly
continuous families

[B
n+1

]2 3 (a, b) 7→ Fa,b ∈W 1,2(M, Sn)

characterized by the boundary conditions

Fa,b ≡ a when |a| ≡ 1

and
Fa,b = τb ◦ Fτb(a),−b when |b| ≡ 1,

where τb ∈ O(n + 1) denotes reflection through the hyperplane
perpendicular to b. Roughly, we define

En,2(M, [g ]) := inf
F∈Γn,2(M)

sup
(a,b)

E (Fa,b).
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To see that En,2(M, [g ]) ≥ 1
2 Λ2(M, [g ]), for any metric g ∈ [g ]

with first eigenfunction φ1, we wish to show that the map

I : [B
n+1

]2 → R2(n+1), I(a, b) := −
(∫

M
Fa,bdvg ,

∫
M
φ1Fa,b

)
has a zero for every F ∈ Γn,2(M).

Indeed, if I(a, b) = 0, then the
estimate

2E (Fa,b) ≥ λ2(M, g)

∫
M
|Fa,b|2 = λ2(M, g)Area(M, g)

follows immediately from the variational characterization of λ2.

Suppose, to the contrary, that I has no zeroes. Then, identifying
[Bn+1]2 and B2n+2 via

β : [Bn+1]2 → B2n+2, β(a, b) :=
|(a, b)|

max{|a|, |b|}
(a, b),

we can define a map J : B
2n+2 → S2n+1 by

J (a, b) =
I(β−1(a, b))

|I(β−1(a, b))
.
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In particular, the restriction J |S : S2n+1 → S2n+1 to the boundary
defines a null-homotopic self-map of S2n+1.

However, by the symmetry conditions characterizing F ∈ Γn,2, it’s
not hard to see that fixed points of J |S come in pairs.

By the Lefschetz-Hopf fixed point theorem, a generic
null-homotopic self-map of the sphere must have an odd number
of fixed points.

Thus, (modulo some technical work of ensuring transversality
conditions), we reach a contradiction, and conclude that the
original map I must have a zero. In particular,

En,2(M, [g ]) ≥ 1

2
Λ2(M, [g ]).
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original map I must have a zero. In particular,
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Of course, we also need to show that families F ∈ Γn,2(M)
satisfying these conditions exist.

Following ideas of Nadirashvili, one can construct explicit families
of maps in Γn,2(M) via a composition

Fa,b = Ga ◦Ψb ◦ φ,

where

I φ : M → Sn is a branched conformal immersion,

I Ga is the familiar (n + 1)-parameter family of conformal
dilations,

I the maps Ψb are defined by fixing some spherical cap Cb and
acting on its complement by conformal reflection.

In this way, one finds that Γn,2(M) 6= ∅, and moreover,

1

2
Λ2(M, [g ]) ≤ En,2(M, [g ]) ≤ 4Vc(n,M, [g ]).
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Applying the same machinery from before, we show that

Theorem (Karpukhin-S. ’20)

For any closed Riemann surface (M, [g ]) and n ≥ 9, there exists a
harmonic map Ψn : M → Sn such that either

1

2
Λ2(M, [g ]) ≤ En,2(M, [g ]) = E (Ψn) and indE (Ψn) ≤ 2n + 2

or

1

2
Λ2(M, [g ]) ≤ En,2(M, [g ]) = E (ψn) + 4π and indE (Ψn) ≤ n + 4.

Theorem (Karpukhin-S. ’20)

For n ≥ N(M, [g ]) sufficiently large,

En,2(M, [g ]) =
1

2
Λ2(M, [g ]).



Applying the same machinery from before, we show that

Theorem (Karpukhin-S. ’20)

For any closed Riemann surface (M, [g ]) and n ≥ 9, there exists a
harmonic map Ψn : M → Sn such that either

1

2
Λ2(M, [g ]) ≤ En,2(M, [g ]) = E (Ψn) and indE (Ψn) ≤ 2n + 2

or

1

2
Λ2(M, [g ]) ≤ En,2(M, [g ]) = E (ψn) + 4π and indE (Ψn) ≤ n + 4.

Theorem (Karpukhin-S. ’20)

For n ≥ N(M, [g ]) sufficiently large,

En,2(M, [g ]) =
1

2
Λ2(M, [g ]).



We can then argue as we did for the first eigenvalue to see that

I Λ2(M, [g ]) is an upper bound for λ2(M, [g ], µ) for all
admissible probability measures µ. (With equality only for the
energy densities of harmonic maps of spectral index 2.)

I Λ2(Mγ) is an upper bound for the maximal Steklov
eigenvalues Σ2(Mγ,k). Again, results of Girouard-Lagacé show
that this bound is sharp as k →∞.

We expect that similar min-max characterizations can be obtained
for the higher eigenvalues Λk(M, [g ]). If this is correct, then all of
the applications–Steklov bounds, characterization of λk -maximal
measures–should extend to the full spectrum.
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Thank you!


