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Various forms of Weyl’s law

Let (M, g) be a three-dimensional compact, C 4 Riemannian manifold without boundary.

Notation:

−∆g = (nonnegative) Laplace–Beltrami operator on (M, g)

1(−∆g ≤ λ) = spectral projection corresponding to eigenvalues ≤ λ

1(−∆g ≤ λ)(x , y) = integral kernel of 1(−∆g ≤ λ)

N(λ,−∆g ) = Tr 1(−∆g ≤ λ) =

∫
M

1(−∆g ≤ λ)(x , x) dvg (x) = # ev’s ≤ λ

We are interested in four different forms of Weyl’s law concerning the limit λ→∞:

• integrated Weyl law:

• pointwise Weyl law:

• sharp integrated Weyl law:

• sharp pointwise Weyl law:

N(λ,−∆g ) = λ3/2

6π2 Volg (M) + o(λ3/2)

1(−∆g ≤ λ)(x , x) = λ3/2

6π2 + o(λ3/2) uniformly in x ∈ M

N(λ,−∆g ) = λ3/2

6π2 Volg (M) +O(λ)

1(−∆g ≤ λ)(x , x) = λ3/2

6π2 +O(λ) uniformly in x ∈ M

We won’t discuss improved integrated/pointwise Weyl laws with o(λ) for some (M, g).

History: Weyl (1911), Carleman (1934), Minakshisundaram–Pleijel (1949), Levitan
(1952), Avakumović (1952 & 1956)



Adding a rough potential

Question: What happens with Weyl’s law if we consider −∆g + V instead of −∆g?

For ‘nice’ V , the answer is ‘nothing’: By standard semiclassics, with λ = h−2,

1(−∆g +V ≤ λ)(x , x) = 1(−h2∆g +h2V − 1 ≤ 0)(x , x) = h−3

6π2 +O(h−2) = λ3/2

6π2 +O(λ)

We are interested in rough V , namely from the Kato class

lim
ε→0

sup
x∈M

∫
dg (x,y)<ε

|V (y)|
dg (x , y)

dvg (y) = 0 .

Why rough V ?

• Question raised by Blair–Sire–Sogge (2019), Huang–Sogge (2020)

• Singular potentials appear naturally in some problems in quantum physics

• Linear problems with rough data often appear as a step in nonlinear problems

• We’ll find interesting (and, at least for us, unexpected) phenomena

Why Kato class V ?

• The Kato class is scaling critical and almost optimal for selfadjointness (like L3/2)

• Eigenfunctions of −∆g + V with Kato class V are bounded (unlike L3/2)

And: We really think Avakumović’s method deserves to be more widely known!
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Main results

Theorem (Pointwise Weyl law for Kato class potentials)

Let V : M → R be in the Kato class. Then, uniformly in x ∈ M, as λ→ +∞,

1(−∆g + V ≤ λ)(x , x) =
λ3/2

6π2
+ o(λ3/2) .

The following example shows that o(λ3/2) cannot be replaced by O(λ3/2−ε) for any ε > 0.

Example (Violation of the sharp pointwise Weyl law)

Let η ∈ (0, 1), x0 ∈ M, γ ∈ R, χ a cut-off function which is ≡ 1 near zero and

V (x) = γ
χ(dg (x , x0))

dg (x , x0)2−η .

Then, in geodesic normal coordinates around x0,

1(−∆g + V ≤ λ)(y/
√
λ, y/

√
λ) =

λ3/2

6π2
− γ Ξη(y) λ(3−η)/2 + o(λ(3−η)/2) ,

where Ξη(0) > 0 and Ξη(y) ∼ (2π2)−1|y |−2+η as |y | → ∞.



Main results, cont’d

Theorem (Sharp pointwise Weyl law)

If for some ε > 0, supx∈M
∫
dg (y,x)<ε

dg (y , x)−2|V (y)| dvg (y) <∞, then, uniformly in

x ∈ M, as λ→ +∞,

1(−∆g + V ≤ λ)(x , x) =
λ3/2

6π2
+O(λ) .

• The condition in this theorem is, in particular, satisfied if V ∈ Lp(M) for some p > 3.

• Conversely, for any p < 3 there is an η ∈ (0, 1) such that the V from the previous
example belongs to Lp.

Theorem (Sharp integrated Weyl law)

If V ∈ Kato class + L3/2(M), then, as λ→ +∞,

N(t,−∆g + V ) =
λ3/2

6π2
+O(λ) .

• For Kato class V , this is due to Huang–Sogge (2020).

• Despite the failure of a sharp Weyl law in ptw form, it is valid in integrated form.



Comparison of our / Avakumović’s and Levitan’s strategy of proof

Two ingredients in the proof:

• Parametrix estimate for (−∆g + V + λ)−2 for λ large positive

• Tauberian theorem for a Stieltjes transform

Morally, the same should probably work for et(∆g−V ) and the Laplace transform.

We do not work with wave propagators exp(−it
√
−∆g + V ) (as Levitan, Hörmander,

. . . ) or resolvents close to the spectrum (−∆g + V − λ+ iε)−k (as Agmon, Métivier,. . . )

Compared to these latter works, here

• the parametrix estimates are simpler. All integral kernels are positive, which is very
helpful when trying to accommodate rough V .

• the Tauberian theorems become more difficult.

Our strategy is similar to Avakumović’s, but compared to Avakumović (V = 0) and
Bojanić (V bounded, Euclidean space), we need to work harder in both ingredients.

• There is an additional term in the parametrix estimates, which may give rise to the
violation of the sharp pointwise Weyl law.

• This additional term affects the Tauberian theorem to leading order.



Weyl law and Tauberian theorems

Reminder: Carleman’s proof of the pointwise Weyl law. With ρ(λ, x)=1(−∆g ≤ λ)(x , x),

et∆g (x , x) =

∫ ∞
0

e−tλ dρ(λ, x) , (−∆g + λ)−2(x , x) =

∫ ∞
0

dρ(µ, x)

(µ+ λ)2
.

• Parametrix estimates:

et∆g (x , x) = (4πt)−3/2(1+o(1)) or (−∆g+λ)−2(x , x) = (8π
√
λ)−1(1+o(1))

• Tauberian theorem of Hardy–Littlewood (with simple proof of Karamata)

Asymp of Laplace / Stieltjes trafo of pos measure =⇒ Asymp of pos measure

This implies 1(−∆g ≤ λ)(x , x) = ρ(λ, x) = (6π2)−1λ3/2(1 + o(1)).

Problem: Getting the next term in the parametrix estimates gives almost nothing for
1(−∆g ≤ λ)(x , x). (We get O(1/ lnλ) instead of o(1), Freud’s theorem.)

Avakumović’s insight no. 1: A remainder O(e−ε/t) / O(e−ε
√
λ) gives the sharp bound

for 1(−∆g ≤ λ)(x , x). (We get O(λ−1/2) instead of o(1), complex Tauberian theorem.)

Avakumović (1952): For open sets Ω ⊂ R3 in Euclidean space

1(−∆g ≤ λ)(x , x) = (6π2)−1λ3/2 +O(λ dist(x , ∂Ω)−1) .

(Follows also by finite speed of propagation for wave equation from Levitan’s approach.)



Weyl law and Tauberian theorems, cont’d

On manifolds, one cannot expect an exponentially small error, in fact,

et∆g (x , x)=(4πt)−3/2(1+ct+o(t)) or (−∆g+λ)−2(x , x)=(8π
√
λ)−1(1+c ′λ−1+o(λ−1))

Avakumović’s insight no. 2: The non-exponentially small terms have a special
structure. They are the Stieltjes transform of an acceptable term,

(−∆g + λ)−2(x , x) = (8π
√
λ)−1 +

∫ ∞
0

R(µ, x)

(µ+ λ)3
dµ+O(e−ε

√
λ) with |R(µ, x)| ≤ Cµ .

Now take B1(λ) = 1(−∆g ≤ λ)(x , x), B0 ≡ −(6π2)−1, B2(λ) = R(λ, x) and apply

Theorem (Tauberian theorem)

Let B1 be nondecreasing, B2(λ) = O(λ) and B0 bounded with

B0(v 2)− B0(u2) ≥ −C/u, 0 < u ≤ v ≤ u + 1.

Assume that for some ε0 > 0,∫ ∞
0

B0(µ)µ3/2 + B1(µ) + B2(µ)

(µ+ λ)3
dµ = O

(
e−ε0

√
λ
)

as λ→ +∞.

Then, B0(λ)λ3/2 + B1(λ) + B2(λ) = O(λ) as λ→ +∞.



Side remarks

• Open question: Recall that

(−∆g+λ)−2(x , x) = (8π
√
λ)−1+

∫ ∞
0

R(µ, x)

(µ+ λ)3
dµ+O(e−ε

√
λ) with |R(µ, x)| ≤ Cµ .

Is it true that

et∆g (x , x) = (4πt)−3/2 +

∫ ∞
0

te−tµR̃(µ, x) dµ+O(e−ε/t) with |R̃(µ, x)| ≤ Cµ ?

A footnote in Avakumović’s paper seems to suggest that yes. This might make it
possible to extend the method to higher dimensions.

• Instead of (−∆g + λ)−2(x , x), Avakumović works with

lim
y→x

(
(−∆ + λ)−1(x , y)− lim

λ′→0

(
(−∆ + λ′)−1(x , y)− 1

λ′ Volg M

))
.

• For Avakumović’s proof the simpler version of the Tauberian theorem with
B0 ≡ const. suffices, but it does not for us due to the ‘additional terms’ mentioned
before. We haven’t seen this theorem in the literature, but it might be known. The
strategy of the proof is to reduce it to the Ingham–Karamata Tauberian theorem.



Parametrix estimates

Proposition

Let V : M → R be in the Kato class. There are C <∞ and ε0 > 0 such that for all
ε ∈ (0, ε0], all x ∈ M and λ ≥ Cε−2, with some explicitly given rV0,ε and RV

ε ,∣∣∣∣∣(−∆g + V + λ)−2(x , x) +
1

8π
√
λ
−
∫ ∞

0

t3/2 rV0,ε(t, x) + RV
ε (t, x)

(t + λ)3
dt

∣∣∣∣∣ ≤ C e−ε
√
λ/4,

∣∣∣RV
ε (t, x)

∣∣∣ ≤ C t ,
∣∣∣rV0,ε(t, x)

∣∣∣ ≤ C ‖V ‖K(ε) for all t ≥ 0 ,∣∣∣rV0,ε(t, x)− rV0,ε(t
′, x)

∣∣∣ ≤ C ‖V ‖K(ε)

√
t′ −
√
t√

t
for all 0 ≤ t ≤ t′ .

Feeding this into our Tauberian theorem with B0(λ)=(−(6π2)−1+2−1rV0,ε(λ, x))λ3/2 gives

Corollary

Let V : M → R be in the Kato class. Then for all x ∈ M and ε ∈ (0, ε0],∣∣∣1(−∆g + V ≤ λ)(x , x)− (6π2)−1λ3/2 − 2−1rV0,ε(λ, x)λ3/2
∣∣∣ ≤ Cε(1 + λ) .

This corollary and the explicit form of rV0,ε gives more or less directly our main results.



Proof of parametrix estimates

Goal

∣∣∣∣∣(−∆g + V + λ)−2(x , x) +
1

8π
√
λ
−
∫ ∞

0

t3/2 rV0,ε(t, x) + RV
ε (t, x)

(t + λ)3
dt

∣∣∣∣∣ ≤ C e−ε
√
λ/4

We work with a V -independent parametrix for (−∆g + V + λ)−1,

Tλ,ε(x , y) :=
e−
√
λdg (x,y)

4πdg (x , y)
U0(x , y) χ(ε−1dg (x , y)) .

Set γV
λ,ε(x , y) := Tλ,ε(x , y)− (−∆g + V + λ)−1(x , y) and

RV
λ,ε(x , y) := (−∆g + V + λ)γV

λ,ε = Rλ,ε + VTλ,ε .

Then γV
λ,ε satisfies

γV
λ,ε(x , y) =

∫
M

Tλ,ε(x , z)RV
λ,ε(z , y) dvg (z)−

∫
M

γV
λ,ε(x , z)RV

λ,ε(z , y) dvg (z) .

If λε2 is large enough and ε small enough, this can be solved by iteration,

γV
λ,ε =

∞∑
n=1

(−1)n−1Tλ,ε
(
RV
λ,ε

)n
.

We want to see that γV
λ,ε leads to the terms t3/2 rV0,ε(t, x)+RV

ε (t, x) in the claimed bound.



Proof of parametrix estimates, cont’d

γV
λ,ε =

∞∑
n=1

(−1)n−1γ
(n,V )
λ,ε where γ

(n,V )
λ,ε = Tλ,ε

(
RV
λ,ε

)n
and RV

λ,ε(x , y) = Rλ,ε + VTλ,ε

Recall Avakumović’s two insights. Accordingly, we decompose

γ
(n,V )
λ,ε = additional term + special structure + exponentially small

• The ‘additional’ term is simply Tλ,ε (VTλ,ε)
n.

• The ‘special structure’ term comes from the region

{(z1, . . . , zn) : dg (x , z1) ≤ ε , dg (z1, z2) ≤ ε , . . . , dg (zn−1, zn) ≤ ε , dg (zn, y) ≤ ε}
in the n-fold integral Tλ,ε

(
RV
λ,ε

)n − Tλ,ε (VTλ,ε)
n.

• The rest is exponentially small.

The λ-derivatives of the ‘additional’ and ‘special structure’ terms need to be shown to be
Stieltjes transforms of ‘nice’ functions. The only λ-dependence in these terms is through

e−
√
λδ

√
λ

=

∫ ∞
0

t3/2κ(δ
√
t)

(t + λ)3
dt , δ = dg (x , z1) + dg (z1, z2) + . . .+ dg (zn−1, zn) + dg (zn, y)

with κ(r) = (8/π)(sin r − r cos r)/r 3. This is where we use d = 3! We find

r
(n,V )
0,ε (x , y)= 1

2

∫
· · ·
∫
δκ(δ
√
t)T0,ε(x , z1)V(z1)T0,ε(z1, z2) · · ·V(zn)T0,ε(zn, y)dvg(z1)· · ·dvg(zn)



Summary

• We have discussed various forms of Weyl’s law for −∆g +V on 3D manifolds (M, g).

• We have seen that for Kato class potentials V ,

1(−∆g + V ≤ λ)(x , x) =
λ3/2

6π2
+ o(λ3/2)

and that the remainder cannot be replaced by O(λ3/2−ε) for any ε > 0.

• We have shown that

sup
x∈M

∫
dg (y,x)<ε

dg (y , x)−2|V (y)| dvg (y) <∞

is sufficient for a O(λ) remainder.

• We have argued that Avakumović’s method, which is based on (−∆g + V + λ)−2

for large positive λ, is well suited for the inclusion of rough potentials V .

• It remains an open problem to extend this method to higher dimensions.

• It would be interesting to recover and to extend to V 6= 0 Seeley’s estimate in the
presence of a boundary.
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