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Direct Steklov problem (1902)

Ω —bounded domain inRd, d ≥ 2 (or more generally a Riemannian manifold
with boundary), ∂Ω —Lipschitz.

The Steklov eigenvalue problem on Ω:{
∆u = 0 in Ω,
∂u
∂n = λρu on ∂Ω,

where ρ ∈ L∞(∂Ω) is a given non-negative function.
From now on

ρ ≡ 1, d = 2,L = L(∂Ω) = |∂Ω|.

The Steklov spectrum is discrete, 0 = λ1 < λ2 ≤ λ3 ≤ · · · ↗ +∞, the

corresponding normalised quadratic form is
‖∇u‖2L2(Ω)

‖u‖2L2(∂Ω)

.
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D–Nmap

Alternatively, Steklov eigenvalues can be viewed as the eigenvalues of the
Dirichlet-to-Neumann map,

D : H 1/2(∂Ω)→ H−1/2(∂Ω),

f 7→ ∂nHΩf ,
HΩf —harmonic extension of f from the boundary

If ∂Ω is smooth,D is a self-adjoint elliptic pseudo-di�erential operator of order 1
on ∂Ω with principal symbol |ξ|.
Motivation: inverse problems, di�erential geometry, hydrodynamics, geometry
processing in computer graphics.

Example (disk)
Steklov spectrum of a disk of radius one is 0, 1, 1, 2, 2, 3, 3, . . . ,m,m, . . . ,
eigenfunctions being 1, r sinφ, r cosφ, . . . , rm sinmφ, rm cosmφ, . . . . For
radiusR, scale as 1/R. Eigenfunctions decay fast in the interior.
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Known asymptotics

∂Ω is smooth and simply connected:

Lλ2m = Lλ2m+1 + o(m−∞) = 2πm + o(m−∞), m→ +∞

(Rozenblyum 1986, Edward 1993 following Guillemin andMelrose). Almost
the same as for a disk.
∂Ω is piecewise C1:

Lλm = πm + o(m), m→ +∞

(Agranovich 2006; Sandgren 1955 for C2). One-termWeyl asymptotics with
a bad remainder.
Square of side one:

Lλ4m−3 = Lλ4m−2 + o(1) = Lλ4m−1 + o(1) = Lλ4m + o(1)

=

(
m− 1

2

)
π + o(1), m→ +∞

(Girouard & Polterovich 2017). (Non-trivial) separation of variables.
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Direct problem of [LPPS19]

Obtain sharp asymptotics of Steklov eigenvalues for curvilinear polygons

α = (α1, . . . , αn) ∈ (0, π)n, ` = (`1, . . . , `n) ∈ Rn
+, `j = |Ij|,L =

n∑
j=1

`j
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.

Let Zn = {±1}n, and for a vector ζ = (ζ1, . . . , ζn) ∈ Zn with cyclic identi�cation
ζn+1 ≡ ζ1, let

Ch(ζ) := {j ∈ {1, . . . , n} | ζj 6= ζj+1}
denote the set of indices of sign change in ζ, e.g.

Ch((1, 1, 1)) = ∅; Ch((−1,−1, 1, 1)) = {2, 4}.

Let
F(σ) = Fα,`(σ) :=

∑
ζ∈Zn

ζ1=1

pζ cos(` · ζσ)− p0

be the characteristic trigonometric polynomial ofPα,` with

pζ = pζ,α :=
∏

j∈Ch(ζ)

cos
π2

2αj
,
∏
∅

:= 1, p0 = p0,α :=
n∏
j=1

sin
π2

2αj
.
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Example— trigonometric polynomials

Two-gon, ` = (`1, `2),α = (α1, α2)

Z2 = {(1, 1), (1,−1), (−1, 1), (−1,−1)}
F(σ) = p(1,1) cos((`1 + `2)σ) + p(1,−1) cos((`1 − `2)σ)− p0

Ch((1, 1)) = ∅ =⇒ p(1,1) = 1

Ch((1,−1)) = {1, 2} =⇒ p(1,−1) = cos
π2

2α1
cos

π2

2α2

p0 = sin
π2

2α1
sin

π2

2α2

F(σ) = cos((`1 + `2)σ) + cos
π2

2α1
cos

π2

2α2
cos((`1 − `2)σ)

− sin
π2

2α1
sin

π2

2α2
.
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Main Theorem

Theorem
LetP be a curvilinear polygon withα ∈ (0, π)n. Define Σ = Σα,` := {σm} to be
the multiset of non-negative roots of

Fα,`(σ)

=
∑
ζ∈Zn

ζ1=1

pζ cos(` · ζσ)− p0,

taken with their algebraic multiplicity except σ = 0 (if present) which is taken with
half its algebraic multiplicity. Then, with some ε > 0,

σm − λm = O
(
m−ε

)
as m→ +∞.

Wewill call the roots σm the quasi-eigenvalues ofP . It also turns out that σm’s are
exactly the square roots of eigenvalues of some quantum graph Laplacian.
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Exceptional and special angles

Although they do not appear explicitly above, particular roles in our analysis are
played by

exceptional angles

α ∈ E :=
{ π
2k
, k ∈ N

}
and special angles

α ∈ S :=

{
π

2k + 1
, k ∈ N

}
Both exceptional and special angles can be even or odd depending on whether the
corresponding k is even or odd.

Parity of α ∈ E ∪ S isO(α) := (−1)k.
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Exceptional case: needs re-labelling

αE1

αE2

αE3

Y1
n1 = 2

Y2
n2 = 2

Y3
n3 = 1

`
(1)
1

`
(1)
2

`
(2)
1

`
(2)
2

`
(3)
1

α
(1)
1

α
(1)
1

Exceptional angles αE1 , . . . αEK

They split the boundary intoK
exceptional boundary components

Yκ, each with nκ ≥ 1 pieces,
κ = 1, . . . ,K , n1 + · · ·+ nK = n

κth component has lengths
`(κ) = (`

(κ)
1 , . . . , `

(κ)
nk ) and angles

α(κ) = (α
(κ)
1 , . . . , α

(κ)
nk−1).

An exceptional boundary component may be even,O
(
αEκ
)

= O
(
αEκ−1

)
or

odd,O
(
αEκ
)

= −O
(
αEκ−1

)
.

Assume we haveKeven even exceptional boundary components andKodd odd
exceptional boundary components,Keven + Kodd = K .
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(
αEκ−1

)
.

Assume we haveKeven even exceptional boundary components andKodd odd
exceptional boundary components,Keven + Kodd = K .
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Non-exceptional vs exceptional case

Non-exceptional case Exceptional case

σ = 0 present only if
n∏
j=1

tan π2

4αj
= 1;

always simple

has multiplicity Kodd
2

σ > 0 has multiplicity one or two may have any multiplicity up to
K

Trig. poly-
nomial

factorises: Fα,`(σ) =∏K
κ=1 Feven/odd,α(κ),`(κ)(σ)

Eigenfunc.
(in a sense) equidistributed over
the whole boundary

concentrate on some exceptional
boundary components
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Direct problem summary

and inverse problems statements

curvilinear
polygonP

α, `

Characteristic trig.
polynomial Fα,`(σ)

exc
epti

onal
case

quasi-eigenvalues
Σα,` := {σ1, σ2, . . . }

its roots

eigenvalues
ΛP := {λ1, λ2, . . . }

|λm − σm| = O(m−ε) asm→∞

?
?

InvP I

unconditional, pseudo-algorithmic

InvP IIα, `

InvP III

genericity, fully algorithmic
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Inverse problems— isospectrality

De�nition (Steklov isospectrality and and quasi-isospectrality)
We say that two domainsΩ1 andΩ2 are (Steklov) isospectral if their Steklov spectra
coincide, ΛΩ1 = ΛΩ2 .

We say that two planar domains Ω1 and Ω2 are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:
λm(Ω1)− λm(Ω2) = o(1) asm→∞.

Remarks
(a) any two isospectral planar domains are also quasi-isospectral; (b) it is not known
if there exist any planar isospectral non-isometric domains; (c) known Steklov
spectral invariants are the perimeter (byWeyl’s law), and in the smooth case also
the number and lengths of connected boundary components [GPPS14]; (d) on the
other hand, any two smooth planar simply connected domains with the same
perimeter are Steklov quasi-isospectral, and moreover o(m−∞)-quasi-isospectral.
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Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n

, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0, andαj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0

, and αj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special

αj 6= π
2k+1

i� c(αj) 6= 0

, andαj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0, and αj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0, andαj is not exceptional

αj 6= π
2k

i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0, and αj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Inverse problems— notation and de�nitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special i� c(αj) 6= 0, and αj is not exceptional i� |c(αj)| < 1.

De�nition (Loose equivalence)

We say that two curvilinear polygonsP(α, `) and P̃(α̃, ˜̀) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ` = ˜̀and either cα = cα̃ or cα = −cα̃.

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 15 / 28



Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths `1, . . . , `n are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

De�nition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 16 / 28



Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths `1, . . . , `n are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

De�nition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 16 / 28



Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths `1, . . . , `n are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

De�nition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 16 / 28



Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths `1, . . . , `n are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

De�nition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 16 / 28



Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths `1, . . . , `n are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

De�nition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .

MLevitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 16 / 28



Main Theorem, simpli�ed variant

Before the main result, I state

Proposition
If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is

Theorem
LetP and P̃ be two quasi-isospectral admissible curvilinear polygons. Assume
additionally thatP is not exceptional. ThenP and P̃ are loosely equivalent.

Corollary
Given the spectrum Λ of an admissible non-exceptional polygonP , we can recover its
number of vertices, side lengths up to change of orientation and cyclic shifts, and the
cosine vector up to a change of sign.
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Ideas of Proof
Inverse Problem I:Σ→ F , recover a trigonometric polynomial by its roots

This is just a variant of Hadamard–Weierstrass Factorisation Theorem:

Theorem
Let f : C→ C be an even entire function of order one with a zero of order 2m0 at
z = 0, and non-zero zeros±γj repeated with multiplicities; denote by Γ the sequence
(with multiplicities) consisting of m0 zeros and γj .Then there exists a constant C such
that

f (z) = CQΓ(z), QΓ(z) := z2m0
∏

γj∈Γ\{0}

(
1− z2

γ2j

)
.

Proof.
Hadamard-Weierstrass Theorem immediately gives the result with an extra factor
eg(z), where g(z) is linear. But since f is even, so is g, which is therefore a
constant.
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Ideas of Proof
Inverse Problem I: from an in�nite product to the explicit form of a trigonometric polynomial

Write

Fα,`(σ) =

#T∑
k=1

rk cos(tkσ)− r0, T := {|` · ζ| : ζ ∈ Zn
+}.

Wewant to �nd all tk, rk from the in�nite productQΣ(σ).

De�ne

M[f ] := lim
t→∞

1
t

∫ t

0
f (s) ds, (A[f ])(z) := M

[
e−iszf (s)

]
.

Then

T = {z ≥ 0 : A[Q](z) 6= 0}, rj = 2CA[Q](tj), r0 = −CA[Q](0),

with C found from 2CA[Q](max T ) = 1.
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T = {z ≥ 0 : A[Q](z) 6= 0}, rj = 2CA[Q](tj), r0 = −CA[Q](0),

with C found from

our polynomials are normalised

2CA[Q](max T ) = 1.
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Ideas of Proof
Inverse Problem II:Λ→ F , recover a trigonometric polynomial by its approximate roots

Question
Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition. But their proof is
not constructive, and we want an algorithmic procedure, so we prove instead. . .
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2020!
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Question
Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition

Quasi-isospectral curvilinear polygons
have the same quasi-eigenvalues

.

But their proof is
not constructive, and we want an algorithmic procedure, so we prove instead. . .
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Ideas of Proof
Inverse Problem II:Λ→ F , recover a trigonometric polynomial by its approximate roots

Proposition
If Λ is the spectrum of a curvilinear polygonP(α, `) then

Fα,`(σ) = CQΛ(σ) + o(1) as σ → +∞.

Remarks
Our statement requires a quali�ed convergence λm − σm = O(m−ε) as
m→∞ rather than o(1).
Proof is based on a technical bound lim

σ→∞
(QΛ(σ)− C0QΣ(σ)) = 0 with

some constant C0.
Allows the recovery of the frequencies and amplitudes of Fα,`(σ) as before
sinceA[f + o(1)](z) = A[f ](z) for all z.
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QΛ(σ) := σ2n0
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λ2
j
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Ideas of Proof
Inverse Problem III: F → `,±cα, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

Fα,`(σ) =

T∑
k=1

rk cos(tkσ)−r0, T = {|`·ζ| : ζ ∈ Zn
+} = {t1 ≤ t2 ≤ · · · ≤ tT}.

Admissibility conditions guarantee that (i) all tk are positive and distinct; (ii) all
coe�cients rk are non-zero; (iii) T = 2n−1.

We will �rst �nd `′— the permutation of the vector of length in order of
magnitude, `′1 < `′2 < · · · < `′n.

Easier to show on a concrete example. We will not need rk’s at this stage.
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` incommensurable
over {−1, 1, 0};
no special angles

.
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Fα,`(σ) =

T∑
k=1

rk cos(tkσ)−r0, T = {|`·ζ| : ζ ∈ Zn
+} = {t1 ≤ t2 ≤ · · · ≤ tT}.

Admissibility conditions guarantee that (i) all tk are positive and distinct; (ii) all
coe�cients rk are non-zero; (iii) T = 2n−1

immediately gives us
the number of vertices n

.

We will �rst �nd `′— the permutation of the vector of length in order of
magnitude, `′1 < `′2 < · · · < `′n.
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Ideas of Proof
Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2, 3, 7, 11)
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• Look for the maximal frequency t8
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Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23

`′ = (2, 3, 7, 11)

• Look for the next biggest frequency t7
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Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2,

3, 7, 11)

• Look for the next biggest frequency t7= 19 = L− 2`′1 = 23− 2× 2
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Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =
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? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2,

3, 7, 11)

• The next biggest frequency is t6
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Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2, 3,

7, 11)

• The next biggest frequency is t6= 17 = L− 2`′2 = 23− 2× 3
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Ideas of Proof
Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

? cos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2, 3,

7, 11)

• Remove all remaining frequencies in which either `′1 or `′2 or both come with a
minus: 13 = 23− 2× 2− 2× 3
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Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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Eight terms, so n = 4.
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7, 11)

• The biggest remaining frequency is t4
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Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ? cos(3σ) + ? cos(5σ) + ? cos(9σ)

?���
��XXXXXcos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2, 3, 7,

11)

• The biggest remaining frequency is t4= 9 = L− 2`′3 = 23− 2× 7
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Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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Eight terms, so n = 4.

L = 23 `′ = (2, 3, 7,

11)

• Remove all remaining frequencies in which any of `′1, `′2, or `′3 comes with a
minus
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Ideas of Proof
Inverse Problem III: recover `′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(σ) =

8∑
j=1

? cos(tjσ)− ? = tj ∈ T = {|` · ζ| : ζ ∈ Zn
+}

? cos(1σ) + ?����XXXXcos(3σ) + ?����XXXXcos(5σ) + ? cos(9σ)

?���
��XXXXXcos(13σ) + ? cos(17σ) + ? cos(19σ) + cos(23σ).

Eight terms, so n = 4.

L = 23 `′ = (2, 3, 7,

11)

remaining frequency is t1
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8∑
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Eight terms, so n = 4.

L = 23 `′ = (2, 3, 7, 11)

remaining frequency is t1= 1 = L− 2`′4 = 23− 2× 11
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
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Ideas of Proof
Inverse Problem III: recover ` in proper order and cα

D′=


1
20

1
16

1
25 1

1
16 − 1

6 1 4
9

1
25 1 1

10
1
4

1 4
9

1
4 − 1

3



Look at the o�-diagonal elements ofD′. IfD′k,j 6= 1, then `′k and `
′
j are neighbours,

and ∣∣∣∣∣cos
π2

2α`′k,`′j

∣∣∣∣∣ =
√
D′k,j !

Thus we get

` =
(
`′3, `

′
1, `
′
2, `
′
4
)

= (7, 2, 3, 11) |cα| =
(
1
5
,
1
4
,
2
3
,
1
2

)

The signs of diagonal elements allow us to �nd cα = ±
( 1
5 ,

1
4 ,−

2
3 ,

1
2
)
.
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The signs of diagonal elements allow us to �nd cα = ±
( 1
5 ,

1
4 ,−

2
3 ,

1
2
)
.
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A little bit of demystifying
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Modi�cation of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have
Theorem
LetP be an admissible curvilinear polygon. Then we can recover

The number n of vertices
The number K of exceptional components (= number of exceptional angles)
For each exceptional componentYκ, κ = 1, ...K:

its side length vector `(κ) up to a change of orientation
its cosine vector cα(κ) up to multiplication by±1
whetherYκ is even or odd

Remark
We cannot recover the order in which the exceptional components are joined
together.
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we have
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its side length vector `(κ) up to a change of orientation
its cosine vector cα(κ) up to multiplication by±1
whetherYκ is even or odd

Remark
We cannot recover the order in which the exceptional components are joined

Wemay have

D′ =


−1 1 1 1
1 1 1 1
1 1 − 1

2
1
4

1 1 1
4

1
2


ThenY1 = (`′1),Y2 = (`′2),

Y3 = (`′3, `
′
4).

together.
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Counterexamples

If either condition of lengths incommensurability over {0,±1} or absence of
special angles is not satis�ied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:

Example 1— presence of special angles
All parallelograms of perimeter 2 with angle π5 are quasi-isospectral.

Example 2— presence of special angles
Two straight triangles with the same perimeter and anglesα =

(
π
7 ,

π
63 ,

53π
63
)
and

α̃ =
(
π
9 ,

π
21 ,

53π
63
)
are quasi-isospectral.

Example 3— sides commensurable

A pair of curvilinear triangles with sides ` = (3, 1, 1) and ˜̀= (2, 2, 1) and cosine
vectors c =

(
1
2 ,

1
2 ,
−39+

√
241

40

)
, c̃ =

(
1
2 ,

7−
√
241

12 , −19+
√
241

40

)
are quasi-isospectral.
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