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Direct Steklov problem (1902)

Q) — bounded domain in R4, d > 2 (or more generally a Riemannian manifold

with boundary), 9€) — Lipschitz.
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Direct Steklov problem (1902)

Q) — bounded domain in R4, d > 2 (or more generally a Riemannian manifold
with boundary), 9€) — Lipschitz.

The Steklov eigenvalue problem on €2:

{Auzo in 0,

g—z = A\pu on 012,

where p € L%°(012) is a given non-negative function.
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Direct Steklov problem (1902)

Q) — bounded domain in R4, d > 2 (or more generally a Riemannian manifold

with boundary), 9€) — Lipschitz.

The Steklov eigenvalue problem on €2:

Ou

Au=20 in 0,
3, = A\pu on 012,

where p € L%°(012) is a given non-negative function.
From now on

p=1,d=2L=L(ON) = 09|

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020

3/28



Direct Steklov problem (1902)

Q) — bounded domain in R4, d > 2 (or more generally a Riemannian manifold

with boundary), 9€) — Lipschitz.

The Steklov eigenvalue problem on €2:

Au=20 in 0,
g—z = A\pu on 012,

where p € L%°(012) is a given non-negative function.
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Direct Steklov problem (1902)

Q) — bounded domain in R4, d > 2 (or more generally a Riemannian manifold

with boundary), 9€) — Lipschitz.

The Steklov eigenvalue problem on €2:

Au=20 in 0,
g—z = A\pu on 012,

where p € L%°(012) is a given non-negative function.
From now on

p=1,d=2L=L(ON) = 09|

The Steklov spectrum is discrete, 0 = A\; < Ay < A3 < -+ 7 400, the
||V%”il(9)

corresponding normalised quadratic form is 5 .
.
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D-N map

Alternatively, Steklov eigenvalues can be viewed as the eigenvalues of the
Dirichlet-to-Neumann map,

D : H/2(8Q) — H2(09),

f —> anHQf s
Hqf — harmonic extension of / from the boundary
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D-N map

Alternatively, Steklov eigenvalues can be viewed as the eigenvalues of the
Dirichlet-to-Neumann map,

D : H/2(8Q) — H2(09),
f — anHQfa

Hqf — harmonic extension of / from the boundary

If 0€2 is smooth, D is a self-adjoint elliptic pseudo-difterential operator of order 1
on 0f2 with principal symbol |£]|.
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f —> anHQf s

Hqf — harmonic extension of / from the boundary

If 0€2 is smooth, D is a self-adjoint elliptic pseudo-difterential operator of order 1
on 0f2 with principal symbol |£]|.

Motivation: inverse problems, differential geometry, hydrodynamics, geometry
processing in computer graphics.
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D-N map

Alternatively, Steklov eigenvalues can be viewed as the eigenvalues of the
Dirichlet-to-Neumann map,

D : H/2(8Q) — H2(09),

f = 0,Haf,
Hqf — harmonic extension of / from the boundary

If 0€2 is smooth, D is a self-adjoint elliptic pseudo-difterential operator of order 1
on 0f2 with principal symbol |£]|.

Motivation: inverse problems, differential geometry, hydrodynamics, geometry
processing in computer graphics.

Example (disk)
Steklov spectrum of a disk of radius one is 0,1,1,2,2,3,3,...,m,m, ...,
eigenfunctions being 1, 7sin ¢, »cos ¢, . . ., ¥ sin me, ¥ cos me, . . .. For

radius R, scale as 1/R. Eigenfunctions decay fast in the interior.
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o 0 is smooth and simply connected:



Known asymptotics

o 0f)is smooth and simply connected:
LAy = Loy +o(m™ %) =2mm+o(m™ ™), m — 400

(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose).
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Known asymptotics

o 0f)is smooth and simply connected:
LAy = Loy +o(m™ %) =2mm+o(m™ ™), m — 400

(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose). Almost
the same as for a disk.
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(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose). Almost
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o 0N is piecewise C L,
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(Agranovich 2006; Sandgren 1955 for C?).
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o 0f)is smooth and simply connected:
LAy = Loy +o(m™ %) =2mm+o(m™ ™), m — 400

(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose). Almost
the same as for a disk.
o 0N is piecewise C L,

LN, =7mm+o(m), m— +00

(Agranovich 2006; Sandgren 1955 for C*). One-term Weyl asymptotics with
a bad remainder.
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Known asymptotics

o 0f)is smooth and simply connected:
LAy = Loy +o(m™ %) =2mm+o(m™ ™), m — 400

(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose). Almost
the same as for a disk.
o O is piecewise C':
LN, =7mm+o(m), m— +00

(Agranovich 2006; Sandgren 1955 for C*). One-term Weyl asymptotics with
a bad remainder.
o Square of side one:

Lim—3 = Lipm—z + 0(1) = Lip_1 + 0(1) = L4y, + 0(1)
1
= <m - 2>7T—|—0(1), m — +00

(Girouard & Polterovich 2017).
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Known asymptotics

o 0f)is smooth and simply connected:
LAy = Loy +o(m™ %) =2mm+o(m™ ™), m — 400

(Rozenblyum 1986, Edward 1993 following Guillemin and Melrose). Almost
the same as for a disk.
o O is piecewise C':
LN, =7mm+o(m), m— +00

(Agranovich 2006; Sandgren 1955 for C*). One-term Weyl asymptotics with
a bad remainder.
o Square of side one:

Lim—3 = Lipm—z + 0(1) = Lip_1 + 0(1) = L4y, + 0(1)
1
= <m - 2>7T—|—0(1), m — +00

(Girouard & Polterovich 2017). (Non-trivial) separation of variables.
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Obtain sharp asymptotics of Steklov eigenvalues for curvilinear polygons



Direct problem of [LPPS19]

Obtain sharp asymptotics of Steklov eigenvalues for curvilinear polygons
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Direct problem of [LPPS19]

Obtain sharp asymptotics of Steklov eigenvalues for curvilinear polygons

a=(a,...,0,) € (0,m) L= (b,....0,) ERY =L L= {

J=1
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To state the main results, we need some combinatorics.



To state the main results, we need some combinatorics.
Let 3" = {£1}”,



Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.
Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification
Cﬂ-‘rl = Cl, let

Ch(¢) :={j €{L,....,n} [ G # G}

denote the set of indices of sign change in ¢
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.
Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification
Cﬂ-‘rl = Cl, let

Ch(¢) :={j €{L,....,n} [ G # G}

denote the set of indices of sign change in ¢, e.g.

Ch((1,1,1) = @; Ch((~1,~1,1,1)) = {2, 4}.
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.
Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification
Cﬂ-‘rl = Cl, let

Ch(¢) :={j €{L,....,n} [ G # G}

denote the set of indices of sign change in ¢, e.g.

Let

F(0) = Fau(0) == Y _ pecos(€- o) — po
&
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.

Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification

Cﬂ-‘rl = Cl, let

Ch(¢) :={j €{L,....,n} [ G # G}

denote the set of indices of sign change in ¢, e.g.

Let
F(0) = Fau(0) == Y _ pecos(€- o) — po

¢ed”
G=1

be the characteristic trigonometric polynomial of Pg, ¢ with

71,2
pc = pC,OL = H COS a
JECh(C) /
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.

Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification

Cﬂ-‘rl = Cl, let

Ch(C) = & € {17 s 7”} | C] 7é Cj+1}
denote the set of indices of sign change in ¢, e.g.
Let

F(0) = Fau(0) == Y _ pecos(€- o) — po

¢ed”
G=1

be the characteristic trigonometric polynomial of Pg, ¢ with
2
pe =Pea = | H COSE,H =1
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Main Direct Result of [LPPS19]

To state the main results, we need some combinatorics.

Let 3" = {£1}”,and foravector { = ({1, ..., (,) € 3" with cyclic identification

Cﬂ-‘rl = Cl, let

Ch(C) = & € {17 s 7”} | C] 7é Cj+1}
denote the set of indices of sign change in ¢, e.g.
Let

F(0) = Fau(0) == Y _ pecos(€- o) — po

¢ed”
G=1

be the characteristic trigonometric polynomial of Pg, ¢ with
w2 - 72
= = cos — =1 = = sin —.
pC pC,a ' H ZCY"H 7p0 pO,a Jl;[l 2@]
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o Two-gon, £ = (b1, 42), o0 = (a1, a2)



o Two-gon, £ = (b1, 42), o0 = (a1, a2)

o 32 = {(15 1)7 (17 _1)



o Two-gon, £ = (b1, 42), o0 = (a1, a2)

Qo 32 = {(15 1)7 (17 _1)7 (_lv 1)5 (_17 _1)}



Qo TWO-gOIl,E = (fl,fz), o = (al, az)
Qo 32 = {(15 1)7 (17 _1)7 (_la 1)5 (_17 _1)}
o F(o) =paycos((li + £a)a) + p,—1)cos((by — £2)a) — po



o Two-gon, £ = ({1,42), o = (o, )

o 3*={(1,1),(1,~1), (~1,1), (-1, ~1)}

o F(o) =paycos((li + £a)a) + p,—1)cos((by — £2)a) — po
o Ch((1L) =92 = puy =1



Example — trigonometric polynomials

©

Two-gon, £ = ({1,0,), ¢ = (a1, 2)

3% ={(1,1),1,-1),(~1,1), (-1, -1)}

F(o) = pa,cos((b + £2)0) +pa,—1y cos((f1 — £2)a) — po
Ch((1,1)) = & — py =1

©

©

©

w2 72

Ch((1,-1)) = — £ A
((1,-1)) = {1,2} = by = cos 3 —cos 3 -

(+]
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Example — trigonometric polynomials

©

TWO-gOH,E = (€1, €2), a = (Ckl, 042)
32 = {(17 1)? (17 71)7 (717 1>= (71' 71)]’
F(o) = pa,cos((b + £2)0) +pa,—1y cos((f1 — £2)a) — po

©

©

Qo Ch((l,l)) =9 = p(l,l) — 1
2 72
o Ch((1,-1)) = {1,2} = pq,_1) = cos ECOSE
sin ™ in
o po = sin — sin —
Po 2a1 ln 20(2

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 8/28



Example — trigonometric polynomials

[+] TWO-gOIl,E = (gl,gz), o = (Oél, Oéz)

o 3> ={(1,1),(1,-1),(—1,1), (-1, -1)}
o F(o) = puycos((1 + £2)0) + p,—1) cos((b — £€2)0) — po
° Ch((1,1)) =2 = pg, =1
w2 2
o Ch((1,-1)) = {1,2} = pq,_1) = cos HCOSE
o o
) = — —
po = sin 2a S
Qo
2 w2
F(o) = cos((; + ¢2)0) + cos 2 cos 20, cos((ty — £2)0)
L
— sin — sin —.
20[1 20[2
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Foe(o)
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be

the multiset of non-negative roots of

Fae(0) =Y pecos(€ - ¢a) — po,

¢es”
G=1
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Fau(o) = Z p¢ cos(£- o) — po,
=

taken with their algebraic multiplicity
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Fau(o) = Z p¢ cos(£- o) — po,
=

taken with their algebraic multiplicity except o = 0 (if present) which is taken with
half its algebraic multiplicity.
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Fae(0) =Y pecos(€ - ¢a) — po,

¢es”
G=1

taken with their algebraic multiplicity except o = 0 (if present) which is taken with
half its algebraic multiplicity. Then, with some € > 0,

Om — Ay = O(m_e) asm — +oo.
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Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Fau(o) = Z p¢ cos(£- o) — po,
=

taken with their algebraic multiplicity except o = 0 (if present) which is taken with
half its algebraic multiplicity. Then, with some € > 0,

Om — Ay = O(m_e) asm — +oo.

We will call the roots 0, the quasi-eigenvalues of P.

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 9/28



Main Theorem

Theorem

Let P be a curvilinear polygon with o € (0, 7)”. Define ¥ = X ¢ := {0, } to be
the multiset of non-negative roots of

Fau(o) = Z p¢ cos(£- o) — po,
=

taken with their algebraic multiplicity except o = 0 (if present) which is taken with
half its algebraic multiplicity. Then, with some € > 0,

Om — Ay = O(m_e) asm — +oo.

We will call the roots 0, the quasi-eigenvalues of P. It also turns out that o,,’s are
exactly the square roots of eigenvalues of some quantum graph Laplacian.
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Although they do not appear explicitly above, particular roles in our analysis are
played by



Exceptional and special angles

Although they do not appear explicitly above, particular roles in our analysis are
played by exceptional angles

aeg::{zﬂk,keN}
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Exceptional and special angles

Although they do not appear explicitly above, particular roles in our analysis are
played by exceptional angles

aeg::{zﬂk,keN}

and
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Exceptional and special angles

Although they do not appear explicitly above, particular roles in our analysis are
played by exceptional angles

™

0465::{2/e

,/eeN}

and special angles

™
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Exceptional and special angles

Although they do not appear explicitly above, particular roles in our analysis are
played by exceptional angles

aeé’::{;—k,keN}

and special angles

™

Both exceptional and special angles can be even or odd depending on whether the
corresponding £ is even or odd.

Parity of @ € EUSis O(a) := (—1)F.
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o Exceptional angles af , . .. a%




Exceptional case: needs re-labelling

o Exceptional angles af , . .. a%

o They split the boundary into K

exceptional boundary components

I
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Exceptional case: needs re-labelling

o Exceptional angles af , . .. a%

o They split the boundary into K
exceptional boundary components
Vs, each with z,, > 1 pieces,
k=1,...,K,m+- - +ng=n

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 11/28



Exceptional case: needs re-labelling

o Exceptional angles af , . .. a%

o They split the boundary into K
exceptional boundary components
Vs, each with z,, > 1 pieces,
k=1,...,K,m+- - +ng=n

o ™ component has lengths
%) = (45), . ,KEL'Z)) and angles
al®) = (a%'ﬁ), . ,afl':)_l).
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Exceptional case: needs re-labelling

o Exceptional angles af , . .. a%

o They split the boundary into K
exceptional boundary components
Vs, each with z,, > 1 pieces,
k=1,...,K,m+- - +ng=n

o ™ component has lengths
%) = (45), . ,KEL'Z)) and angles
al®) = (a%'ﬁ), . ,afl':)_l).

o An exceptional boundary component may be even, O (af) = O(af_;) or
odd, 0(a%) = —0(af_,).
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Exceptional case: needs re-labelling

o Exceptional angles af , . .. a%

o They split the boundary into K
exceptional boundary components
Vs, each with z,, > 1 pieces,
k=1,...,K,m+- - +ng=n

o ™ component has lengths

) = (Eg“), 0 and angles

alk) = (a%'ﬁ), ... 70‘5:2)—1)-

o An exceptional boundary component may be even, O (af) = O(af_;) or
odd, 0(a%) = —0(af_,).

o Assume we have K.y, even exceptional boundary components and K44 odd
exceptional boundary components, Keyen + Koqd = K.
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Non-exceptional vs exceptional case

‘ Non-exceptional case ‘ Exceptional case

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 12/28



Non-exceptional vs exceptional case

Non-exceptional case

Exceptional case

n
2 K,
1 T 1. inlict odd
o0 present only if H tan io = I; | has multiplicity =5
7=l ‘
always simple
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Non-exceptional vs exceptional case

Non-exceptional case

Exceptional case

n
present only if Hl tan I—;} =1
i= ‘
always simple

has multiplicity %

o>0

has multiplicity one or two

may have any multiplicity up to
K
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Non-exceptional vs exceptional case

Non-exceptional case

Exceptional case

o =0 present only ifjli[l tan I—;} = 1; | has multiplicity %
always simple
o> 0 has multiplicity one or two may have any multiplicity up to
K
Tt 1 factorises:  Fp 0(0) =
n;lriiflo ’ H[H(ZI Feven/odd,a('f) L) (o)
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Non-exceptional vs exceptional case

Non-exceptional case

Exceptional case

n
present only if [ tan g =1
J

has multiplicity %

J=1
always simple

>0 has multiplicity one or two may have any multiplicity up to

o
K

. factorises:  Fn ¢(0) =
Trig. poly- K ’
nomial Hn:l Feven/odd,a(”') L(R) (J)
Eivenf (in a sense) equidistributed over | concentrate on some exceptional

igenfunc.

the whole boundary

boundary components
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curvilinear

polygon P



curvilinear

polygon P

\

o, l



curvilinear Characteristic trig.
o, l



Direct problem summary

T
curvilinear Characteristic trig.
polygon P polynomial F ¢(0)
o, l
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Direct problem summary

T
curvilinear Characteristic trig.
POI}’gOC P polynomial F ¢(0)
o, b its roots

quasi-eigenvalues
Yo = {o1,02,...}
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Direct problem summary

PTG
¢ 'Q\O’ .- T SA
curvilinear ST Characteristic trig.
polygon P polynomial F ¢(0)
o, l its roots
7% A = \\
' eigenvalues quasi-eigenvalues !
| (===
: Ap = {)\1,)\2,...} Zal = {0’1,0’2,...} :
|
|
\ A — om| = O(m™ ) asm — o0 }
A\ /
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Direct problem summary and inverse problems statements

2 ease
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Direct problem summary and inverse problems statements

A ease
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e Q.- .

curvilinear ISPl Characteristic trig.
polygon P e polynomial F ¢(0)

o, l InvP I its roots

, LS | A N .
eigenvalues quasi-eigenvalues
< >
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Direct problem summary and inverse problems statements
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Ag,.
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)

quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:
A (1) — X (£22) = 0(1) as m — oo
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)

quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:
A (1) — X (£22) = 0(1) as m — 0.

This terminology will be justified later!
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:

A (1) — X (22) = 0(1) as m — oc.

Remarks

(a) any two isospectral planar domains are also quasi-isospectral;
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:

A (1) — X (22) = 0(1) as m — oc.

Remarks

(a) any two isospectral planar domains are also quasi-isospectral; (b) it is not known
if there exist any planar isospectral non-isometric domains;
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:

A (1) — X (22) = 0(1) as m — oc.

Remarks

(a) any two isospectral planar domains are also quasi-isospectral; (b) it is not known
if there exist any planar isospectral non-isometric domains; (c) known Steklov
spectral invariants are the perimeter (by Weyl’s law),
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:

A (1) — X (22) = 0(1) as m — oc.

Remarks

(a) any two isospectral planar domains are also quasi-isospectral; (b) it is not known
if there exist any planar isospectral non-isometric domains; (c) known Steklov
spectral invariants are the perimeter (by Weyl’s law), and in the smooth case also
the number and lengths of connected boundary components [GPPS14];
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Inverse problems — isospectrality

Definition (Steklov isospectrality and and quasi-isospectrality)

We say that two domains §2; and €, are (Steklov) isospectral if their Steklov spectra
coincide, A, = Aq,. We say that two planar domains §2; and €2, are (Steklov)
quasi-isospectral if their Steklov spectra are asymptotically o(1)-close:

A (1) — X (22) = 0(1) as m — oc.

Remarks

(a) any two isospectral planar domains are also quasi-isospectral; (b) it is not known
if there exist any planar isospectral non-isometric domains; (c) known Steklov
spectral invariants are the perimeter (by Weyl’s law), and in the smooth case also
the number and lengths of connected boundary components [GPPS14]; (d) on the
other hand, any two smooth planar simply connected domains with the same

perimeter are Steklov quasi-isospectral, and moreover o(7~°°)-quasi-isospectral.
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o Fora € (0, )", its cosine vector is



Inverse problems — notation and definitions

o Forav € (0, )", its cosine vector is

71.2

o= (s r0) € =117, G = c(aj) ‘= Cos ij.

o Note: o is not special iff ¢(a;) 7# 0
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o Fora € (0, )", its cosine vector is

c=co=(a,...,c,) € [-1,1)7, ¢ = c(qy) = cos ——.

o Note: o is not special iff ¢(c;) 7# 0

s
o # 2%+1



Inverse problems — notation and definitions

o Forav € (0, )", its cosine vector is

71.2

o= (s r0) € =117, G = c(aj) ‘= Cos ij.

o Note: o is notspecial iff c(a;) # 0, and «; is not exceptional iff |c(cy)| < 1.
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Inverse problems — notation and definitions

o Forav € (0, )", its cosine vector is

2

o= (s r0) € =117, G = c(aj-) ‘= Cos T‘éj.

o Note: o is notspecial iff c(a;) # 0, and «; is not exceptional iff |c(ay)| < 1.

T
% 7 %
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Inverse problems — notation and definitions

o Forav € (0, )", its cosine vector is

71.2

o= (s r0) € =117, G = c(aj) ‘= Cos ij.

o Note: o is notspecial iff c(a;) # 0, and «; is not exceptional iff |c(cy)| < 1.
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Inverse problems — notation and definitions

o Forav € (0, )", its cosine vector is

71.2

o= (s r0) € =117, ¢ = c(ay) = cos ij.

o Note: o is notspecial iff c(a;) # 0, and «; is not exceptional iff |c(cy)| < 1.

Definition (Loose equivalence)

We say that two curvilinear polygons P (cx, £) and P (e, £) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that £ = £ and either ¢, = ¢4 orcq = —c4.
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We will assume, at some stage, that our polygons satisfy two generic conditions:



We will assume, at some stage, that our polygons satisfy two generic conditions:

The lengths ¢4, . . . , £, are incommensurable over {—1, 0,1}




Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:

The lengths ¢, . . ., ¢, are incommensurable over {—1, 0,1}

and

There are no special angles among av, . . ., @,
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Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:

The lengths ¢, . . ., ¢, are incommensurable over {—1, 0,1}

and

There are no special angles among av, . . ., @,

Definition

The curvilinear polygons satisfying these two conditions will be called admissible. J
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Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:

The lengths ¢, . . ., ¢, are incommensurable over {—1, 0,1}

and

There are no special angles among av, . . ., @,

Definition

The curvilinear polygons satisfying these two conditions will be called admissible. J

Subject to admissibility conditions, we have ...
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Before the main result, I state



Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.
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Main Theorem, simplified variant

Before the main I'CSlllt, I state their spectra are

asymptotically
Proposmon o(1)-close
If two curvilinear polygons are quasi-isospectral, they have exactly the
same quasi-eigenvalues.

Justifies the terminology!
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is

Theorem
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curvilinear polygons.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curvilinear polygons.

their spectra are o(1)-close at 0o
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curvilinear polygons. Assume
additionally that P is not exceptional.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curvilinear polygons. Assume
additionally that P is not exceptional.

This can be dropped;
the statement becomes
slightly more complicated;

it will come later
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curv{lz'nmr polygons. Assume
additionally that P is not exceptional. Then P and P are loosely equivalent.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curv{lz'nmr polygons. Assume
additionally that P is not exceptional. Then P and P are loosely equivalent.

£ and £ are the same
modulo a cyclic shift
and a change of orientation;
cosine vectors o, and cg
are the same

up to a change of sign
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is
Theorem

Let P and P be two quasi-isospectral admissible curv{lz'nmr polygons. Assume
additionally that P is not exceptional. Then P and P are loosely equivalent.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is

Theorem

Let P and P be two quasi-isospectral admissible curvflz'nmr polygons. Assume
additionally that P is not exceptional. Then P and P are loosely equivalent.

Corollary

Given the spectrum N of an admissible non-exceptional polygon P, we can recover its
number of vertices, side lengths up to change of orientation and cyclic shifts, and the
cosine vector up to a change of sign.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is

Theorem

Let P and P be two quasi-isospectral admissible cuyr+linoaw solumone Accyppe
. 5 . This means we have
additionally that P is not exceptional. Then P and f,ymyiae/algorithms for that ™
but some steps may be
non-trivial to realise

Corollary numerically

Given the spectrum N of an admissible non-exceptional polygon P, we can recover its
number of vertices, side lengths up to change of orientation and cyclic shifts, and the

cosine vector up to a change of sign.
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Main Theorem, simplified variant

Before the main result, I state
Proposition

If two curvilinear polygons are quasi-isospectral, they have exactly the same
quasi-eigenvalues.

Our main result is

Theorem

Let P and P be two quasi-isospectral admissible curvflz'nmr polygons. Assume
additionally that P is not exceptional. Then P and P are loosely equivalent.

Corollary

Given the spectrum N of an admissible non-exceptional polygon P, we can recover its
number of vertices, side lengths up to change of orientation and cyclic shifts, and the
cosine vector up to a change of sign.
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This is just a variant of Hadamard—Weierstrass Factorisation Theorem:



Ideas of Proof

Inverse Problem I: 3 — F, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard—Weierstrass Factorisation Theorem:

Theorem

Letf : C — Cbean cven entire function of order one with a zero of order 2mq at
2z = 0, and non-zero zeros +; repeated with multiplicities; denote by I the sequence
(with multiplicities) consisting of mq zeros and ;.
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Ideas of Proof

Inverse Problem I: 3 — F, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard—Weierstrass Factorisation Theorem:

| inf{r eER:f(z) = O(emr) as|z| — oo} =1l

Letf : C — C bean cven entire function of order one with a zero of order 2mq at
z = 0, and non-zero zeros +; repeated with multiplicities; denote by I the sequence
(with multiplicities) consisting of mo zeros and ;.
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Ideas of Proof

Inverse Problem I: 3 — F, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard—Weierstrass Factorisation Theorem:

Theorem

Letf : C — Cbean cven entire function of order one with a zero of order 2mq at
2z = 0, and non-zero zeros +; repeated with multiplicities; denote by I the sequence

(with multiplicities) consisting of mq zeros and ;. Then there exists a constant C such
that

2
)= oo, @ = I (1-5
€r\{0} Ui
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Ideas of Proof

Inverse Problem I: 3 — F, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard—Weierstrass Factorisation Theorem:

Theorem

Letf : C — Cbean cven entire function of order one with a zero of order 2mq at
2z = 0, and non-zero zeros +; repeated with multiplicities; denote by I the sequence

(with multiplicities) consisting of mq zeros and ;. Then there exists a constant C such
that

2
f@ =@ er@= ] (1-5
€r\{0} Ui

Proof.

Hadamard-Weierstrass Theorem immediately gives the result with an extra factor
/() where g(z) is linear.
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Ideas of Proof

Inverse Problem I: 3 — F, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard—Weierstrass Factorisation Theorem:

Theorem

Letf : C — Cbean cven entire function of order one with a zero of order 2mq at
2z = 0, and non-zero zeros +; repeated with multiplicities; denote by I the sequence

(with multiplicities) consisting of mq zeros and ;. Then there exists a constant C such
that

2
f@ =@ er@= ] (1-5
yervioy \

Proof.

Hadamard-Weierstrass Theorem immediately gives the result with an extra factor
¢ where ¢(z) is linear. Butssince f is even, so is ¢, which is therefore a
constant. O
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Write

#T
Fop(o) = Zrk cos(to) — 1o, T:={l£-¢]: {3}

k=1

We want to find all #, 7 from the infinite product Qs (o).



Write

#T
F /= N7 . T:={£-¢l:¢e3"}
Qs (o) := gm0 Hajez\{o} (1 — %}2—)

We want to find all 7, 7 from the infinite product Qs (o).



Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T
Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

M= i [ F0
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Ideas of Proof
Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial
Write

#T
Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1
We want to find all 7, 7, from the infinite product Qs (o). Define

M[f _rllglot/f

Besicovitch mean of
an almost periodic function f
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Ideas of Proof
Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial
Write

#T
Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

— i ? [ (A () = M (5)].

t—0o0 |
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Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T
Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

=l [F0a ADE = M)

Then

T ={z>0: A[Q|(s) # 0},
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Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T
Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

=l [F0a ADE = M)

Then

T ={2>0:A[Q|(z) # 0}, r =2CA[Q|(z),
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Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T
Faplo) = rncos(to) —ro, T ={£-¢[: ¢ €3}

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

=l [F0a ADE = M)

Then

T ={2=0:A[Q(z) #0}, 7 =2CA[Ql(4), r =—-CA[Q)(0),
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Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T
Faplo) = rncos(to) —ro, T ={£-¢[: ¢ €3}

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

t—0o0 |

— i ? [ (A () = M (5)].
Then

={220: A[QI(z) #0}, 7 =2CA[QI(5), r =—CA[Q](0),
with C found from 2CA[Q](max T) = 1.
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Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

#T

Fau(0) =Y rcos(uo) —ro, T :={|€-¢[: ¢ €3}}.

k=1

We want to find all 7, 7, from the infinite product Qs (o). Define

— i ? [ (A () = M (5)].

t—0o0 |

Then
T={e2 05 A am - = 2CAQly), o= ~CAIQIO),

our polynomials are normalised

with C found from 2CA[Q](max T) = 1.
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Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?




Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

2020!
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition.
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition.

Quasi-isospectral curvilinear polygons
have the same quasi-eigenvalues
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition. But their proof is
not constructive, and we want an algorithmic procedure, so we prove instead. ..
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Question

Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr.

Kurasov and Suhr’s result immediately implies our Proposition. But their proof is
not constructive, and we want an algorithmic procedure, so we prove instead. ..
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If A is the spectrum of a curvilinear polygon P(cx, £) then

Fop(0) = CQn(0) 4+ 0(1) as o — +00.




Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

— g2 2
Proposition Qu(0) = o™ Iy env(o) (1 - %f)

If A is the spectrum of a curvilinear polygon P (cx, £) then

Fae(o) = COn(o) +0(1) as o — +00.
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Proposition

If A is the spectrum of a curvilinear polygon P(c, £) then

Fae(o) = COn(o) +0(1) as o — +00.

Remarks

o Our statement requires a qualified convergence \,, — 0, = O(m ™) as
m — oo rather than o(1).
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Proposition

If A is the spectrum of a curvilinear polygon P(c, £) then

Fae(o) = COn(o) +0(1) as o — +00.

Remarks

o Our statement requires a qualified convergence \,, — 0, = O(m ™) as
m — oo rather than o(1).

o Proofis based on a technical bound li_>m (Qa(o) — CoQx(0)) = 0 with

some constant Cj.
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Ideas of Proof

Inverse Problem II: A — F, recover a trigonometric polynomial by its approximate roots

Proposition

If A is the spectrum of a curvilinear polygon P(c, £) then

Fae(o) = COn(o) +0(1) as o — +00.

Remarks

o Our statement requires a qualified convergence \,, — 0, = O(m ™) as
m — oo rather than o(1).

o Proofis based on a technical bound lim (Qa (o) — CoQx (o)) = 0 with
g —>00
some constant Cj.

o Allows the recovery of the frequencies and amplitudes of Fy, ¢(0) as before

since A[f + 0(1)](z) = A[f](z) for all z.
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At this step, we need our admissibility conditions.



At this step, we need our admissibility conditions.

£ incommensurable
over {—1,1,0};
no special angles



At this step, we need our admissibility conditions.

T
Foe(o) = Z 73, cos(2,0) —r0,
k=1



Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g(O') = Z}’k COS(l‘/eO')—Vo, T = {MC‘ : C S 51} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that
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Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g(d) = Z}’/e COS(l‘/eU)—Vo, T = {MC‘ : C S 31} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that (i) all z; are positive and distinct;
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Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g(d) = Z}’/e COS(l‘/eU)—Vo, T = {MC‘ : C S 31} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that (i) all z; are positive and distinct; (i) all
coefficients 7, are non-zero;
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Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g(d) = Z}’/e COS(l‘/eU)—Vo, T = {MC‘ : C S 31} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that (i) all z; are positive and distinct; (i) all
coefficients 7;, are non-zero; (iii) 7" = 2”71,
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Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g(d) = Z}’/e COS(l‘/eU)—Vo, T = {MC‘ : C S 31} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that (i) all z; are positive and distinct; (i) all
coefficients 7;, are non-zero; (iii) 7" = 2”71,

immediately gives us
the number of vertices 7
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Ideas of Proof

Inverse Problem III: F — £, =ca, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

a

Fa,g((j) = Z}’/e COS(l‘/eU)—Vo, T = {MC‘ : C S 31} = {l‘] <p <o <L l‘T}.
k=1

Admissibility conditions guarantee that (i) all z; are positive and distinct; (i) all
coefficients 7;, are non-zero; (iii) 7" = 2”71,

We will first find £ — the permutation of the vector of length in order of
magnitude, (f < 0} < --- < 0.

Easier to show on a concrete example. We will not need 7;’s at this stage.
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2 cos(130) + 2 cos(170) + 2 cos(190) + cos(230).
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2 cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2 cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e Look for the maximal frequency #3
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2 cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e Look for the maximal frequency #3= 23
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2 cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e Look for the next biggest frequency #;
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e Look for the next biggest frequency ;=19 = L — 2/{ =23 —2 x 2
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e The next biggest frequency is 74
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

e The next biggest frequency is 7= 17 = L — 205, =23 —2 x 3
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
F(o) = ?cos(to) — 2 = reT={€-¢:¢e3"}
j=1
2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2cos(130) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so 7 = 4.

e Remove all remaining frequencies in which either #{ or ¢} or both come with a
minus: 13 =23 —2Xx2—-2X3
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
F(U):Z?cos(fjf’)_?: yeT ={[£-¢[:Ce3i}
=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2cost8a) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so 7 = 4.

e Remove all remaining frequencies in which either #{ or ¢} or both come with a
minus: 13 =23 —2Xx2—-2X3
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2costi3a@) + ? cos(170) + 2 cos(190) 4 cos(230).

Eight terms, so n = 4.

e The biggest remaining frequency is 74
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)
2costi3a@) + ? cos(170) + 2 cos(190) 4 cos(230).

Eight terms, so n = 4.

e The biggest remaining frequencyist4= 9 = L — 205 =23 —2 X 7
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
F(o) = ?cos(to) — 2 = reT ={£-¢l:¢e3n}
=1
2cos(lo) + 2 cos(30) + 2 cos(50) + 2 cos(90)

2cost8a) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so 7 = 4.

e Remove all remaining frequencies in which any of ¢, £}, or £} comes with a

minus
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
F(o) = ?cos(to) — 2 = reT ={£-¢l:¢e3n}
=1
2 cos(lo) + ?cosf3a] + ?cos{Sa] + ¢ cos(90)
2cost8a) + 2 cos(170) + 2 cos(190) + cos(230).

Eight terms, so 7 = 4.

e Remove all remaining frequencies in which any of ¢, £}, or £} comes with a

minus
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = yeT ={l€-¢l:¢e3i}
j=1

2 cos(lo) + 2cos3a] + 2cos{Sa] + ¢ cos(90)
?cost3a@) + ? cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

remaining frequency is #;
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Ideas of Proof

Inverse Problem III: recover £

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

8
Flo) =Y ?cos(o) — 2 = reT={l£¢l:¢e3i}
j=1

2 cos(lo) + 2cos3a] + 2cos{Sa] + ¢ cos(90)
?cost3a@) + ? cos(170) + 2 cos(190) + cos(230).

Eight terms, so n = 4.

remaining frequencyisyy=1= L — 20}, =23 — 2 x 11
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Now we can look at the full polynomial

F(o) :Zle rj cos(tjo)—ro

Z% cos(a)—% cos(30')+% cos(Sa)—i—% cos(90)
—2

S cos(13a)—% cos(17a)+% cos(19a)—i—cos(23cr)—i—%2



Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Now we can look at the full polynomial

F(o) :Zﬁzl 7j cos(to)—ro

:% COS(U’)*% cos(3a)+% COS(SU’)+$ cos(90)
_2

G cos(l.’)a)—é cos(l7a)+% Cos(l‘)a)—i—cos(ZSU)-‘,—2—\/\/32

Each of the frequencies #;

/; is written as a linear combination of E; with +’s or —’s;
write then

=Ry, where J,={positions of minuses}.
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Now we can look at the full polynomial

F(o) :Zﬁzl 7j cos(to)—ro

:% COS(O’)*% cos(3a)+% COS(SO’)+$ cos(90)
_2

G cos(l.’)a)—é cos(l7a)+% Cos(l‘)a)—i—cos(ZSU)-‘,—2—\/\/32

Each of the frequencies #;

/; is written as a linear combination of E; with +’s or —’s;
write then

o P .
=Ry, where J,={positions of minuses}.

For example, 1=5=—2+3—7+11=—¢{+£,—{+(}, so that we write rs=1=R{ ;=R} ,.
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Now we can look at the full polynomial

F(o) :Zﬁzl 7j cos(to)—ro

:% COS(U’)*% cos(3a)+% COS(SU’)+$ cos(90)
_2

G cos(l.’)a)—é cos(l7a)+% Cos(l‘)a)—i—cos(ZSU)-‘,—2—\/\/32

Each of the frequencies ¢; is written as a linear combination of E;@ with +’s or —’s;
write then

e oot . .
=Ry, where J,={positions of minuses}
For example, 1=5=—2+3—7+11=—¢{+£,—{+(}, so that we write rs=1=R{ ;=R} ,.
Continuing...... — we are only interested in coefficients with one or two (or

n — 1, » — 2) minuses

M Levitin (michaellevitin.net) Inverse Steklov problem 20 April 2020 24/28



Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Now we can look at the full polynomial
F(o) :Z;.;l 7j cos(tjo) —ro

:% cos(o)— % cos(30’)+% cos(50)+ % cos(90)

— % cos(l3a)—% cos(170)+ 2170 cos(190)+cos(230)+ %

=R} 4 cos(0)+R) 5 cos(30)+R] 5 cos(50)+R; 5 cos(90)

+Rj , cos(130)+R) , cos(170)+R] | cos(190)+cos(230) + 2—\/\/2
Each of the frequencies ¢ is written as a linear combination of E; with +’s or —’s;
write then

rj:Rfjk, where J,={positions of minuses}.

For example, 1=5=—2+3—7+11=—¢{+£,—£{+(}, so that we write rs=1=R{ ;=R} ,.
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Now we can look at the full polynomial

F(o) :Z;.;l 7j cos(tjo) —ro

:% cos(a)fi cos(30’)+% cos(Sa)«#% cos(90)

—% COS(13U)—% cos(l7a)+zlfo cos(l9a)+cos(23a)+%
=R} 4 cos(0)+R) 5 cos(30)+R] 5 cos(50)+R; 5 cos(90)
+Rj , cos(130)+R) , cos(170)+R] | cos(190')+cos(23a')+2—\/\/32.

Write now the coefficients as a matrix,

1 _2 1 1
20 15 8 60
_2 1 _1 1
R/:<R/ )” — 15 6 60 8
P29/ p,q,=1 1 _1 1 _2
60 10 15
_ L 1 2 _1
60 8 15 3
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Write now the coefficients as a matrix,

1 _2 1 1

20 15 8 60
_2 _1 1 1
R/:(R/ )” — 15 6 60 8
71/ p,q,=1 1 1 1

3 60 10 15

_ L 1 _2 1

60 8 5 3

We will now use this matrix to recover the correct order of sides and the cosine
vector. We need to find the permutation (72;) such that £, = £,,,.
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Write now the coefficients as a matrix,

1 _2 1 1

20 15 8 60
_2 _1 1 1
R/:(R/ )” — 15 6 60 8
71/ p,q,=1 1 1 1

3 60 10 15

_ L 1 _2 1

60 8 5 3

We will now use this matrix to recover the correct order of sides and the cosine

vector. We need to find the permutation (2;) such that £, = £, . Trick: create
another symmetric matrix
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

Write now the coefficients as a matrix,

20

2

I—(p \* _ 15
R 7(1{%{1)%%:1— 1
8

_ 1

60

We will now use this matrix to recover the correct order of sides and the cosine
vector. We need to find the permutation (72;) such that £), = £,,,. Trick: create

another symmetric matrix
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1
16
_1

6
1
4
9

al= Sl= = B=

L TR

[T



L . 1
20 16 25
11 4
D=| T 6 5
1 11
25 10 4
4 1 1
L5 g 3

Look at the off-diagonal elements of D.



1 1 1
% 16 2 !
11 4
D= 16 6 9
1o 11
25 10 4
4 1 1
L5 1 -3

Look at the off-diagonal elements of D'. If D, ;71



=
A= O

1

20

1

D= 16
1

25

1

[
(OIS N NG
W=

wl= Sl= = g|>—

Look at the off-diagonal elements of D'. If D, ; 7 1 then £} and ¢} are neighbours



1

20

1

D= 16
1

25

1

Look at the off-diagonal elements of D
and

’/TZ

COS 5
Oé[/;’gj{

1 1
I
1 4
¢ 1 3
1 1
Lo 3
4 11
9 i 3
IfD) ; 7 1 then £} and £} are neighbours,
— |
=\/Di, !




Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

=
- = -

ENEIRCI N

1
20
1
D=| 16
L
2

—

1
4 _1
9 3

=

Look at the off-diagonal elements of I'. If D), ; # 1, then £} and Ej’. are neighbours,

and
2

T _ / |
cos = Dk , .
20 g1 /
)

Thus we get

L= /37 175/2 ‘Ca‘:

N | =
A=
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

1 1
20 16 25 1
1 _1 1 4
D= 16 6 9
i 7 1 1
25 10 4
4 1
9 4 3

Look at the off-diagonal elements of I'. If D), ; # 1, then £} and Ej’. are neighbours,

and
2

T _ / |
cos = Dk , .
Za% 0 J
7

Thus we get

0= (0, 0,05,05) =(7,2,3,11)  [ea| =

N | =
N
SSER )
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

1 1 1
20 16 25 1
1 _1 1 4
D= 16 6 9
T
25 10 4
4 1
9 4 3

Look at the off-diagonal elements of I'. If D), ; # 1, then £} and Ej’. are neighbours,

and
2

T _ / |
cos = Dk , .
20 g1 /
)

Thus we get
1121
L= (05,00,05,0) =(7,2,3,11 =(=-,= ==
(37 15%2 4) (7 737 ) ‘Ca‘ 5747372
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

1 1
% 1 3 !
1 _1 1 4
D=| 16 6 5
1 11
25 10 4
&1 1
9 4 3

Look at the off-diagonal elements of I'. If D), ; # 1, then £} and €j’~ are neighbours,

and
2

. T _ / |
cos —| = Dk , .
20 g1 /
7

Thus we get
1121
L= (05,00,05,0) =(7,2,3,11 =(=-,= ==
(37 15%2 4) (7 737 ) ‘Ca‘ 5747372

The signs of diagonal elements allow us to find
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Ideas of Proof

Inverse Problem III: recover £ in proper order and ce,

1 1 1
20 16 25 1
1 _1 1 4
D= 16 6 9
iy 11
25 10 4
4 1
9 4 3

Look at the off-diagonal elements of I'. If D), ; # 1, then £} and €j’~ are neighbours,
and
2

. T _ / |
cos —| = Dk , .
20 g1 /
7

Thus we get
1121
L= (05,00,05,0) =(7,2,3,11 =(=-,= ==
(37 15%2 4) (7 737 ) ‘Ca‘ 5747372

The signs of diagonal elements allow us to find ¢, = £ (%, %, —% l) .
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A little bit of demystifying
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon.
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightlv to allow for exceptional angles. In this case
£ incommensurable

we have over {—1,1,0};

Theorem no special angles

Let P be an admissible curvilinear polygon.
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Modification of the Main Theorem in the presence of

exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case

we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices
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Modification of the Main Theorem in the presence of

exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case

we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components

M Levitin (michaellevitin.net) Inverse Steklov problem

20 April 2020

27/28



Modification of the Main Theorem in the presence of

exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case

we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:

o its side length vector £ (%) up to a change of orientation
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:

o its side length vector £ (%) up to a change of orientation
o 15 cosine vector Coy () up to multiplication by £1
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:

o its side length vector £ (%) up to a change of orientation

o 15 cosine vector Coy () up to multiplication by £1
o whether Y. is even or odd
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:
o its side length vector () up to a change of orientation

o 15 cosine vector Coy () up to multiplication by £1
o whether Y. is even or odd

Remark

We cannot recover the order in which the exceptional components are joined
together.
M Levitin (michaellevitin.net)
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o Foreach exceptional component YV, k = 1, We may have
o its side length vector A up to a change o -1 1 1

o s cosine vector Coy(x) up to multiplication D' = 1 1 !
o whether Y. is even or odd

= (=

1
2
11 5

1

4 2
Then ) = (Z{), V) = (glz)r
Remark Vs = (65, £7).

We cannot recover the order in which the exceptional components are joined
together.

v
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have

Theorem

Let P be an admissible curvilinear polygon. Then we can recover

o The number n of vertices

o The number K of exceptional components (= number of exceptional angles)
o For each exceptional component Y, k =1, ..K:
o its side length vector () up to a change of orientation

o 15 cosine vector Coy () up to multiplication by £1
o whether Y. is even or odd

Remark

We cannot recover the order in which the exceptional components are joined
together.
M Levitin (michaellevitin.net)
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Counterexamples

If either condition of lengths incommensurability over {0, =1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:
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Counterexamples

If either condition of lengths incommensurability over {0, =1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:

they have the same characteristic polynomial
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Counterexamples

If either condition of lengths incommensurability over {0, &1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:

Example 1 — presence of special angles

All parallelograms of perimeter 2 with angle £ are quasi-isospectral.
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Counterexamples

If either condition of lengths incommensurability over {0, &1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:

Example 1 — presence of special angles

All parallelograms of perimeter 2 with angle £ are quasi-isospectral.

Example 2 — presence of special angles

i i i i _(m m 53w
Two straight tsr;angles with the same perimeter and angles o = (Z, %, 22T ) and
Y= (5.5 S3m
& = (%, 37, °2F) are quasi-isospectral.
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Counterexamples

If either condition of lengths incommensurability over {0, &1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
quasi-isospectral (but not isospectral) curvilinear polygons:

Example 1 — presence of special angles

All parallelograms of perimeter 2 with angle £ are quasi-isospectral.

Example 2 — presence of special angles

Two straight triangles with the same perimeter and angles o = (2, Z, >T) and

637 63
5 _ (m ow S3m e
o= (9, 30 63 ) are quasi-isospectral.

Example 3 — sides commensurable

A pair of curvilinear triangles with sides £ = (3,1,1) and £ = (2,2,1) and cosine
11 —39+m) 5 (1 7—/241 —19+\/§
40 =

202 > 7y 13 s ) are quasi-isospectral.

vectors ¢ = (
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