Definition 1.1. Let (π, V) be a smooth representation of G. Let $v \in V$ and $v^{\vee} \in V^{\vee}$. The matrix coefficient associated to v, v^{\vee} is the function

$$c_{v,v^{\vee}}: G \to \mathbb{C}$$
$$g \mapsto \langle v^{\vee}, \pi(g)v \rangle$$

We say that (π, V) is Z-compact if every matrix coefficient is compactly supported modulo the centre $Z \subset G$.

Fact 1.2. Here are some important facts about cuspidal representations. We will not have time to prove them in this course, but the second and third rely on the first:

- (1) A smooth representation of G is cuspidal if and only if it is Z-compact.
- (2) An irreducible cuspidal representation of G is admissible.
- (3) Let (π, V) be an irreducible cuspidal representation with central character ω_{π} . Then π is injective and projective in the category of smooth representations with central character ω_{π} .

We'll explain how to deduce (2) from (1). It suffices to show that for any non-zero $v \in V$, and $K \subset G$ compact open, the subspace of V spanned by $\{e_K \pi(g)v : g \in G\}$ is finite dimensional (since this subspace is $e_K V = V^K$). Extending this argument, you can also show that for a Z-compact representation, the function $g \mapsto e_K \pi(g)v$ is compactly supported mod Z for every v.

So suppose we have an infinite sequence g_1, g_2, \ldots such that the vectors $v_i := e_K \pi(g_i) v$ are linearly independent. We let $\lambda : V^K \to \mathbb{C}$ be a linear functional satisfying $\lambda(v_i) = 1$, and extend it to $\lambda : V \to \mathbb{C}$ satisfying $\lambda(v) = \lambda(e_K v)$. It follows that λ is fixed by K(acting via the dual representation), so $\lambda \in (V^{\vee})^K$. The matrix coefficient $c_{v,\lambda}$ satisfies $c_{v,\lambda}(g_i) = 1$, so its support contains all of the g_i . This contradicts the assumption that it is compactly supported mod Z.

Corollary 1.3. All irreducible smooth representations of G are admissible.

Proof. Combine (2) in the above fact and Jacquet's subrepresentation theorem. \Box

Corollary 1.4. An irreducible smooth representation is cuspidal if and only if it is not a subquotient of n-Ind^G_PW for any proper parabolic $P = LU \subset G$ and (for simplicity, irreducible, or more generally with a central character) smooth representation (σ , W) of L.

This corollary says that 'cuspidal is equivalent to supercuspidal'.

Proof. It follows from Frobenius reciprocity that if π is not a subquotient of any parabolic induction then it is cuspidal. Conversely, suppose (π, V) is cuspidal, but that it does appear as a subquotient of a parabolic induction. More precisely, we have *G*-subspaces $V_2 \subset V_1 \subset n$ -Ind^{*G*}_{*P*}*W* such that $V_1/V_2 \cong V$. The central character of *n*-Ind_{*P*}*W* must match that of *V*. By (3) in the above fact, the surjective map $V_1 \to V$ has a *G*-equivariant splitting. This shows that $\text{Hom}_G(V, n\text{-Ind}^G_P W) \neq 0$, contradicting cuspidality of *V*. \Box

$$0 \to \mathbb{C} \to n\text{-}\mathrm{Ind}_B^G \delta_B^{-1/2} \to St \to 0.$$

Computing the Jacquet module, we have $J_B\mathbb{C} = \delta_B^{-1/2}$, $J_B(n \operatorname{-Ind}_B^G \delta_B^{-1/2}) = \delta_B^{-1/2} \oplus \delta_B^{1/2}$, so $J_BSt = \delta_B^{1/2}$. We know from Corollary 1.4 that every irreducible subquotient of St is non-cuspidal, so has non-zero J_B . This implies that St is irreducible.

Now we can consider the dual representation:

$$0 \to St^{\vee} \to n\text{-}\mathrm{Ind}_B^G \delta_B^{1/2} \to \mathbb{C} \to 0.$$

So we also have $J_B(St^{\vee}) = \delta_B^{1/2}$. By Frobenius reciprocity, $\operatorname{Hom}_G(St^{\vee}, n\operatorname{-Ind}_P^G\delta_B^{-1/2}) = 0$ and $\operatorname{Hom}_G(St, n\operatorname{-Ind}_P^G\delta_B^{1/2})$ is one-dimensional. We deduce that $St \cong St^{\vee}$ and the above short exact sequences are non-split.

Here is an important technical result which can be deduced from what we now know about Jacquet modules and cuspidal representations:

Theorem 1.5. Any finitely generated admissible smooth representation of G has finite length.

Proof. See Theorem 6.3.10 in Casselman.

1.1. Supercuspidal support. We have shown that every irreducible smooth representation π of G appears as a subrepresentation of n-Ind^G_PW for a parabolic subgroup $P \subset G$ and an irreducible cuspidal representation (σ, W) of the Levi quotient L of P. The pair (L, σ) is referred to as the 'supercuspidal support' of π . It was proved by Bernstein and Zelevinsky that this supercuspidal support is essentially unique:

Theorem 1.6. Let P = LU and P' = L'U' be two (standard) parabolic subgroups of G, and let (σ, W) , (σ', W') be irreducible cuspidal representations of L, L' respectively. Let V = n-Ind^P_PW and V' = n-Ind^P_PW'. Then the following are equivalent:

- (1) There exists $w \in W$ such that $wMw^{-1} = M'$ and $W^w \cong W'$.
- (2) $\operatorname{Hom}_{G}(V, V') = \operatorname{Hom}_{L'}(J_{P'}V, W') \neq 0.$
- (3) V and V' have an isomorphic Jordan-Hölder constituent.
- (4) The Jordan-Hölder constituents of V and V' are isomorphic and appear with the same multiplicities.

A very simple example of the above theorem is given by $G = \operatorname{GL}_2(F)$, P = P' = B, $\sigma = \delta_B^{1/2}$ and $\sigma' = \delta_B^{-1/2}$.

1.2. Examples of supercuspidal representations. There is a notion of cuspidal representations for finite groups of Lie type, such as $\operatorname{GL}_n(k)$ (recall that $k \cong \mathbb{F}_q$ is the residue field of F). We just ask that the space of coinvariants V_U vanishes for the unipotent subgroup U in any (standard) parabolic subgroup of $\operatorname{GL}_n(k)$. Since \mathbb{C} representations of finite groups are completely reducible, we have $V_U \cong V^U$.

So now suppose (σ, W) is a cuspidal representation of $\operatorname{GL}_n(k)$. We can inflate it to a smooth representation of K_0 . Let $\psi : Z \to \mathbb{C}^{\times}$ be a character of the centre in $G = \operatorname{GL}_n(F)$ which agrees with the central character of σ on $Z \cap K_0$. Then we can extend σ to a smooth representation (we again denote it by σ , but it depends on the choice of ψ) of the compact-mod-centre open subgroup $ZK_0 \subset G$.

In this section, we sketch the proof of:

Theorem 1.7. The compact induction $(\pi, V) = c \operatorname{-Ind}_{ZK_0}^G W$ is an irreducible cuspidal representation of G.

Proof. First we prove irreducibility. Suppose we have a proper *G*-subspace $V' \subset V$. By Frobenius reciprocity, we have $\operatorname{Hom}_{ZK_0}(V', W) = \operatorname{Hom}_G(V', \operatorname{Ind}_{ZK_0}^G W) \supset \operatorname{Hom}_G(V', c\operatorname{-Ind}_{ZK_0}^G W) \neq 0.$

By Frobenius reciprocity for compact inductions from open subgroups¹, we also have $\operatorname{Hom}_{G}(V, V/V') = \operatorname{Hom}_{ZK_{0}}(W, V/V')$. We deduce that W appears in both V' and V/V' as an irreducible constitutent. We will show that this is a contradiction.

We need to show that $V|_{ZK_0}$ contains W with multiplicity one. We can compute this restriction using the Mackey formula:

$$V|_{ZK_0} \cong \bigoplus_{g \in ZK_0 \setminus G/ZK_0} \operatorname{Ind}_{ZK_0 \cap g^{-1}ZK_0 g}^{ZK_0}(W^g)$$

the action of $g^{-1}ZK_0g$ on W^g is given by letting $g^{-1}hg$ act as $\sigma(g)$.

Since $V|_{ZK_0}$ is semisimple (K_0 is compact and Z acts by a character), we need to show that $\operatorname{Hom}_{ZK_0 \cap g^{-1}ZK_0 g}(W, W^g) = 0$ for $g \in G - ZK_0$.

For (notational!) simplicity, we'll do this for $G = \operatorname{GL}_2$ (see Prasad–Raghuram for the general case). Using the Cartan decomposition, we can assume that $g = \operatorname{diag}(\varpi^m, 1)$, where m > 0. As usual, N is the upper triangular unipotent, and $N_0 = N \cap K_0$. We have $N_0 \cap gN_0g^{-1} = gN_0g^{-1} = \begin{pmatrix} 1 & \varpi^m \mathcal{O} \\ 0 & 1 \end{pmatrix}$, which necessarily acts trivially on W. So we have $\operatorname{Hom}_{N_0 \cap gN_0g^{-1}}(W, W^g) \neq 0$ if and only if W^g has non-zero invariants under gN_0g^{-1} , or equivalently if W has non-zero invariants under N_0 . By our cuspidality assumption, $W^{N_0} = 0$ and we are done.

It remains to prove that V is cuspidal. To show that coinvariants V_U vanish for a parabolic P = LU, it suffices to prove that $\operatorname{Hom}_U(\pi, \mathbb{C}) = (\pi^*)^U = 0$. Note that here we are using the abstract vector space dual, not the smooth dual.

We can identify $(\pi^*)^U$ with functions $f: G \to W^*$ such that $f(kgu) = \sigma^*(k)f(g)$ for all $k \in ZK_0$ and $u \in U$. Since $G = BK_0 = K_0P$ (Iwasawa decomposition), we can choose double coset representatives in L for $ZK_0 \setminus G/U$.

For $u \in U_0 = K_0 \cap U$ and $l \in L$, we have

$$\sigma^*(u)f(l) = f(ul) = f(ll^{-1}ul) = f(l).$$

So $f(l) \in (W^*)^{U_0}$. But cuspidality of σ implies that this space vanishes.

¹See exercise.

1.3. Bernstein's second adjunction. Recall that we had, as an immediate consequence of Frobenius reciprocity, an adjunction:

 $\operatorname{Hom}_{G}(V, \operatorname{Ind}_{P}^{G}W) = \operatorname{Hom}_{L}(V_{U}, W).$

A much deeper theorem of Bernstein describes the *right* adjoint functor to parabolic induction. We let $\overline{P} = L\overline{U}$ be the opposite (lower triangular) parabolic to P.

Recall that in the geometric lemma we considered the P-equivariant map $\operatorname{Ind}_P^G W \to W$ given by mapping f to $f(1_G)$, which factors through $(\operatorname{Ind}_P^G W)_U$. Now we consider the map $W \to (\operatorname{Ind}_P^G W)_{\overline{U}}$ which takes w to the image of function supported on the open subset $P\overline{U} \subset G$ defined by $f(pu) = \sigma(p)w$. This is an L-equivariant map, and defines a natural transformation from the trivial functor to $(\operatorname{Ind}_P^G -)_{\overline{U}}$. In the usual way, this induces natural maps

 $\operatorname{Hom}(\operatorname{Ind}_{P}^{G}W, V) \to \operatorname{Hom}(W, V_{\overline{U}})$

and Bernstein's theorem is that these maps are isomorphisms.

- **Corollary 1.8** (Uniform admissibility). (1) J_P commutes with infinite direct products. In particular, any product of cuspidal representations is cuspidal.
 - (2) Let (π, V) be an irreducible cuspidal (equivalently, Z-compact) representation, and let $K \subset G$ be a compact open subgroup. There exists a constant c(K) (independent of π !) such that dim $V^K < c(K)$.

Proof. The first part is category theory, since we have shown that J_P admits a left adjoint.

For the second part, suppose for a contradiction that $\pi_1, \pi_2, \pi_3, \ldots$ are a sequence of irreducible cuspidals with $\dim(V_i^K)$ non-zero and unbounded. Let v_i be a non-zero vector in each V_i^K . Consider the functions $f_i : g \mapsto e_K \pi_i(g) v_i$ and $f : g \mapsto e_K \prod \pi_i(g) (\prod v_i)$. We have $\operatorname{Supp}(f_i) \subset \operatorname{Supp}(f)$ for each i. On the other hand, the image of f_i generates V_i^K for each i, so dim V_i^K is at most the number of translates of ZK required to cover $\operatorname{Supp}(f_i)$. Since this number tends to infinity, we deduce that $\operatorname{Supp}(f)$ is not compact, which contradicts the cuspidality of $\prod_i V_i$.

2. Exercise

2.1. Frobenius reciprocity for compact inductions. Show that if $H \subset G$ is an open subgroup of a locally profinite group, and $(\pi, V), (\sigma, W)$ are smooth representations of G, H respectively, then there are natural isomorphisms $\operatorname{Hom}_G(c\operatorname{-Ind}_H^G W, V) = \operatorname{Hom}_H(W, V)$.