
1. More on cuspidal representations

Definition 1.1. Let (π, V ) be a smooth representation of G. Let v ∈ V and v∨ ∈ V ∨.
The matrix coefficient associated to v, v∨ is the function

cv,v∨ : G→ C
g 7→ 〈v∨, π(g)v〉.

We say that (π, V ) is Z-compact if every matrix coefficient is compactly supported
modulo the centre Z ⊂ G.

Fact 1.2. Here are some important facts about cuspidal representations. We will not have
time to prove them in this course, but the second and third rely on the first:

(1) A smooth representation of G is cuspidal if and only if it is Z-compact.
(2) An irreducible cuspidal representation of G is admissible.
(3) Let (π, V ) be an irreducible cuspidal representation with central character ωπ. Then

π is injective and projective in the category of smooth representations with central
character ωπ.

We’ll explain how to deduce (2) from (1). It suffices to show that for any non-zero
v ∈ V , and K ⊂ G compact open, the subspace of V spanned by {eKπ(g)v : g ∈ G} is
finite dimensional (since this subspace is eKV = V K). Extending this argument, you can
also show that for a Z-compact representation, the function g 7→ eKπ(g)v is compactly
supported mod Z for every v.

So suppose we have an infinite sequence g1, g2, . . . such that the vectors vi := eKπ(gi)v
are linearly independent. We let λ : V K → C be a linear functional satisfying λ(vi) = 1,
and extend it to λ : V → C satisfying λ(v) = λ(eKv). It follows that λ is fixed by K
(acting via the dual representation), so λ ∈ (V ∨)K . The matrix coefficient cv,λ satisfies
cv,λ(gi) = 1, so its support contains all of the gi. This contradicts the assumption that it
is compactly supported mod Z.

Corollary 1.3. All irreducible smooth representations of G are admissible.

Proof. Combine (2) in the above fact and Jacquet’s subrepresentation theorem. �

Corollary 1.4. An irreducible smooth representation is cuspidal if and only if it is not
a subquotient of n-IndGPW for any proper parabolic P = LU ⊂ G and (for simplicity,
irreducible, or more generally with a central character) smooth representation (σ,W ) of L.

This corollary says that ‘cuspidal is equivalent to supercuspidal’.

Proof. It follows from Frobenius reciprocity that if π is not a subquotient of any parabolic
induction then it is cuspidal. Conversely, suppose (π, V ) is cuspidal, but that it does
appear as a subquotient of a parabolic induction. More precisely, we have G-subspaces
V2 ⊂ V1 ⊂ n-IndGPW such that V1/V2 ∼= V . The central character of n-IndPGW must
match that of V . By (3) in the above fact, the surjective map V1 → V has a G-equivariant
splitting. This shows that HomG(V, n-IndGPW ) 6= 0, contradicting cuspidality of V . �
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Example. Now we consider the Steinberg representation of G = GL2(F ): recall that we
have a short exact sequence

0→ C→ n-IndGBδ
−1/2
B → St→ 0.

Computing the Jacquet module, we have JBC = δ
−1/2
B , JB(n-IndGBδ

−1/2
B ) = δ

−1/2
B ⊕ δ1/2

B ,
so JBSt = δ

1/2
B . We know from Corollary 1.4 that every irreducible subquotient of St is

non-cuspidal, so has non-zero JB. This implies that St is irreducible.
Now we can consider the dual representation:

0→ St∨ → n-IndGBδ
1/2
B → C→ 0.

So we also have JB(St∨) = δ
1/2
B . By Frobenius reciprocity, HomG(St∨, n-IndGP δ

−1/2
B ) = 0

and HomG(St, n-IndGP δ
1/2
B ) is one-dimensional. We deduce that St ∼= St∨ and the above

short exact sequences are non-split.

Here is an important technical result which can be deduced from what we now know
about Jacquet modules and cuspidal representations:

Theorem 1.5. Any finitely generated admissible smooth representation of G has finite
length.

Proof. See Theorem 6.3.10 in Casselman. �

1.1. Supercuspidal support. We have shown that every irreducible smooth representa-
tion π of G appears as a subrepresentation of n-IndGPW for a parabolic subgroup P ⊂ G
and an irreducible cuspidal representation (σ,W ) of the Levi quotient L of P . The pair
(L, σ) is referred to as the ‘supercuspidal support’ of π. It was proved by Bernstein and
Zelevinsky that this supercuspidal support is essentially unique:

Theorem 1.6. Let P = LU and P ′ = L′U ′ be two (standard) parabolic subgroups of G,
and let (σ,W ), (σ′,W ′) be irreducible cuspidal representationsof L, L′ respectively. Let
V = n-IndGPW and V ′ = n-IndGPW ′. Then the following are equivalent:

(1) There exists w ∈ W such that wMw−1 = M ′ and Ww ∼= W ′.
(2) HomG(V, V ′) = HomL′(JP ′V,W ′) 6= 0.
(3) V and V ′ have an isomorphic Jordan–Hölder constituent.
(4) The Jordan–Hölder constituents of V and V ′ are isomorphic and appear with the

same multiplicities.

A very simple example of the above theorem is given by G = GL2(F ), P = P ′ = B,
σ = δ

1/2
B and σ′ = δ

−1/2
B .

1.2. Examples of supercuspidal representations. There is a notion of cuspidal rep-
resentations for finite groups of Lie type, such as GLn(k) (recall that k ∼= Fq is the residue
field of F ). We just ask that the space of coinvariants VU vanishes for the unipotent sub-
group U in any (standard) parabolic subgroup of GLn(k). Since C representations of finite
groups are completely reducible, we have VU ∼= V U .
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So now suppose (σ,W ) is a cuspidal representation of GLn(k). We can inflate it to a
smooth representation of K0. Let ψ : Z → C× be a character of the centre in G = GLn(F )
which agrees with the central character of σ on Z ∩ K0. Then we can extend σ to a
smooth representation (we again denote it by σ, but it depends on the choice of ψ) of the
compact-mod-centre open subgroup ZK0 ⊂ G.

In this section, we sketch the proof of:

Theorem 1.7. The compact induction (π, V ) = c-IndGZK0W is an irreducible cuspidal
representation of G.

Proof. First we prove irreducibility. Suppose we have a proper G-subspace V ′ ⊂ V . By
Frobenius reciprocity, we have HomZK0(V ′,W ) = HomG(V ′, IndGZK0W ) ⊃ HomG(V ′, c-IndGZK0W ) 6=
0.

By Frobenius reciprocity for compact inductions from open subgroups1, we also have
HomG(V, V/V ′) = HomZK0(W,V/V ′). We deduce that W appears in both V ′ and V/V ′ as
an irreducible constitutent. We will show that this is a contradiction.

We need to show that V |ZK0 contains W with multiplicity one. We can compute this
restriction using the Mackey formula:

V |ZK0
∼=

⊕
g∈ZK0\G/ZK0

IndZK0
ZK0∩g−1ZK0g

(W g)

the action of g−1ZK0g on W g is given by letting g−1hg act as σ(g).
Since V |ZK0 is semisimple (K0 is compact and Z acts by a character), we need to show

that HomZK0∩g−1ZK0g(W,W g) = 0 for g ∈ G− ZK0.
For (notational!) simplicity, we’ll do this for G = GL2 (see Prasad–Raghuram for the

general case). Using the Cartan decomposition, we can assume that g = diag($m, 1),
where m > 0. As usual, N is the upper triangular unipotent, and N0 = N ∩ K0. We

have N0 ∩ gN0g
−1 = gN0g

−1 =
(

1 $mO
0 1

)
, which necessarily acts trivially on W . So we

have HomN0∩gN0g−1(W,W g) 6= 0 if and only if W g has non-zero invariants under gN0g
−1,

or equivalently if W has non-zero invariants under N0. By our cuspidality assumption,
WN0 = 0 and we are done.

It remains to prove that V is cuspidal. To show that coinvariants VU vanish for a
parabolic P = LU , it suffices to prove that HomU(π,C) = (π∗)U = 0. Note that here we
are using the abstract vector space dual, not the smooth dual.

We can identify (π∗)U with functions f : G→ W ∗ such that f(kgu) = σ∗(k)f(g) for all
k ∈ ZK0 and u ∈ U . Since G = BK0 = K0P (Iwasawa decomposition), we can choose
double coset representatives in L for ZK0\G/U .

For u ∈ U0 = K0 ∩ U and l ∈ L, we have
σ∗(u)f(l) = f(ul) = f(ll−1ul) = f(l).

So f(l) ∈ (W ∗)U0 . But cuspidality of σ implies that this space vanishes. �

1See exercise.
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1.3. Bernstein’s second adjunction. Recall that we had, as an immediate consequence
of Frobenius reciprocity, an adjunction:

HomG(V, IndGPW ) = HomL(VU ,W ).
A much deeper theorem of Bernstein describes the right adjoint functor to parabolic

induction. We let P = LU be the opposite (lower triangular) parabolic to P .
Recall that in the geometric lemma we considered the P -equivariant map IndGPW → W

given by mapping f to f(1G), which factors through (IndGPW )U . Now we consider the map
W → (IndGPW )U which takes w to the image of function supported on the open subset
PU ⊂ G defined by f(pu) = σ(p)w. This is an L-equivariant map, and defines a natural
transformation from the trivial functor to (IndGP−)U . In the usual way, this induces natural
maps

Hom(IndGPW,V )→ Hom(W,VU)
and Bernstein’s theorem is that these maps are isomorphisms.

Corollary 1.8 (Uniform admissibility). (1) JP commutes with infinite direct products.
In particular, any product of cuspidal representations is cuspidal.

(2) Let (π, V ) be an irreducible cuspidal (equivalently, Z-compact) representation, and
let K ⊂ G be a compact open subgroup. There exists a constant c(K) (independent
of π!) such that dim V K < c(K).

Proof. The first part is category theory, since we have shown that JP admits a left adjoint.
For the second part, suppose for a contradiction that π1, π2, π3, . . . are a sequence of

irreducible cuspidals with dim(V K
i ) non-zero and unbounded. Let vi be a non-zero vector

in each V K
i . Consider the functions fi : g 7→ eKπi(g)vi and f : g 7→ eK

∏
πi(g)(∏ vi).

We have Supp(fi) ⊂ Supp(f) for each i. On the other hand, the image of fi generates
V K
i for each i, so dim V K

i is at most the number of translates of ZK required to cover
Supp(fi). Since this number tends to infinity, we deduce that Supp(f) is not compact,
which contradicts the cuspidality of ∏i Vi. �

2. Exercise

2.1. Frobenius reciprocity for compact inductions. Show that if H ⊂ G is an open
subgroup of a locally profinite group, and (π, V ), (σ,W ) are smooth representations of G,H
respectively, then there are natural isomorphisms HomG(c-IndGHW,V ) = HomH(W,V ).
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