1. Parabolic induction

Let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers with $\sum n_{i}=n$. We denote by $P_{n_{1}, \ldots, n_{r}} \subset \mathrm{GL}_{n}(F)$ the standard parabolic subgroup: block upper triangular matrices with block size given by $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$. For example

$$
P_{2,1}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & *
\end{array}\right) .
$$

We have $P=L \ltimes U$, where the Levi subgroup $L \cong \mathrm{GL}_{n_{1}}(F) \times \mathrm{GL}_{n_{2}}(F) \times \cdots \times \mathrm{GL}_{n_{r}}(F)$ and $U \triangleleft P$ is the unipotent subgroup, e.g.

$$
\left(\begin{array}{lll}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right) \subset P_{2,1}
$$

Definition 1.1. If (σ, W) is a smooth representation of L, we obtain a smooth representation of P by inflation, and then a smooth representation of G by induction.

We again denote this representation by $\operatorname{Ind}_{P}^{G} W$.
Example. If $\chi_{1}, \ldots, \chi_{n}: F^{\times} \rightarrow \mathbb{C}^{\times}$are locally constant characters, we obtain a character

$$
\begin{aligned}
\chi:=\chi_{1} \otimes \chi_{2} \otimes \cdots \otimes \chi_{n}: T & \rightarrow \mathbb{C}^{\times} \\
\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) & \mapsto \prod_{i=1}^{n} \chi_{i}\left(t_{i}\right)
\end{aligned}
$$

and hence a smooth representation $\operatorname{Ind}_{B}^{G} \chi$ of G.
A variant of the above definition is the normalized induction $n-\operatorname{Ind}_{P}^{G} W:=\operatorname{Ind}_{P}^{G}\left(\delta_{P}^{1 / 2} W\right)$. It follows from our facts induced representations that the normalized induction interacts well with duality:

$$
\left(n-\operatorname{Ind}_{P}^{G} W\right)^{\vee} \cong n-\operatorname{Ind}_{P}^{G}\left(W^{\vee}\right)
$$

1.1. The Jacquet module. Let $P \subset G=\mathrm{GL}_{n}(F)$ be a parabolic subgroup. Suppose we have a (smooth) P-representation (π, V). We denote by V_{U} the largest quotient of V on which U acts trivially (the U-coinvariants). Explicitly, we have

$$
V_{U}=V /\langle\pi(u) v-v: u \in U, v \in V\rangle .
$$

Since U is a normal subgroup of P, the P action on V naturally induces a smooth action of $L=P / U$ on V_{U}.
Proposition 1.2.

- Taking coinvariants $V \mapsto V_{U}$ is an exact functor from smooth P-representations to smooth L-representations.
- (Frobenius reciprocity): For V, W smooth representations of G, L respectively, there are natural isomorphisms $\operatorname{Hom}_{G}\left(V, \operatorname{Ind}_{P}^{G} W\right)=\operatorname{Hom}_{L}\left(V_{U}, W\right)$.
- If V is an admissible smooth G-representation, V_{U} is an admissible smooth L representation.

As with induction, there is a normalized version of this construction, we will call this the Jacquet module: $J_{P} V=\delta_{P}^{-1 / 2} V_{U}$. Now Frobenius reciprocity takes the form:

$$
\operatorname{Hom}_{G}\left(V, n-\operatorname{Ind}_{P}^{G} W\right)=\operatorname{Hom}_{L}\left(J_{P} V, W\right) .
$$

Theorem 1.3. Let $\chi=\chi_{1} \otimes \cdots \otimes \chi_{n}: T \rightarrow \mathbb{C}^{\times}$be a locally constant character as in the example above. Then the semisimplification of the Jacquet module $J_{B}\left(n-\operatorname{Ind}_{B}^{G} \chi\right)$ is isomorphic to $\oplus_{w \in W} \mathbb{C}\left(\chi^{w}\right)$.

I called this 'Jacquet's geometric lemma' but apparently it should be attributed to BernsteinZelevinsky and Casselman
In the theorem, the sum is over the Weyl group, and the character $\chi^{w}: T \rightarrow \mathbb{C}^{\times}$is defined by $\chi^{w}(t)=\chi\left(w t w^{-1}\right)$.
Proof. We'll explain this for $G=\mathrm{GL}_{2}(F)$. See Prasad's notes for an outline of the proof for GL_{n}. The map given by evaluating functions at 1_{G} gives a surjective B-equivariant map

$$
n-\operatorname{Ind}_{B}^{G} \chi \rightarrow \mathbb{C}\left(\delta_{B}^{1 / 2} \chi\right)
$$

The kernel of this map is given by the subspace of functions in n - $\operatorname{Ind}_{B}^{G} \chi$ which vanish at 1_{G} (and therefore vanish on all of B). We denote this space by W. So we have a (B-equivariant) short exact sequence

$$
0 \rightarrow W \rightarrow n-\operatorname{Ind}_{B}^{G} \chi \rightarrow \mathbb{C}\left(\delta_{B}^{1 / 2} \chi\right) \rightarrow 0
$$

and taking Jacquet modules we get a short exact sequence

$$
0 \rightarrow J_{B} W \rightarrow J_{B}\left(n-\operatorname{Ind}_{B}^{G} \chi\right) \rightarrow \mathbb{C}(\chi) \rightarrow 0
$$

Recall that $G=B \amalg B w B$. The map

$$
f \mapsto[n \mapsto f(w n)]
$$

defines an N-equivariant isomorphism of \mathbb{C}-vector spaces between W and $\mathcal{C}_{c}^{\infty}(N)(N$ acts on the target via right translation on itself). We want to compute $J_{B} W$.
Exercise 2.2 shows that $J_{B} W=W / \operatorname{ker}(\phi)$, where $\phi(f)=\int_{N} f(w n) d n$. This shows that $J_{B} W$ is a one-dimensional space, and we compute the action of T by considering $\phi(t f)=\int_{N} f(w n t) d n=\int_{N} f\left(w t w^{-1} w t^{-1} n t\right) d n=\chi^{w}(t) \delta_{B}^{w}(t)^{1 / 2} \int_{N} f\left(w t^{-1} n t\right) d n=$ $\chi^{w}(t) \delta_{B}(t)^{-1 / 2} \int_{N} f\left(w t^{-1} n t\right) d n=\chi^{w}(t) \delta_{B}(t)^{-1 / 2} \delta_{B}(t) \phi(f)$.

Example. We consider $G=\mathrm{GL}_{2}(F)$ and χ a character as in the above theorem. Then if $\chi \neq \chi^{w}$ we can automatically conclude that $J_{B}\left(n-\operatorname{Ind}_{B}^{G} \chi\right)=\chi \oplus \chi^{w}$. If $\chi=\chi^{w}$ it turns out that the Jacquet module is not semisimple.

Corollary 1.4. Suppose $G=\mathrm{GL}_{2}(F)$ and χ is a unitary locally constant character of T (in other words, $\chi=\chi_{1} \otimes \chi_{2}$ and $\left|\chi_{1}(\varpi)\right|=\left|\chi_{2}(\varpi)\right|=1$). Then $n-\operatorname{Ind}_{B}^{G} \chi$ is irreducible and $n-\operatorname{Ind}_{B}^{G} \chi \cong n-\operatorname{Ind}_{B}^{G} \chi^{w}$.

Proof. We have $\left(n-\operatorname{Ind}_{B}^{G} \chi\right)^{\vee} \cong n-\operatorname{Ind}_{B}^{G} \chi^{-1}$ and since χ is unitary, χ^{-1} is the complex conjugate of χ. It follows that we can equip n - $\operatorname{Ind}_{B}^{G} \chi$ with a G-invariant Hermitian inner product (we say that the representation is unitary). More explicitly, this inner product is given by

$$
\langle f, g\rangle=\int_{K_{0}} f(k) \overline{g(k)} d k .
$$

Admissible unitary representations are semisimple (see exercise 2.1). It follows from Frobenius reciprocity and the above example that

$$
\operatorname{Hom}_{G}\left(n-\operatorname{Ind}_{B}^{G} \chi, n-\operatorname{Ind}_{B}^{G} \chi\right)=\operatorname{Hom}_{T}\left(J_{B}\left(n-\operatorname{Ind}_{B}^{G} \chi\right), \chi\right)
$$

is one-dimensional, so we deduce that $n-\operatorname{Ind}_{B}^{G} \chi$ is irreducible. For the final part, we again apply Frobenius reciprocity, this time to compute $\operatorname{Hom}_{G}\left(n-\operatorname{Ind}_{B}^{G} \chi, n-\operatorname{Ind}_{B}^{G} \chi^{w}\right)$.

1.2. Reducibility in the non-unitary case.

Theorem 1.5. Suppose $G=\mathrm{GL}_{2}(F)$, and let χ be an arbitrary locally constant character of T. Then $n-\operatorname{Ind}_{B}^{G} \chi$ is reducible if and only if $\left(\chi_{1} / \chi_{2}\right)(x)=|x|^{ \pm 1}$.

1.3. Supercuspidal representations.

Definition 1.6. We say that a smooth representation (π, V) of G is cuspidal if $J_{P} V=0$ for every proper parabolic subgroup P.

We can extend this definition to representations of more general groups: for us, it is enough to just consider Levi subgroups L which are products of groups $G L_{n}(F)$.
Lemma 1.7. Suppose we have two parabolic subgroups $P^{\prime} \subset P \subset G$ and a smooth representation (π, V) of G. Then there are natural isomorphisms

$$
J_{P^{\prime} \cap L} J_{P} V \cong J_{P^{\prime}} V .
$$

Lemma 1.8. A smooth representation (π, V) is cuspidal if and only if

$$
\operatorname{Hom}_{G}\left(V, n-\operatorname{Ind}_{P}^{G} W\right)=0
$$

for all (proper) parabolic subgroups $P \subset G$ and smooth representations (σ, W) of L.
Proof. Apply Frobenius reciprocity.
Theorem 1.9 (Jacquet subrepresentation theorem). If (π, V) is an irreducible smooth representation of G, there exists a parabolic subgroup $P=L U$ and an irreducible cuspidal representation (σ, W) of L such that V is a subrepresentation of $n-\operatorname{Ind}_{P}^{G} W$.
Proof. Choose P minimal such that $J_{P} V \neq 0$ (if V is cuspidal we take $W=V$ and $P=G$). It can be checked that J_{P} preserves finite generation, so $J_{P} V$ is a finitely generated smooth representation of L. It therefore has an irreducible quotient (σ, W) (use Zorn's lemma to finite a maximal proper L-stable subspace). Transitivity of the Jacquet module implies that (σ, W) is supercuspidal. Frobenius reciprocity tells us that

$$
0 \neq \operatorname{Hom}_{L}\left(J_{P} V, W\right)=\operatorname{Hom}_{G}\left(V, n-\operatorname{Ind}_{P}^{G} W\right)
$$

2. Exercises

2.1. Semisimplicity of admissible unitary representations. Suppose (π, V) is an admissible smooth representation of a locally profinite group G, equipped with a G-invariant Hermitian inner product \langle,$\rangle . Show that \pi$ is semisimple; more precisely, for every G stable subspace $W \subset V$, define $W^{\perp}=\{v \in V:\langle v, w\rangle=0$ for all $w \in W\}$ and prove that $V=W \oplus W^{\perp}$.

Hint: Show that \langle,$\rangle defines an inner product on V^{K}$ for any compact open subgroup $K \subset G$.
2.2. More on the Jacquet module. Let $P \subset G=\mathrm{GL}_{n}(F)$ be a parabolic subgroup and let (V, π) be a smooth P-representations. Recall that for $P=L U$ the Jacquet module is defined in terms of the coinvariants:

$$
V_{U}=V /\langle\pi(u) v-v: u \in U, v \in V\rangle
$$

We let $V(U)=\langle\pi(u) v-v: u \in U, v \in V\rangle$. If $U_{c} \subset U$ is a compact open subgroup, we define $\pi_{U_{c}}: V \rightarrow \mathbb{C}$ by

$$
\pi_{U_{c}}(v)=\int_{U_{c}} \pi(u) v d u
$$

In other words, we apply the Hecke operator $e_{U_{c}} \in \mathcal{H}(U)$.
Show that $V(U)=\left\{v \in V: \exists U_{c}\right.$ such that $\left.\pi_{U_{c}}(v)=0\right\}$, and use this to prove exactness of taking coinvariants.

Hint: first show that U is equal to the union of its compact open subgroups, so $V(U)=$ $\cup_{U_{c}} V\left(U_{c}\right)$. Then show that $V\left(U_{c}\right)=\operatorname{ker} \pi_{U_{c}}$.

2.3. Explicit description of principal series for GL_{2}.

Show that the map

$$
\begin{aligned}
n-\operatorname{Ind}_{B}^{G} \chi & \rightarrow \mathcal{C}^{\infty}(F) \oplus \mathbb{C} \\
f & \mapsto\left(x \mapsto f\left(w\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right), f\left(1_{G}\right)\right)
\end{aligned}
$$

is injective, with image the pairs (ψ, y) such that there exists an $r>0$ such that

$$
\psi(x)=\left(\delta_{B}^{1 / 2} \chi\right)\left(\begin{array}{cc}
-x^{-1} & 0 \\
0 & x
\end{array}\right) \cdot y
$$

for all $x \in F$ with $|x| \geq r$.
Hint: there exists an r such that $f\left(1_{G}\right)=f\left(\begin{array}{cc}1 & 0 \\ x^{-1} & 1\end{array}\right)$ for all $x \in F$ with $|x| \geq r$.

