p-adic Eisenstein series, arithmetic holonomicity criteria, and irrationality of the 2 -adic period $\zeta_{2}(5)$

Vesselin Dimitrov
University of Toronto
June 12, 2020

Frank Calegari, Yunqing Tang

$\sum n^{-5}$ and $\zeta(5)$

Archimedean: $\zeta(5)=\sum_{n=1}^{\infty} n^{-5}$, just directly the convergent sum.
The p-adic version of " $\sum n^{-5}$ " is to characterize $\zeta_{p}(5) \in \mathbb{Q}_{p}$ as the unique constant such that
$E_{-4}:=\frac{1}{2} \zeta_{p}(5)+\sum_{N=1}^{\infty}\left(\sum_{n \mid N, p \nmid n} n^{-5}\right) q^{N} \in \frac{1}{2} \zeta_{p}(5)+q \mathbb{Q}[[q]]$ is a p-adic modular form. (Serre: A p-adic limit of q-expansions of classical modular forms. Katz: A rigid-analytic section of $\omega^{\otimes(-4)}$ over the locus of ordinary elliptic curves.)

We shall suppose for contradiction that the constant term $\zeta_{p}(5) \in \mathbb{Q}$, and seek to derive a contradiction by combining the arithmetic and analytic properties of the formal power series $E_{-4}(q) \in \mathbb{Q}[[q]]$ (ultimately coming down to the product formula in number fields).

The Kubota-Leopoldt p-adic zeta function

Theorem. (Calegari, D, Tang, 2020) The 2-adic period $\zeta_{2}(5) \notin \mathbb{Q}$.
Here,

$$
\zeta_{2}(5)=\lim _{2 \text {-adic }}\left(1-2^{2^{k}-5}\right) \cdot \zeta\left(5-2^{k}\right) \in \mathbb{Q}_{2} .
$$

This is a p-adic $(p=2)$ limit of rational numbers. We have $\zeta(1-n)=-B_{n} / n \in \mathbb{Q}$, where $x /\left(1-e^{-x}\right)=\sum_{n=0}^{\infty} B_{n} x^{n} / n!$, and Kummer's congruences:

$$
\begin{aligned}
& \left(1-p^{n-1}\right) B_{n} / n \equiv\left(1-p^{m-1}\right) B_{m} / m \quad\left(\bmod p^{a}\right), \\
& \text { for } p-1 \nmid n, n \equiv m \bmod \phi\left(p^{a}\right) \text {; } \\
& \left(1-2^{n-1}\right) B_{n} / n \equiv\left(1-2^{m-1}\right) B_{m} / m \quad\left(\bmod 2^{a}\right), \\
& \text { for } 8 \nmid n \text { and } n \equiv m \quad \bmod 2^{a+5} \text {. }
\end{aligned}
$$

The Kubota-Leopoldt p-adic zeta function

We can compute this 2-adic number to arbitrary precision:

$$
\begin{aligned}
\zeta_{2}(5)=2^{-3}+2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{6} & +2^{7}+2^{8}+2^{9}+2^{11}+\cdots \\
& =\overline{1001.11110111101 \cdots(2)}
\end{aligned}
$$

The theorem states that this string of binary digits does not become eventually periodic.
The proof also yields an effective irrationality measure for this constant $\zeta_{2}(5) \in \mathbb{Q}_{2} \backslash \mathbb{Q}$; but I will not discuss this in the talk.

One unusual point in the proof is that it does not come along with a "new" rational approximating sequence, and it remains an open problem to construct rapidly convergent rational approximations.

The Kubota-Leopoldt p-adic zeta function

In general, on $s \in \lim _{\leftarrow}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} /(p-1) \times \mathbb{Z}_{p}$, the Kummer congruences interpolate the rational numbers $\left(1-p^{n-1}\right) \zeta(1-n)$ [Euler factor at p removed!] to a unique p-adic meromorphic function $\zeta_{p}(s)$, which is holomorphic apart from a simple pole at $s=1$. It is a p-adic Mellin transform of a Bernoulli measure, in a perfect counterpart to the classical integral representation

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{1}{e^{x}-1} x^{s} \frac{d x}{x}
$$

The special values $\zeta(n)$, resp. $\zeta_{p}(n)$, at $n \in \mathbb{N}$ are real, resp. p-adic periods of mixed Tate motives over \mathbb{Z}, via Chen's, resp. Coleman's iterated integrals.

Transcendence of zeta values

We have $\zeta(2 n) \in \pi^{2 n} \cdot \mathbb{Q}$ and $\zeta_{p}(2 n)=0$. It is conjectured that

$$
\pi, \zeta(3), \zeta(5), \zeta(7), \ldots \subset \mathbb{R}
$$

and likewise for

$$
\zeta_{p}(3), \zeta_{p}(5), \zeta_{p}(7), \ldots \subset \mathbb{Q}_{p}
$$

are transcendental and algebraically independent. (More generally: that the only algebraic relations among periods - real or p-adic are the ones "of motivic origin"). Essentially our present-day state of knowledge reduces to:
$\pi \notin \overline{\mathbb{Q}}$ (Lindemann, 1882); $\zeta(3) \notin \mathbb{Q}$ (Apéry, 1978); and $\zeta_{2}(3), \zeta_{3}(3) \notin \mathbb{Q}$ (Calegari, 2005).

Transcendence of zeta values

$\pi \notin \overline{\mathbb{Q}}$ (Lindemann, 1882); $\zeta(3) \notin \mathbb{Q}$ (Apéry, 1978); and $\zeta_{2}(3), \zeta_{3}(3) \notin \mathbb{Q}$ (Calegari, 2005).
Our goal in this talk is to add $\zeta_{2}(5)$ to this list, as well as a possible continuation of the method. May it be employed in the Archimedean world, such as notably for the Catalan constant $C=L\left(2, \chi_{4}\right)$?
Although there are further (celebrated) results to the effect that infinitely many odd zeta values $\zeta(2 k+1)$ are irrational (Rivoal, 2000), and at least one among the four numbers $\zeta(5), \zeta(7), \zeta(9)$ and $\zeta(11)$ are irrational (Zudilin, 2001), we focus here on pure irrationality statements.

Apéry

In 1978 at a conference in Luminy, Apéry stunned mathematicians by proving the long-standing conjecture that $\zeta(3)$ is irrational. He did this by displaying (without much explanation) an explicit sequence $a_{n} / b_{n} \approx \zeta(3)$ of rapidly convergent rational approximations:

$$
\begin{array}{r}
b_{n}:=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \in \mathbb{Z}, \\
a_{n}:=\sum_{k=0}^{n}\left\{\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}\right)\right\} \\
\in \frac{1}{2[1, \ldots, n]^{3}} \mathbb{Z}
\end{array}
$$

with $\left|a_{n}-b_{n} \zeta(3)\right|<(\sqrt{2}-1)^{4 n}$.

Apéry

Thus $\left|a_{n}-b_{n} \zeta(3)\right|<(\sqrt{2}-1)^{4 n}$, but this linear form is in $\frac{1}{2[1, \ldots, n]^{3}} \cdot \mathbb{Z}+\zeta(3) \cdot \mathbb{Z}$. Since $e^{3} \cdot(\sqrt{2}-1)^{4}<1$, this certifies an irrationality proof for $\zeta(3)$.
The explanation that Apéry did provide (whose ad hoc verification is the most difficult part of his proof) is that these sequences a_{n} and b_{n} are holonomic: their generating functions $U(x):=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{Q}[[x]]$ and $V(x):=\sum_{n=0}^{\infty} b_{n} x^{n} \in \mathbb{Z}[[x]]$ are the solutions regular at the origin $x=0$ to the common linear ODE $L(f)=0$, where

$$
\begin{array}{r}
L:=\frac{d}{d x}\left\{x^{2}\left(x^{2}-34 x+1\right)\left(\frac{d}{d x}\right)^{3}+x\left(3-153 x+6 x^{2}\right)\left(\frac{d}{d x}\right)^{2}\right. \\
+ \\
\left.\left(1-112 x+7 x^{2}\right) \frac{d}{d x}+x-5\right\}
\end{array}
$$

with the respective initial conditions

$$
U(0)=6, U^{\prime}(0)=0 ; \quad V(0)=1, V^{\prime}(0)=5 .
$$

Apéry limits and the overconvergence characterization

Then $\lambda=\zeta(3)$ is characterized as the unique constant for which the power series (solution to $L(f)=0$ holomorphic at the origin)

$$
U(x)-\lambda V(x)
$$

converges further than for any other value: for $\lambda=\zeta(3)$ this power series converges up to the "larger" singularity $(\sqrt{2}+1)^{4}$ of the linear differential operator L; for $\lambda \neq \zeta(3)$ it only converges up to the "smaller" singularity $(\sqrt{2}-1)^{4}$ (those are the two roots of $x^{2}-34 x+1$).

We say that the constant $\zeta(3)$ is characterized by an overconvergence.

Beukers and modular forms for the level $\Gamma_{1}(6)$

Beukers (1987, Irrationality proofs using modular forms) found an insightful interpretation of Apéry's sequences, via an analysis with modular forms on the curve $X_{1}(6)^{+}:=X_{1}(6) / w_{6}$. Here $w_{6}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}0 & -1 \\ 6 & 0\end{array}\right)$ is the Fricke involution $\tau \mapsto-1 /(6 \tau)$ of the upper half plane. This modular curve $X_{1}(6)^{+}$is rational with Hauptmodul

$$
x:=\left(\frac{\eta(6 \tau) \eta(\tau)}{\eta(3 \tau) \eta(2 \tau)}\right)^{12}=q-12 q^{2}+66 q^{3}-220 q^{4}+\cdots
$$

mapping the cusps $i \infty \mapsto 0,1 / 2 \mapsto \infty$, the two elliptic points $i / \sqrt{6} \mapsto(\sqrt{2}-1)^{4}$ and $\frac{2}{5}+i \frac{1}{5 \sqrt{6}} \mapsto(\sqrt{2}+1)^{4}$, and the domain "I + II" conformally onto the slit plane $\mathbb{C} \backslash\left[(\sqrt{2}-1)^{4}, \infty\right)$

Beukers and the Hauptmodul for $X_{1}(6)^{+}$

Graphic taken from Beukers's paper; we write x instead of t; the three marked values are the singularities $0,(\sqrt{2}-1)^{4}$ and $(\sqrt{2}+1)^{4}$ of Apéry's differential equation.

Beukers and Apéry with $X_{1}(6)^{+}$

Apéry's generating function is

$$
\sum_{n=0}^{\infty}\left(a_{n}-b_{n} \zeta(3)\right) x^{n}=E(x) \cdot(f(x)-\zeta(3))
$$

where $q=\exp (2 \pi i \tau)=x+12 x^{2}+222 x^{3}+\cdots \in x+x^{2} \mathbb{Z}[[x]]$ has been formally inverted, and [these combinations are essentially uniquely determined by the requirements below]

$$
\begin{array}{r}
24 E(\tau):=-5\left(E_{2}(\tau)-6 E_{2}(6 \tau)\right)+\left(2 E_{2}(2 \tau)-3 E_{2}(3 \tau)\right) \in M_{2}\left(\Gamma_{1}(6)\right) \\
\in \mathbb{Z}[[q]]=\mathbb{Z}[[x]], \quad w_{6}^{*} E(\tau)=-6 \tau^{2} E(\tau),
\end{array}
$$

and $f(\tau):=\sum_{n=1}^{\infty} \frac{f_{n}}{n^{3}} q^{n} \in \mathbb{Q}[[q]]=\mathbb{Q}[[x]]$ with
$F(\tau)=\sum_{n=1}^{\infty} f_{n} q^{n} \in \mathbb{Z}[[q]]$ the Fourier expansion of the weight-4 cusp form

$$
F(\tau):=\frac{1}{40}\left(E_{4}(\tau)-6^{2} E_{4}(6 \tau)\right)-\frac{7}{40}\left(2^{2} E_{4}(2 \tau)-3^{2} E_{4}(3 \tau)\right) \in S_{4}\left(\Gamma_{1}(6)\right)
$$

Beukers and Apéry with $X_{1}(6)^{+}$

We have $w_{6}^{*} F(\tau)=-6^{2} \tau^{4} F(\tau)$, which "Hecke's lemma"
(Prop. 1.2 in Beukers) converts to

$$
w_{6}^{*}(f(\tau)-L(F, 3))=-\frac{1}{6 \tau^{2}}(f(\tau)-L(F, 3))
$$

on the iterated triple integral f of F, and this modularity relation characterizes the constant $L(F, 3)$, as an Eichler period. A simple computation shows
$L(F, s)=6\left(1-6^{2-s}-7 \cdot 2^{2-s}+7 \cdot 3^{2-s}\right) \zeta(s) \zeta(s-3)$, and $L(F, 3)=\zeta(3)$. Multiplying by the complementary relation $w_{6}^{*} E(\tau)=-6 \tau^{2} E(\tau)$ exactly cancels out the automorphy factors:
$E \cdot(f-\zeta(3))$ has trivial monodromy around the elliptic point i/ $\sqrt{6}$ fixed by the Fricke involution w_{6}.
$\zeta(3)$ by overconvergence; conclusion by a trivial arithmetic rationality criterion

By the picture, that means exactly that the power series germ $H(x):=E(x) \cdot(f(x)-\zeta(3))$, which is a priori analytic on the fairly small domain $\mathbb{C} \backslash\left[(\sqrt{2}-1)^{4}, \infty\right)$ in the x-plane, is in fact analytic on the fairly large domain $\mathbb{C} \backslash\left[(\sqrt{2}+1)^{4}, \infty\right)$.
If now $\zeta(3) \in \mathbb{Q}$, then $H(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ would have rational coefficients: $c_{n}=a_{n}-b_{n} \zeta(3) \in \frac{1}{2[1, \ldots, n]^{3}} \mathbb{Z}+\zeta(3) \mathbb{Z}$, and the following properties which are contradictory:
$-\tau(H(x)):=\lim _{p_{0} \rightarrow \infty} \lim \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{p \geq p_{0}} \max _{i=0}^{n} \log \left|c_{i}\right|_{p}=3$;

- $H(x)$ is analytic (convergent) on the complex disk $|x|<(\sqrt{2}+1)^{4}$, and on the unit p-adic disk $|x|_{p}<1$ for every prime p;
- the total fuel (arithmetic degree of the domain of convergence)
$\sum_{\text {all } v} \log R_{v}=\log (\sqrt{2}+1)^{4}=3.525 \ldots>3=\tau(H)$, yet
$H(x) \notin \mathbb{Q}[x]$.

Analyticity on a larger domain than the disk of convergence

- This proof only used the disk of convergence, $|x|<(\sqrt{2}+1)^{4}$, recovering the Apéry irrationality measure $\mu_{0}=\frac{8 \log 1+\sqrt{2}}{4 \log (1+\sqrt{2})-3}=13.417 \ldots$ on $\zeta(3)$. May this be improved, and how much, on using that in fact $f(x)$ is analytic on the larger domain $\mathbb{C} \backslash\left[(\sqrt{2}+1)^{4}, \infty\right)$, whose conformal mapping radius is four times as high as the radius of its largest contained disk? (Record: $\mu_{0}=5.513 \ldots$, by Rhin and Viola)
- Further, may we improve the numerics by using also analyticity of the pull-back of H on a suitable finite covering of $X_{1}(6)^{+}$, of a higher genus?

First example: Zudilin's determinantal criterion

With the above linear forms $r_{n}=a_{n}-b_{n} \xi$ (we had $\xi=\zeta(3)$), we have used the following trivial criterion for irrationality of ξ. Suppose $r_{n}=O\left(\varepsilon^{n}\right)$ and $\delta_{n} a_{n}, \delta_{n} b_{n} \in \mathbb{Z}$, with the δ_{n} positive integers with exponential growth rate $\Delta=\lim _{n}\left(\delta_{n}\right)^{1 / n} \in[1, \infty)$.

Then if $\varepsilon \Delta<1$, and $r_{n} \neq 0$ infinitely often, ξ must be irrational.
In terms of the generating power series $f(x):=\sum_{n=0}^{\infty} r_{n} x^{n}$, the Archimedean convergence radius $\rho_{\infty}(f) \geq 1 / \varepsilon$. Let us assume additionally that $\delta_{n} \mid \delta_{n+1}$ for each n, as in the application with $\delta_{n}=2[1, \ldots, n]^{3}$. We may then rephrase our input as a trivial arithmetic algebraization theorem: If $f(x) \in \mathbb{Q}[[x]]$ has convergence radii satisfying $\sum_{v} \log \rho_{v}(f)>\tau(f)$, then $f \in \mathbb{Q}[x]$ is a polynomial.

First example: Zudilin's determinantal criterion

Reference: W. Zudilin, A determinantal approach to irrationality, Constr. Approx. (2017).
This trivial criterion sufficed for Apéry's $\zeta(3)$. It also sufficed in Calegari's 2-adic and 3 -adic analog of Apéry's theorem. But it will not be enough for our $\zeta_{2}(5)$ irrationality proof. As a warm up, here is a simpler situation which may be also applied to exponentially divergent linear forms $r_{n}=a_{n}-b_{n} \xi$ (case $\varepsilon>1$; note that $\Delta \geq 1$ in any case).

Suppose additionally that $\delta_{n} \mid \delta_{n+1}$ for all n, and that the $r_{n}=\int p(t)^{n} d \mu(t)$, where $p(t) \geq 0$ and $d \mu$ is a (non-negative) measure on \mathbb{R}. If $\varepsilon \Delta^{3 / 2}<4$, then ξ is irrational.

This is more clearly seen on the level of the generating function: $f(x)=\sum_{n=0}^{\infty} r_{n} x^{n} \in \mathbb{Q}[[x]]$ has $\tau(f) \leq \log \Delta$ and has analytic continuation to the larger domain $\mathbb{C} \backslash(-\infty,-1 / \varepsilon]$, of conformal mapping radius $4 / \varepsilon$.

First example: Zudilin's determinantal criterion

What he really proves is that $f \in \mathbb{Q}[[x]]$ is rational under the conditions:

- $f\left(z /\left(1-\frac{z}{4 r}\right)^{2}\right) \in \mathbb{C}[[z]]$ is convergent on the complex disk $|z|<4 r$ (that means precisely f is holomorphic on $\mathbb{C} \backslash(-\infty,-r]$;
- $f(x)$ is convergent on $|x|_{p}<1$ for every prime p; and
- the domain of analyticity is large with respect to the denominators: $\log (4 r)>\frac{3}{2} \log \Delta$.
But the example of $f(x)=\log (1+x)$, with $r=1$ and $\Delta=e$, demonstrates that the coefficient $3 / 2$ may not be dropped to below the value $\log 4$. Observe nonetheless that this function is holonomic: it fulfills a linear ODE with polynomial coefficients. We will show that for holonomicity, the coefficient $3 / 2$ can be reduced to the best-possible value 1. (Q : What is the optimal coefficient in Zudilin's criterion for rationality?)

The arithmetic holonomicity theorem

We can formulate it over any global field K. Normalize the absolute values $|\cdot|_{v}, v \in M_{K}$ in the usual way $\left(|\alpha|_{v}\right.$ is the "module" reflecting the change in Haar measure of K_{v}^{+}under $x \mapsto \alpha x$), so that the product formula holds. We extend our notation to $f(\mathbf{x})=\sum a_{\mathbf{n}} \mathbf{x}^{\mathbf{n}} \in K\left[\left[x_{1}, \ldots, x_{d}\right]\right]$. For $V \subset M_{K}$, let

$$
\begin{array}{r}
h_{K}\left(\left[\alpha_{0}: \ldots: \alpha_{N}\right]\right):=\sum_{v \in M_{K}} \max _{0 \leq i \leq N} \log \left|\alpha_{i}\right|_{v} \\
h_{K}^{(V)}\left(\left[\alpha_{0}: \ldots: \alpha_{N}\right]\right):=\sum_{v \in M_{K} \backslash V} \max _{0 \leq i \leq N} \log \left|\alpha_{i}\right|_{v} \\
|\mathbf{n}|:=n_{1}+\cdots+n_{d} ; \quad h_{K}(f):=\limsup _{n \in \mathbb{N}} \frac{1}{n} h_{K}\left(\left(a_{\mathbf{n}}\right)_{\mathbf{n}:|n| \leq n}\right) \\
h_{K}^{(V)}(f):=\limsup _{n \in \mathbb{N}} \frac{1}{n} h_{K}^{(V)}\left(\left(a_{\mathbf{n}}\right)_{\mathbf{n}:|n| \leq n}\right) \\
\tau_{K}(f):=\inf _{V: \# V<\infty} h_{K}^{(V)}(f) .
\end{array}
$$

The arithmetic holonomicity theorem: the invariant $\tau(f)$
Thus $\tau_{K}(f)$ is the 'truly arithmetic' part of the height $h_{K}(f)$:

$$
h_{K}(f)=\sum_{\text {allv } \in M_{K}} \log ^{+} \frac{1}{\rho_{v}(f)}+\tau_{K}(f)
$$

where $\rho_{v}(f)$ is the v-adic convergence radius of f. The condition $\tau_{K}(f)=0$ is a mild quantitative strengthening of S-integral coefficients. It is also known as A-analyticity in Bost's more general (symmetrical with respect to either axis for the formal graph of f) setting of formal subschemes of arithmetic schemes. In the Grothendieck-Katz algebraicity conjecture, the condition of a.e. vanishing p-curvatures of an arithmetic differential equation $L(f)=0$ is equivalent to the existence of a basis of " $\tau(f)=0$ " solutions at some (equivalently, every) non-singular point. Little appears known about the invariant $\tau(f)$ of holonomic power series f : is it always a rational number? if it is not zero, how small can it be in terms of the number of singular points?

The arithmetic holonomicity theorem

\mathbb{C}_{v} : the completion of an algebraic closure of K_{v}.

$$
D_{d}\left(\mathbf{0}, R_{v}\right):=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}_{v}^{d}: \max _{1 \leq i \leq d}\left|z_{i}\right|_{v}<R_{v}\right\}
$$

For each $v \in M_{K}$, suppose given a radius $R_{v}>0$ and a holomorphic mapping $\mathbf{x}_{v}(\mathbf{z}): D_{d}\left(\mathbf{0}, R_{v}\right) \rightarrow \mathbb{C}_{v}^{d}$, normalized by $\mathbf{x}_{v}(z)=\mathbf{z}+O\left(\mathbf{z}^{2}\right)$, and such that $\mathbf{x}_{v}(\mathbf{z})=\mathbf{z}$ for all but finitely many v. Let $f\left(x_{1}, \ldots, x_{d}\right) \in K[[\mathbf{x}]]$ be such that, for every $v \in M_{K}$, the formal power series

$$
f\left(\mathbf{x}_{v}(\mathbf{z})\right) \in \mathbb{C}_{v}[[\mathbf{z}]]
$$

is the germ of a v-adic meromorphic function on the polydisk $D_{d}\left(\mathbf{0}, R_{v}\right)$. Observe that if $\sum_{v \in M_{K}} \log R_{v} \leq \tau$, the cardinal number of such $f \in K[[\mathbf{x}]]$ having $\tau_{K}(f)=\tau$ is the continuum.

The arithmetic holonomicity theorem

Theorem. Under the sharp arithmetic degree condition

$$
\sum_{v \in M_{K}} \log R_{v}>\tau_{K}(f)
$$

the power series $f(\mathbf{x})$ is holonomic: it satisfies a linear homogeneous differential equation $L(f)=0$, where

$$
L=\sum_{\mathbf{i}: i_{1}, \ldots, i_{d}<r} a_{\mathbf{i}}(\mathbf{x}) \partial_{1}^{i_{1}} \cdots \partial_{d}^{i_{d}}, \quad \partial_{i}:=x_{i} \frac{\partial}{\partial x_{i}}, \quad a_{\mathbf{i}}(\mathbf{x}) \in K(\mathbf{x}) .
$$

More precisely, with $S_{v}:=\sup _{|\mathbf{z}|_{v}=R_{v}}\left|\mathbf{x}_{v}(\mathbf{z})\right|_{v}$, there is then an inhomogeneous differential equation $L(f) \in K[x]$, for some linear differential operator L as above having

$$
r \leq \frac{\sum_{v} \log ^{+} S_{v}}{\sum_{v} \log R_{v}-\tau_{K}(f)}
$$

The gist of Schinzel-Zassenhaus

Let $K=\mathbb{Q}, d=1$ and $f(x) \in \mathbb{Z}[[x]]$, hence we may take $R_{p}=1$ and $x_{p}(z)=z$ for all primes p. It follows as a special case that if $f(x(z))$ is analytic for an $x(z)=z+\cdots: D(0, R) \rightarrow D(0, S)$ with an $R>1$ and $\frac{\log ^{+} S}{\log R}<2$, then $f(x) \in \mathbb{Q}(x) \cap \mathbb{Z}[[x]]$ is a rational function.

Apply with

$$
f(x):=\sqrt{\prod_{\alpha: P(\alpha)=0}\left(1-\alpha^{2} X\right)\left(1-\alpha^{4} X\right)} \in \mathbb{Z}[[x]]
$$

for $P(x) \in \mathbb{Z}[x]$ a degree- n polynomial with $P(0)=1$. If $\min _{\alpha: P(\alpha)=0} \log |\alpha| \geq 1-c / n$ with a certain absolute $c>0$ small enough, a theorem of Dubinin supplies such a $x(z)$ with certain radii $R=1+c_{1} / n$ and $S=1+\left(1.5 c_{1}\right) / n$. Consequently, $\min _{\alpha: P(\alpha)=0} \log |\alpha|<1-c / n$ unless $\pm P(x)$ is not a product of cyclotomic polynomials and a power of x. Details and extensions in ArXiv:1912.12545v1, with the precise constant $c=(\log 2) / 4$.

Proof of the holonomicity theorem

We first show how to reduce to the following linear dependency criterion of André, VIII 1.6 from his book G-Functions and Geometry. (NB: The set $V \subset M_{K}$ in loc. cit. must be assumed to have $\# V<\infty$.)
Suppose $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x}) \in K[[\mathbf{x}]]$ have $f\left(\mathbf{x}_{v}(\mathbf{z})\right)$ meromorphic on $D_{d}\left(\mathbf{0}, R_{v}\right)$. If for some real parameter $\kappa \in \mathbb{R}^{>0}$ the inequality

$$
\begin{aligned}
\sum_{v \in M_{K}} \log R_{v}> & \tau_{K}\left(f_{1}, \ldots, f_{m}\right)+\kappa \cdot h_{K}\left(f_{1}, \ldots, f_{m}\right) \\
& +\left(\frac{1}{m}(1+1 / \kappa)\right)^{1 / d} \cdot \sum_{v \in M_{K}} \log ^{+} S_{v}
\end{aligned}
$$

is fulfilled, then $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$ are $K(\mathbf{x})$-linearly dependent.

Proof of the holonomicity theorem

Condition in the general André theorem:

$$
\sum_{v \in M_{K}} \log R_{v}>\tau_{K}+\kappa \cdot h_{K}+\left(\frac{1}{m}(1+1 / \kappa)\right)^{1 / d} \cdot \sum_{v \in M_{K}} \log ^{+} S_{v}
$$

Our basic goal, in our particular situation, is to delete the terms involving the parameter κ. (Optimization in κ is not good enough for our irrationality proof.) Before we take it up in a moment, some intuitive guidelines:

- $\sum_{v \in M_{K}} \log R_{v}>\tau_{K}$ is the essential positivity condition;
- the proof is by an auxiliary (Siegel lemma) linear form $Q_{1} f_{1}+\cdots+Q_{m} f_{m}$ vanishing highly at the origin, with polynomials Q_{i} of heights bounded by κh_{K} and degrees bounded by $\left(\frac{1}{m}(1+1 / \kappa)\right)^{1 / d}$.
- $\log ^{+} S_{v}$ term arises from estimating $\sup _{|\mathbf{z}|_{v}=R_{v}}\left|Q_{i}\left(\mathbf{x}_{v}(\mathbf{z})\right)\right|$.

Proof of the holonomicity theorem: the bootstrapping

Observe that the qualitative form of the holonomicity theorem is already an easy consequence of André's criterion. Apply with $f_{i}:=\partial_{1}^{i} f$; then $\tau_{K}\left(f_{1}, \ldots, f_{m}\right)=\tau_{K}(f), h_{K}\left(f_{1}, \ldots, f_{m}\right)=h_{K}(f)$, and by the chain rule, the $f_{i}\left(\mathbf{x}_{v}(\mathbf{z})\right)$ are still meromorphic on $D_{d}\left(\mathbf{0}, R_{v}\right)$. Now first let $m \rightarrow \infty$ with respect to κ, and then $\kappa \rightarrow 0$. We get that if $\sum_{v} \log R_{v}>\tau_{K}(f)$, the derivatives cannot be $K(\mathbf{x})$-linearly independent.
The crucial point of the application is the precise estimate on the rank r in the $d=1$ case. The trick is to multiply the blocks of variables and consider, instead of the original variety \mathbb{A}_{K}^{d}, its high power $\left(\mathbb{A}_{K}^{d}\right)^{s}=\mathbb{A}_{K}^{\text {sd }}$, and let $s \rightarrow \infty$ in the limit.
This is the only reason that we allow multiple variables. Our ultimate application will be on the rational modular curve $X_{0}(2)$, but the proof goes through a Diophantine approximation on a high enough power $X_{0}(2)^{s}$.

Proof of the holonomicity theorem: the bootstrapping

So suppose with some

$$
r>\frac{\sum_{v} \log ^{+} S_{v}}{\sum_{v} \log R_{v}-\tau_{K}(f)}
$$

that the r^{d} derivatives $\partial_{\mathrm{i}} f(\mathbf{x}), 0 \leq i_{1}, \ldots, i_{d}<r$, are $K(\mathbf{x})$-linearly independent. Thus

$$
(\star) \quad \sum_{v} \log R_{v}>\tau_{K}(f)+\frac{1}{r} \sum_{v} \log ^{+} S_{v}
$$

Apply the André's linear dependency criterion to the $m=r^{d s}$ disjoint variables [crucial point!] products

$$
\partial_{\mathbf{i}_{1}} f\left(\mathbf{x}_{1}\right) \cdots \partial_{\mathbf{i}_{s}} f\left(\mathbf{x}_{s}\right) \in K\left[\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}\right]\right] .
$$

By (\star), there will be a small enough $\kappa>0$ and a large enough $s \in \mathbb{N}$ such that the inequality in André's criterion is met...

Proof of the holonomicity theorem: the bootstrapping

...in light of the following key observation:
Lemma. Consider two non-zero formal power series $f(\mathbf{x}) \in K[[\mathbf{x}]] \backslash\{0\}$ and $g(\mathbf{y}) \in K[[\mathbf{y}]] \backslash\{0\}$ in the disjoint blocks of variables \mathbf{x} and \mathbf{y}. Then the product series

$$
H(\mathbf{x}, \mathbf{y}):=f(\mathbf{x}) g(\mathbf{y}) \in K[[\mathbf{x}, \mathbf{y}]]
$$

has

$$
h_{K}(H)=h_{K}(f, g) \quad \text { and } \quad \tau_{K}(H)=\tau_{K}(f, g)
$$

(Multiplication has no 'carries' when the variables are disjoint.) In sharp contrast: in general (unless $\tau_{K}(f)=0$: Bost's A-analytic condition), both $h_{K}\left(f^{2}\right)>h_{K}(f)$ and $\tau_{K}\left(f^{2}\right)>\tau_{K}(f)$ are strict. The bound $\tau\left(f^{n}\right) \leq\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \tau(f)$ is asymptotically sharp for e.g. $f(x)=\log (1-x)$.

Proof of André's criterion: the Siegel lemma part

Fix parameters $\alpha \in \mathbb{N}$ and $\kappa \in \mathbb{R}^{>0}$. Asymptotically in α for the fixed $\left(f_{1}, \ldots, f_{m}\right)$, there exists an m-tuple of polynomials $Q_{1}, \ldots, Q_{m} \in K[\mathbf{x}]$, not all zero, such that:
(i) $\max _{i=1}^{m} \operatorname{deg} Q_{i} \leq\left(\frac{1}{m}\left(1+\frac{1}{\kappa}\right)\right)^{\frac{1}{d}} \alpha+o(\alpha)$;
(ii) $\max _{i=1}^{m} h_{K}\left(Q_{i}\right) \leq \kappa \cdot h_{K}\left(f_{1}, \ldots, f_{m}\right) \cdot \alpha+o(\alpha)$;
(iii) $Q_{1} f_{1}+\cdots+Q_{m} f_{m} \in\left(x_{1}, \ldots, x_{d}\right)^{\alpha}$ (order of vanishing $\geq \alpha$ at the origin).
We have $\binom{\alpha+d-1}{d} \sim \alpha^{d} / d$! linear equations in the $m\binom{N+d}{d} \sim m N^{d} / d$! unknown coefficients. The degree parameter choice

$$
N \sim\left(\frac{1}{m}\left(1+\frac{1}{\kappa}\right)\right)^{\frac{1}{d}} \alpha>m^{-1 / d} \alpha
$$

insures that the solution space is non-zero, and brings in a Dirichlet exponent of $\sim \kappa \alpha$ in Siegel's lemma.

Proof of André's criterion: the extrapolation

We next push this Siegel lemma approximation to a full $K(\mathbf{x})$-linear dependency

$$
U:=Q_{1} f_{1}+\cdots+Q_{m} f_{m}=0
$$

If this power series $U(\mathbf{x})$ is not zero, let $\beta \geq \alpha$ be the minimum degree of a non-vanishing term, and choose a multi-index $\mathbf{k} \in \mathbb{N}_{0}^{d}$ with

$$
\eta:=\left.\frac{1}{\mathbf{k}!} \frac{\partial^{\mathbf{k}} U(\mathbf{x})}{\partial \mathbf{x}^{\mathbf{k}}}\right|_{\mathbf{x}=\mathbf{0}}=\left.\frac{1}{\mathbf{k}!} \frac{\partial^{\mathbf{k}} U\left(\mathbf{x}_{V}(\mathbf{z})\right)}{\partial \mathbf{z}^{\mathbf{k}}}\right|_{\mathbf{z}=\mathbf{0}} \neq 0
$$

We choose a large enough finite subset $V \subset M_{K}$ of the places, and estimate the prime-to- V part of η trivially by the Liouville estimate:

$$
\begin{equation*}
\sum_{v \notin V} \log |\eta|_{v} \leq \max _{1 \leq i \leq m} h_{K}^{(V)}\left(Q_{i}\right)+\beta \cdot h_{K}^{(V)}\left(f_{1}, \ldots, f_{m}\right)+o(\beta) \tag{1}
\end{equation*}
$$

Proof of André's criterion: the extrapolation

The second term in this estimate (1) is proportional-asymptotic to the inevitable "denominators part" $\tau_{K}\left(f_{1}, \ldots, f_{m}\right)$. At the finitely many places $v \in V$, we use a stronger estimate coming by way of the v-adic analytic representation

$$
\begin{aligned}
q(\mathbf{z}) U\left(\mathbf{x}_{v}(\mathbf{z})\right)= & Q_{1}\left(\mathbf{x}_{v}(\mathbf{z})\right) h_{1}(\mathbf{z})+\cdots+Q_{m}\left(\mathbf{x}_{v}(\mathbf{z})\right) h_{m}(\mathbf{z}) \in \mathbb{C}_{v}[[\mathbf{z}]], \\
& q(\mathbf{0})=1 ; \quad \text { thus still } \eta=\left.\frac{1}{\mathbf{k !}} \frac{\partial^{\mathbf{k}}\left(q(\mathbf{z}) U\left(\mathbf{x}_{v}(\mathbf{z})\right)\right)}{\partial \mathbf{z}^{\mathbf{k}}}\right|_{\mathbf{z}=\mathbf{0}},
\end{aligned}
$$

where now $\mathbf{x}_{v}(\mathbf{z}), q(\mathbf{z})$ and $h_{i}(\mathbf{z})$ are holomorphic on the v-adic polydisk $\|\mathbf{z}\|_{v}:=\max _{i=1}^{d}|\mathbf{z}|_{v} \leq R_{v}$. (Shrink the R_{v} a little bit if necessary.)

Proof of André's criterion: the extrapolation

On the boundary torus $\|\mathbf{z}\|_{v}=R_{v}$ we have the estimate

$$
\begin{array}{r}
\log \left|q(\mathbf{z}) U\left(\mathbf{x}_{v}(\mathbf{z})\right)\right|_{v} \leq \log \left(m\binom{N+d}{d}\right)+N \log ^{+} S_{v} \\
+\max _{1 \leq i \leq m} \sup _{\|\mathbf{z}\|_{v}=R_{v}} \log ^{+}\left|h_{i}(\mathbf{z})\right|_{v}+\sup _{\|\mathbf{z}\|_{v}=R_{v}} \log ^{+}|q(\mathbf{z})|_{v}+\max _{1 \leq i \leq m} h_{v}\left(Q_{i}\right)
\end{array}
$$

Here

$$
N:=\max _{1 \leq i \leq m} \operatorname{deg} Q_{i} \leq\left(\frac{1}{m}\left(1+\frac{1}{\kappa}\right)\right)^{\frac{1}{d}} \beta+o(\beta)
$$

in Siegel's lemma. We use this to estimate

$$
\eta=\frac{1}{(2 \pi i)^{d}} \int_{\|\mathbf{z}\|=R_{v}} q(\mathbf{z}) U\left(\mathbf{x}_{v}(\mathbf{z})\right) \frac{d \mathbf{z}}{\mathbf{z}^{\mathbf{k}}}
$$

[this Cauchy integral formula is for the Archimedean case; analogous appeal to the maximum principle in the ultrametric case]

Proof of André's criterion: the extrapolation

At this point we use Schwartz's lemma: as the integrand $q(\mathbf{z}) U(\mathbf{x}(\mathbf{z})) / \mathbf{z}^{\mathbf{k}}$ is holomorphic, and $|\mathbf{k}|=\beta$, the Cauchy estimate yields

$$
\begin{equation*}
\log |\eta|_{v} \leq\left(\frac{1}{m}\left(1+\frac{1}{\kappa}\right)\right)^{\frac{1}{d}} \beta+\max _{1 \leq i \leq m} h_{v}\left(Q_{i}\right)-\beta \log R_{v}+o(\beta) \tag{2}
\end{equation*}
$$

Now if $V \subset M_{K}$ and $\alpha \leq \beta$ are large enough, this contradicts André's inequality upon adding (1) (on $M_{K} \backslash V$) to (2) over all $v \in V$. Thus André's condition forces identical vanishing $Q_{1} f_{1}+\cdots+Q_{m} f_{m} \equiv 0$, completing the proof of the André's criterion, and of the holonomicity theorem.

p-adic Eisenstein series

The p-adic zeta function is best understood as the constant term in the q-expansion of a p-adic (rigid analytic) family of Eisenstein series, whose non-constant Fourier coefficients are just divisor-sum functions. This was Serre's approach to the p-adic
Kubota-Leopoldt L-function, to use the whole Eisenstein family for bootstrapping analytic properties from the non-constant terms to the constant term.
Concretely, we shall start with the classical (algebraic, with p-Euler factor removed) weight- $2 k$ Eisenstein series

$$
\begin{array}{r}
E_{2 k}^{*}:=\left(1-p^{2 k-1}\right) \frac{\zeta(1-2 k)}{2}+\sum_{n=1}^{\infty} \sigma_{2 k-1}^{*}(n) q^{n} \in \mathbb{Q}+q \mathbb{Z}[[q]] ; \\
\text { here and throughout, } \quad \sigma_{\alpha}^{*}(n):=\sum_{d \mid n,(d, p)=1} d^{\alpha} .
\end{array}
$$

p-adic Eisenstein series

We have also the non-algebraic p-adic Eisenstein series of the negative (opposite) weight $-2 k$:

$$
\begin{aligned}
E_{-2 k}:=\frac{\zeta_{p}(2 k+1)}{2}+\sum_{n=1}^{\infty} \sigma_{-2 k-1}^{*}(n) q^{n} & \in \frac{\zeta_{p}(2 k+1)}{2}+q \mathbb{Q}[[q]] \\
& =: \frac{\zeta_{p}(2 k+1)}{2}+E_{-2 k}^{\prime}
\end{aligned}
$$

It is an overconvergent U_{p}-eigenform of weight $-2 k$ and level $\Gamma_{0}(p)$. Then the product

$$
H:=E_{2 k}^{*} E_{-2 k}=E_{2 k}^{*} \cdot\left(E_{-2 k}^{\prime}+\frac{\zeta_{p}(2 k+1)}{2}\right)
$$

is a weight 0 overconvergent U_{p}-eigenform. Its slope is finite (non-zero eigenvalue).

Overconvergent eigenforms of finite slope: Buzzard's analytic continuation theorem

The reference is:
Buzzard K.: Analytic continuation of overconvergent eigenforms, J. Amer. Math. Soc., vol. 16, no. 1, pp. 2955.

Calegari F.: Irrationality of certain p-adic periods for small p, IMRN, no. 20 (2005), pp. 1235-1249.

The statement (in a particular case) is that if f is a rigid-analytic section of $\omega^{\otimes k}$ over a strict neighborhood of the rigid connected component of the ordinary locus containing the cusp $\infty \in X_{0}(p)$, and which is an eigenform for $U_{p} f=a_{p} f$ with a non-zero eigenvalue $a_{p} \neq 0$, then f has an automatic analytic continuation across the entire supersingular locus (stopping, with a natural boundary unless f is algebraic, at the rigid connected component of the other cusp $\left.0 \in X_{0}(p)\right)$.

The 2-adic ordinary disks in $X_{0}(2)$: applying Buzzard's theorem in Calegari's method

Let now $p=2$. We work on the modular curve $X_{0}(2) \cong \mathbb{P}^{1}$ with the Hauptmodul

$$
x=x(q):=\frac{\Delta(2 \tau)}{\Delta(\tau)}=q \prod_{n=1}^{\infty}\left(1+q^{n}\right)^{24}
$$

in which we may formally expand

$$
q=x-24 x^{2}+852 x^{3}-35744 x^{4}+\cdots \in x+x^{2} \mathbb{Z}[[x]] .
$$

In this coordinate, it is readily seen that the ordinary component of the cusp ∞ is just the unit disk $|x|_{2} \leq 1$. As the Fricke involution w_{2} swaps $2^{12} x$ with $1 / x$, it follows that the ordinary component of the other cusp 0 is given by $|x|_{2} \geq 2^{12}$.

The 2-adic ordinary disks in $X_{0}(2)$: applying Buzzard's theorem in Calegari's method

Upshot: Buzzard's analytic continuation for the overconvergent weight-0 eigenform $H=E_{2 k}^{*} E_{-2 k}$ means precisely that $H(x)$ is convergent on the disk $|x|_{2} \leq 2^{12}$. (But its two individual factors $E_{2 k}^{*}(x)$ and $E_{-2 k}(x)$ are both only convergent on $|x|_{2} \leq 1$)

Suppose now for contradiction that $\zeta_{2}(2 k+1) \in \mathbb{Q}$; meaning precisely that $H(x) \in \mathbb{Q}[[x]]$. Then
$\tau(H(x))=2 k+1, \quad$ convergence radii $\rho_{2}=2^{12}, \rho_{p}=1$ at $p \notin\{2, \infty\} ;$
\ldots..but $\rho_{\infty}=2^{-6}$, since $(1+i) / 2$ is an elliptic point and one checks $x((1+i) / 2)=-2^{-6}$.
We have $3<\sum_{v \in M_{\mathbb{Q}}} \log \rho_{v}=6 \log 2<5$, so at this point Calegari in [IMRN, 2005] could conclude irrationality of $\zeta_{2}(3)$ but not of $\zeta_{2}(5)$.

Conclusion of the irrationality proof for $\zeta_{2}(5)$

We can now continue his method by applying the arithmetic holonomicity theorem. Set $k=2$ in the previous, whence assuming for contradiction that $\zeta_{2}(5) \in \mathbb{Q}$ - we have $\tau(H(x))=5$ with radii $r_{2}=2^{12}$ and $r_{p}=1$ for all odd primes p. For the Archimedean region, follow $x(q)$ by the further fractional-linear transformation
$q(z):\{z \in \mathbb{C}:|z|<1 / 5\} \rightarrow B:=\{q \in \mathbb{C}:|q+3 / 16|<5 / 16\}$,

$$
z \mapsto \frac{z}{1+3 z}=z+z^{2} \sum_{n=0}^{\infty}(-3)^{n+1} z^{n}
$$

a conformal isomorphism from the centered disk $D(0 ; 1 / 5)$ in the z-plane onto the pointed domain $(B, 0)$ in the q-plane, showing in particular that the latter has conformal mapping radius $1 / 5$. In effect we use the analyticity of $H(x(q)) \in \mathbb{C}[[q]]$ on the region B in the q-plane.

Conclusion of the irrationality proof for $\zeta_{2}(5)$

One calculates

$$
\sup _{\partial B}|x(q)|=|x(1 / 8)|=3.2316 \ldots,
$$

a reasonably small value (compare to $\sup _{|q|=1 / 5}|x(q)|=|x(1 / 5)|=51.768 \ldots$ for the same radius $1 / 5$ in the q-plane). We thus select:

- $R_{p}:=1$ and $x_{p}(z)=z$, if $p \notin\{2, \infty\}$;
- $R_{2}:=2^{12}$ at the 2-adic place and $x_{2}(z)=z$;
- $R_{\infty}:=1 / 5$ at the Archimedean place and

$$
x_{\infty}(z):=x(q(z))=x(z /(1+3 z))=\frac{z}{1+3 z} \prod_{n=1}^{\infty}\left(1+\left(\frac{z}{1+3 z}\right)^{n}\right)^{24}
$$

Conclusion of the irrationality proof for $\zeta_{2}(5)$

With those numerics now, the arithmetic holonomicity theorem yields an upper bound by

$$
\leq \frac{12 \log 2+\log ^{+}|x(1 / 8)|}{12 \log 2+\log (1 / 5)-5}<\frac{9.5}{6.7-5}=5.58 \ldots<6
$$

on the minimal order of a linear ODE satisfied by $H(x)$ over $\mathbb{Q}(x)$. This is a contradiction, since it is well-known that $H(x)$ is holonomic with minimal $r=6$. It is a general fact that for $f(\tau)$ a modular form of weight w, and $x(\tau)$ a non-constant modular function, the multi-valued function $f(x)$ satisfies a linear differential equation with algebraic function coefficients of the minimum order $=w+1$. (See section 2.3 of Kontsevich and Zagier's paper Periods, in: Mathematics Unlimited-2001 and Beyond, Springer (2001), pp. 771-808.)
The contradiction only means that $\zeta_{2}(5) \notin \mathbb{Q}$.

