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∑
n−5 and ζ(5)

Archimedean: ζ(5) =
∑∞

n=1 n
−5, just directly the convergent sum.

The p-adic version of “
∑

n−5” is to characterize ζp(5) ∈ Qp as
the unique constant such that

E−4 := 1
2ζp(5) +

∑∞
N=1

(∑
n|N, p-n n

−5
)
qN ∈ 1

2ζp(5) + qQ[[q]] is a

p-adic modular form. (Serre: A p-adic limit of q-expansions of
classical modular forms. Katz: A rigid-analytic section of ω⊗(−4)

over the locus of ordinary elliptic curves.)

We shall suppose for contradiction that the constant term
ζp(5) ∈ Q, and seek to derive a contradiction by combining the
arithmetic and analytic properties of the formal power series
E−4(q) ∈ Q[[q]] (ultimately coming down to the product formula
in number fields).



The Kubota-Leopoldt p-adic zeta function

Theorem. (Calegari, D, Tang, 2020) The 2-adic period ζ2(5) /∈ Q.

Here,
ζ2(5) = lim

2-adic
(1− 22

k−5) · ζ(5− 2k) ∈ Q2.

This is a p-adic (p = 2) limit of rational numbers. We have
ζ(1− n) = −Bn/n ∈ Q, where x/(1− e−x) =

∑∞
n=0 Bnx

n/n!, and
Kummer’s congruences:

(1− pn−1)Bn/n ≡ (1− pm−1)Bm/m (mod pa),

for p − 1 - n, n ≡ m mod φ(pa);

(1− 2n−1)Bn/n ≡ (1− 2m−1)Bm/m (mod 2a),

for 8 - n and n ≡ m mod 2a+5.



The Kubota-Leopoldt p-adic zeta function

We can compute this 2-adic number to arbitrary precision:

ζ2(5) = 2−3 + 20 + 21 + 22 + 23 + 24 + 26 + 27 + 28 + 29 + 211 + · · ·
= 1001.11110111101 . . .(2).

The theorem states that this string of binary digits does not
become eventually periodic.
The proof also yields an effective irrationality measure for this
constant ζ2(5) ∈ Q2 \Q; but I will not discuss this in the talk.

One unusual point in the proof is that it does not come along with
a “new” rational approximating sequence, and it remains an open
problem to construct rapidly convergent rational approximations.



The Kubota-Leopoldt p-adic zeta function

In general, on s ∈ lim←(Z/pkZ)× ∼= Z/(p − 1)× Zp, the Kummer
congruences interpolate the rational numbers (1− pn−1)ζ(1− n)
[Euler factor at p removed!] to a unique p-adic meromorphic
function ζp(s), which is holomorphic apart from a simple pole at
s = 1. It is a p-adic Mellin transform of a Bernoulli measure, in a
perfect counterpart to the classical integral representation

ζ(s) =
1

Γ(s)

∫ ∞
0

1

ex − 1
x s

dx

x
.

The special values ζ(n), resp. ζp(n), at n ∈ N are real, resp.
p-adic periods of mixed Tate motives over Z, via Chen’s, resp.
Coleman’s iterated integrals.



Transcendence of zeta values

We have ζ(2n) ∈ π2n ·Q and ζp(2n) = 0. It is conjectured that

π, ζ(3), ζ(5), ζ(7), . . . ⊂ R,

and likewise for

ζp(3), ζp(5), ζp(7), . . . ⊂ Qp,

are transcendental and algebraically independent. (More generally:
that the only algebraic relations among periods - real or p-adic -
are the ones “of motivic origin”). Essentially our present-day state
of knowledge reduces to:

π /∈ Q (Lindemann, 1882); ζ(3) /∈ Q (Apéry, 1978); and
ζ2(3), ζ3(3) /∈ Q (Calegari, 2005).



Transcendence of zeta values

π /∈ Q (Lindemann, 1882); ζ(3) /∈ Q (Apéry, 1978); and
ζ2(3), ζ3(3) /∈ Q (Calegari, 2005).

Our goal in this talk is to add ζ2(5) to this list, as well as a
possible continuation of the method. May it be employed in the
Archimedean world, such as notably for the Catalan constant
C = L(2, χ4)?

Although there are further (celebrated) results to the effect that
infinitely many odd zeta values ζ(2k + 1) are irrational (Rivoal,
2000), and at least one among the four numbers ζ(5), ζ(7), ζ(9)
and ζ(11) are irrational (Zudilin, 2001), we focus here on pure
irrationality statements.



Apéry

In 1978 at a conference in Luminy, Apéry stunned mathematicians
by proving the long-standing conjecture that ζ(3) is irrational. He
did this by displaying (without much explanation) an explicit
sequence an/bn ≈ ζ(3) of rapidly convergent rational
approximations:

bn :=
n∑

k=0

(
n

k

)2(n + k

k

)2

∈ Z,

an :=
n∑

k=0

{(n
k

)2(n + k

k

)2( n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(n
m

)(n+m
m

))}
∈ 1

2[1, . . . , n]3
Z,

with |an − bnζ(3)| < (
√

2− 1)4n.



Apéry
Thus |an − bnζ(3)| < (

√
2− 1)4n, but this linear form is in

1
2[1,...,n]3

· Z + ζ(3) · Z. Since e3 · (
√

2− 1)4 < 1, this certifies an

irrationality proof for ζ(3).
The explanation that Apéry did provide (whose ad hoc verification
is the most difficult part of his proof) is that these sequences an
and bn are holonomic: their generating functions
U(x) :=

∑∞
n=0 anx

n ∈ Q[[x ]] and V (x) :=
∑∞

n=0 bnx
n ∈ Z[[x ]] are

the solutions regular at the origin x = 0 to the common linear
ODE L(f ) = 0, where

L :=
d

dx

{
x2(x2 − 34x + 1)

( d

dx

)3
+ x(3− 153x + 6x2)

( d

dx

)2
+(1− 112x + 7x2)

d

dx
+ x − 5

}
with the respective initial conditions

U(0) = 6,U ′(0) = 0; V (0) = 1,V ′(0) = 5.



Apéry limits and the overconvergence characterization

Then λ = ζ(3) is characterized as the unique constant for which
the power series (solution to L(f ) = 0 holomorphic at the origin)

U(x)− λV (x)

converges further than for any other value: for λ = ζ(3) this power
series converges up to the “larger” singularity (

√
2 + 1)4 of the

linear differential operator L; for λ 6= ζ(3) it only converges up to
the “smaller” singularity (

√
2− 1)4 (those are the two roots of

x2 − 34x + 1).

We say that the constant ζ(3) is characterized by an
overconvergence.



Beukers and modular forms for the level Γ1(6)

Beukers (1987, Irrationality proofs using modular forms) found an
insightful interpretation of Apéry’s sequences, via an analysis with
modular forms on the curve X1(6)+ := X1(6)/w6. Here

w6 = 1√
6

(
0 −1
6 0

)
is the Fricke involution τ 7→ −1/(6τ) of the

upper half plane. This modular curve X1(6)+ is rational with
Hauptmodul

x :=
( η(6τ)η(τ)

η(3τ)η(2τ)

)12
= q − 12q2 + 66q3 − 220q4 + · · · ,

mapping the cusps i∞ 7→ 0, 1/2 7→ ∞, the two elliptic points
i/
√

6 7→ (
√

2− 1)4 and 2
5 + i 1

5
√
6
7→ (
√

2 + 1)4, and the domain

“I+II” conformally onto the slit plane C \ [(
√

2− 1)4,∞)



Beukers and the Hauptmodul for X1(6)+

Graphic taken from Beukers’s paper; we write x instead of t; the
three marked values are the singularities 0, (

√
2− 1)4 and

(
√

2 + 1)4 of Apéry’s differential equation.



Beukers and Apéry with X1(6)+

Apéry’s generating function is

∞∑
n=0

(an − bnζ(3))xn = E (x) · (f (x)− ζ(3)),

where q = exp(2πiτ) = x + 12x2 + 222x3 + · · · ∈ x + x2Z[[x ]] has
been formally inverted, and [these combinations are essentially
uniquely determined by the requirements below]

24E (τ) := −5(E2(τ)− 6E2(6τ)) + (2E2(2τ)− 3E2(3τ)) ∈ M2(Γ1(6))

∈ Z[[q]] = Z[[x ]], w∗6E (τ) = −6τ2E (τ),

and f (τ) :=
∑∞

n=1
fn
n3
qn ∈ Q[[q]] = Q[[x ]] with

F (τ) =
∑∞

n=1 fnq
n ∈ Z[[q]] the Fourier expansion of the weight-4

cusp form

F (τ) :=
1

40

(
E4(τ)−62E4(6τ)

)
− 7

40

(
22E4(2τ)−32E4(3τ)

)
∈ S4(Γ1(6)).



Beukers and Apéry with X1(6)+

We have w∗6F (τ) = −62τ4F (τ), which “Hecke’s lemma”
(Prop. 1.2 in Beukers) converts to

w∗6 (f (τ)− L(F , 3)) = − 1

6τ2
(f (τ)− L(F , 3))

on the iterated triple integral f of F , and this modularity relation
characterizes the constant L(F , 3), as an Eichler period. A simple
computation shows
L(F , s) = 6(1− 62−s − 7 · 22−s + 7 · 32−s)ζ(s)ζ(s − 3), and
L(F , 3) = ζ(3). Multiplying by the complementary relation
w∗6E (τ) = −6τ2E (τ) exactly cancels out the automorphy factors:

E · (f − ζ(3)) has trivial monodromy around the elliptic
point i/

√
6 fixed by the Fricke involution w6.



ζ(3) by overconvergence; conclusion by a trivial arithmetic
rationality criterion

By the picture, that means exactly that the power series germ
H(x) := E (x) · (f (x)− ζ(3)), which is a priori analytic on the fairly
small domain C \ [(

√
2− 1)4,∞) in the x-plane, is in fact analytic

on the fairly large domain C \ [(
√

2 + 1)4,∞).

If now ζ(3) ∈ Q, then H(x) =
∑∞

n=0 cnx
n would have rational

coefficients: cn = an − bnζ(3) ∈ 1
2[1,...,n]3

Z + ζ(3)Z, and the

following properties which are contradictory:

I τ(H(x)) := limp0→∞ lim supn∈N
1
n

∑
p≥p0 maxni=0 log |ci |p = 3;

I H(x) is analytic (convergent) on the complex disk
|x | < (

√
2 + 1)4, and on the unit p-adic disk |x |p < 1 for

every prime p;

I the total fuel (arithmetic degree of the domain of
convergence)∑

all v logRv = log (
√

2 + 1)4 = 3.525 . . . > 3 = τ(H), yet
H(x) /∈ Q[x ].



Analyticity on a larger domain than the disk of convergence

I This proof only used the disk of convergence,
|x | < (

√
2 + 1)4, recovering the Apéry irrationality measure

µ0 = 8 log 1+
√
2

4 log(1+
√
2)−3 = 13.417 . . . on ζ(3). May this be

improved, and how much, on using that in fact f (x) is analytic
on the larger domain C \ [(

√
2 + 1)4,∞), whose conformal

mapping radius is four times as high as the radius of its largest
contained disk? (Record: µ0 = 5.513 . . ., by Rhin and Viola)

I Further, may we improve the numerics by using also
analyticity of the pull-back of H on a suitable finite covering
of X1(6)+, of a higher genus?



First example: Zudilin’s determinantal criterion

With the above linear forms rn = an − bnξ (we had ξ = ζ(3)), we
have used the following trivial criterion for irrationality of ξ.
Suppose rn = O(εn) and δnan, δnbn ∈ Z, with the δn positive
integers with exponential growth rate ∆ = limn(δn)1/n ∈ [1,∞).

Then if ε∆ < 1, and rn 6= 0 infinitely often, ξ must be
irrational.

In terms of the generating power series f (x) :=
∑∞

n=0 rnx
n, the

Archimedean convergence radius ρ∞(f ) ≥ 1/ε. Let us assume
additionally that δn | δn+1 for each n, as in the application with
δn = 2[1, . . . , n]3. We may then rephrase our input as a trivial
arithmetic algebraization theorem:
If f (x) ∈ Q[[x ]] has convergence radii satisfying∑

v log ρv (f ) > τ(f ), then f ∈ Q[x ] is a polynomial.



First example: Zudilin’s determinantal criterion

Reference: W. Zudilin, A determinantal approach to irrationality,
Constr. Approx. (2017).
This trivial criterion sufficed for Apéry’s ζ(3). It also sufficed in
Calegari’s 2-adic and 3-adic analog of Apéry’s theorem. But it will
not be enough for our ζ2(5) irrationality proof. As a warm up, here
is a simpler situation which may be also applied to exponentially
divergent linear forms rn = an − bnξ (case ε > 1; note that ∆ ≥ 1
in any case).

Suppose additionally that δn | δn+1 for all n, and that the
rn =

∫
p(t)n dµ(t), where p(t) ≥ 0 and dµ is a (non-negative)

measure on R. If ε∆3/2 < 4, then ξ is irrational.

This is more clearly seen on the level of the generating function:
f (x) =

∑∞
n=0 rnx

n ∈ Q[[x ]] has τ(f ) ≤ log ∆ and has analytic
continuation to the larger domain C \ (−∞,−1/ε], of conformal
mapping radius 4/ε.



First example: Zudilin’s determinantal criterion

What he really proves is that f ∈ Q[[x ]] is rational under the
conditions:

I f
(
z/(1− z

4r )2
)
∈ C[[z ]] is convergent on the complex disk

|z | < 4r (that means precisely f is holomorphic on
C \ (−∞,−r ];

I f (x) is convergent on |x |p < 1 for every prime p; and

I the domain of analyticity is large with respect to the
denominators: log (4r) > 3

2 log ∆.

But the example of f (x) = log (1 + x), with r = 1 and ∆ = e,
demonstrates that the coefficient 3/2 may not be dropped to
below the value log 4. Observe nonetheless that this function is
holonomic: it fulfills a linear ODE with polynomial coefficients. We
will show that for holonomicity, the coefficient 3/2 can be reduced
to the best-possible value 1. (Q: What is the optimal coefficient in
Zudilin’s criterion for rationality?)



The arithmetic holonomicity theorem

We can formulate it over any global field K . Normalize the
absolute values | · |v , v ∈ MK in the usual way (|α|v is the
“module” reflecting the change in Haar measure of K+

v under
x 7→ αx), so that the product formula holds. We extend our
notation to f (x) =

∑
anxn ∈ K [[x1, . . . , xd ]]. For V ⊂ MK , let

hK ([α0 : . . . : αN ]) :=
∑
v∈MK

max
0≤i≤N

log |αi |v

h
(V )
K ([α0 : . . . : αN ]) :=

∑
v∈MK\V

max
0≤i≤N

log |αi |v

|n| := n1 + · · ·+ nd ; hK (f ) := lim sup
n∈N

1

n
hK ((an)n:|n|≤n)

h
(V )
K (f ) := lim sup

n∈N

1

n
h
(V )
K ((an)n:|n|≤n)

τK (f ) := inf
V :#V<∞

h
(V )
K (f ).



The arithmetic holonomicity theorem: the invariant τ(f )

Thus τK (f ) is the ‘truly arithmetic’ part of the height hK (f ):

hK (f ) =
∑

allv∈MK

log+
1

ρv (f )
+ τK (f ),

where ρv (f ) is the v -adic convergence radius of f . The condition
τK (f ) = 0 is a mild quantitative strengthening of S-integral
coefficients. It is also known as A-analyticity in Bost’s more
general (symmetrical with respect to either axis for the formal
graph of f ) setting of formal subschemes of arithmetic schemes. In
the Grothendieck-Katz algebraicity conjecture, the condition of a.e.
vanishing p-curvatures of an arithmetic differential equation
L(f ) = 0 is equivalent to the existence of a basis of “τ(f ) = 0”
solutions at some (equivalently, every) non-singular point. Little
appears known about the invariant τ(f ) of holonomic power series
f : is it always a rational number? if it is not zero, how small can it
be in terms of the number of singular points?



The arithmetic holonomicity theorem

Cv : the completion of an algebraic closure of Kv .

Dd(0,Rv ) := {z = (z1, . . . , zd) ∈ Cd
v : max

1≤i≤d
|zi |v < Rv}

For each v ∈ MK , suppose given a radius Rv > 0 and a
holomorphic mapping xv (z) : Dd(0,Rv )→ Cd

v , normalized by
xv (z) = z + O(z2), and such that xv (z) = z for all but finitely
many v . Let f (x1, . . . , xd) ∈ K [[x]] be such that, for every
v ∈ MK , the formal power series

f (xv (z)) ∈ Cv [[z]]

is the germ of a v -adic meromorphic function on the polydisk
Dd(0,Rv ). Observe that if

∑
v∈MK

logRv ≤ τ , the cardinal
number of such f ∈ K [[x]] having τK (f ) = τ is the continuum.



The arithmetic holonomicity theorem

Theorem. Under the sharp arithmetic degree condition∑
v∈MK

logRv > τK (f ),

the power series f (x) is holonomic: it satisfies a linear
homogeneous differential equation L(f ) = 0, where

L =
∑

i: i1,...,id<r

ai(x)∂ i11 · · · ∂
id
d , ∂i := xi

∂

∂xi
, ai(x) ∈ K (x).

More precisely, with Sv := sup|z|v=Rv
|xv (z)|v , there is then an

inhomogeneous differential equation L(f ) ∈ K [x ], for some linear
differential operator L as above having

r ≤
∑

v log+ Sv∑
v logRv − τK (f )



The gist of Schinzel-Zassenhaus
Let K = Q, d = 1 and f (x) ∈ Z[[x ]], hence we may take Rp = 1
and xp(z) = z for all primes p. It follows as a special case that if
f (x(z)) is analytic for an x(z) = z + · · · : D(0,R)→ D(0, S) with

an R > 1 and log+ S
logR < 2, then f (x) ∈ Q(x) ∩ Z[[x ]] is a rational

function.

Apply with

f (x) :=

√ ∏
α:P(α)=0

(1− α2X )(1− α4X ) ∈ Z[[x ]]

for P(x) ∈ Z[x ] a degree-n polynomial with P(0) = 1. If
minα:P(α)=0 log |α| ≥ 1− c/n with a certain absolute c > 0 small
enough, a theorem of Dubinin supplies such a x(z) with certain
radii R = 1 + c1/n and S = 1 + (1.5c1)/n. Consequently,
minα:P(α)=0 log |α| < 1− c/n unless ±P(x) is not a product of
cyclotomic polynomials and a power of x . Details and extensions
in ArXiv:1912.12545v1, with the precise constant c = (log 2)/4.



Proof of the holonomicity theorem

We first show how to reduce to the following linear dependency
criterion of André, VIII 1.6 from his book G -Functions and
Geometry. (NB: The set V ⊂ MK in loc. cit. must be assumed to
have #V <∞.)
Suppose f1(x), . . . , fm(x) ∈ K [[x]] have f (xv (z)) meromorphic on
Dd(0,Rv ). If for some real parameter κ ∈ R>0 the inequality∑

v∈MK

logRv > τK (f1, . . . , fm) + κ · hK (f1, . . . , fm)

+
( 1

m

(
1 + 1/κ

))1/d
·
∑
v∈MK

log+ Sv

is fulfilled, then f1(x), . . . , fm(x) are K (x)-linearly dependent.



Proof of the holonomicity theorem

Condition in the general André theorem:∑
v∈MK

logRv > τK + κ · hK +
( 1

m

(
1 + 1/κ

))1/d
·
∑
v∈MK

log+ Sv

Our basic goal, in our particular situation, is to delete the terms
involving the parameter κ. (Optimization in κ is not good enough
for our irrationality proof.) Before we take it up in a moment,
some intuitive guidelines:

I
∑

v∈MK
logRv > τK is the essential positivity condition;

I the proof is by an auxiliary (Siegel lemma) linear form
Q1f1 + · · ·+ Qmfm vanishing highly at the origin, with
polynomials Qi of heights bounded by κhK and degrees

bounded by
(

1
m

(
1 + 1/κ

))1/d
.

I log+ Sv term arises from estimating sup|z|v=Rv
|Qi (xv (z))|.



Proof of the holonomicity theorem: the bootstrapping

Observe that the qualitative form of the holonomicity theorem is
already an easy consequence of André’s criterion. Apply with
fi := ∂ i1f ; then τK (f1, . . . , fm) = τK (f ), hK (f1, . . . , fm) = hK (f ),
and by the chain rule, the fi (xv (z)) are still meromorphic on
Dd(0,Rv ). Now first let m→∞ with respect to κ, and then
κ→ 0. We get that if

∑
v logRv > τK (f ), the derivatives cannot

be K (x)-linearly independent.
The crucial point of the application is the precise estimate on the
rank r in the d = 1 case. The trick is to multiply the blocks of
variables and consider, instead of the original variety Ad

K , its high
power (Ad

K )s = Asd
K , and let s →∞ in the limit.

This is the only reason that we allow multiple variables. Our
ultimate application will be on the rational modular curve X0(2),
but the proof goes through a Diophantine approximation on a high
enough power X0(2)s .



Proof of the holonomicity theorem: the bootstrapping

So suppose with some

r >

∑
v log+ Sv∑

v logRv − τK (f )

that the rd derivatives ∂if (x), 0 ≤ i1, . . . , id < r , are K (x)-linearly
independent. Thus

(?)
∑
v

logRv > τK (f ) +
1

r

∑
v

log+ Sv .

Apply the André’s linear dependency criterion to the m = rds

disjoint variables [crucial point!] products

∂i1f (x1) · · · ∂is f (xs) ∈ K [[x1, . . . , xs ]].

By (?), there will be a small enough κ > 0 and a large enough
s ∈ N such that the inequality in André’s criterion is met. . .



Proof of the holonomicity theorem: the bootstrapping

. . .in light of the following key observation:

Lemma. Consider two non-zero formal power series
f (x) ∈ K [[x]] \ {0} and g(y) ∈ K [[y]] \ {0} in the disjoint blocks of
variables x and y. Then the product series

H(x, y) := f (x)g(y) ∈ K [[x, y]]

has
hK (H) = hK (f , g) and τK (H) = τK (f , g).

(Multiplication has no ‘carries’ when the variables are disjoint.)
In sharp contrast: in general (unless τK (f ) = 0: Bost’s A-analytic
condition), both hK (f 2) > hK (f ) and τK (f 2) > τK (f ) are strict.
The bound τ(f n) ≤

(
1 + 1

2 + · · ·+ 1
n

)
τ(f ) is asymptotically sharp

for e.g. f (x) = log (1− x).



Proof of André’s criterion: the Siegel lemma part

Fix parameters α ∈ N and κ ∈ R>0. Asymptotically in α for the
fixed (f1, . . . , fm), there exists an m-tuple of polynomials
Q1, . . . ,Qm ∈ K [x], not all zero, such that:

(i) maxmi=1 degQi ≤
(

1
m

(
1 + 1

κ

)) 1
d
α + o(α);

(ii) maxmi=1 hK (Qi ) ≤ κ · hK (f1, . . . , fm) · α + o(α);

(iii) Q1f1 + · · ·+ Qmfm ∈ (x1, . . . , xd)α (order of vanishing ≥ α at
the origin).

We have
(
α+d−1

d

)
∼ αd/d! linear equations in the

m
(N+d

d

)
∼ mNd/d! unknown coefficients. The degree parameter

choice

N ∼
( 1

m

(
1 +

1

κ

)) 1
d
α > m−1/dα

insures that the solution space is non-zero, and brings in a
Dirichlet exponent of ∼ κα in Siegel’s lemma.



Proof of André’s criterion: the extrapolation

We next push this Siegel lemma approximation to a full
K (x)-linear dependency

U := Q1f1 + · · ·+ Qmfm = 0.

If this power series U(x) is not zero, let β ≥ α be the minimum
degree of a non-vanishing term, and choose a multi-index k ∈ Nd

0

with

η :=
1

k!

∂kU(x)

∂xk

∣∣∣
x=0

=
1

k!

∂kU(xv (z))

∂zk

∣∣∣
z=0
6= 0.

We choose a large enough finite subset V ⊂ MK of the places, and
estimate the prime-to-V part of η trivially by the Liouville estimate:∑

v /∈V

log |η|v ≤ max
1≤i≤m

h
(V )
K (Qi ) + β · h(V )

K (f1, . . . , fm) + o(β). (1)



Proof of André’s criterion: the extrapolation

The second term in this estimate (1) is proportional-asymptotic to
the inevitable “denominators part” τK (f1, . . . , fm).
At the finitely many places v ∈ V , we use a stronger estimate
coming by way of the v -adic analytic representation

q(z)U(xv (z)) = Q1(xv (z))h1(z) + · · ·+ Qm(xv (z))hm(z) ∈ Cv [[z]],

q(0) = 1; thus still η =
1

k!

∂k(q(z)U(xv (z)))

∂zk

∣∣∣
z=0

,

where now xv (z), q(z) and hi (z) are holomorphic on the v -adic
polydisk ‖z‖v := maxdi=1 |z|v ≤ Rv . (Shrink the Rv a little bit if
necessary.)



Proof of André’s criterion: the extrapolation

On the boundary torus ‖z‖v = Rv we have the estimate

log |q(z)U(xv (z))|v ≤ log
(
m

(
N + d

d

))
+ N log+ Sv

+ max
1≤i≤m

sup
‖z‖v=Rv

log+ |hi (z)|v + sup
‖z‖v=Rv

log+ |q(z)|v + max
1≤i≤m

hv (Qi ).

Here

N := max
1≤i≤m

degQi ≤
( 1

m

(
1 +

1

κ

)) 1
d
β + o(β)

in Siegel’s lemma. We use this to estimate

η =
1

(2πi)d

∫
‖z‖=Rv

q(z)U(xv (z))
dz

zk

[this Cauchy integral formula is for the Archimedean case;
analogous appeal to the maximum principle in the ultrametric case]



Proof of André’s criterion: the extrapolation

At this point we use Schwartz’s lemma: as the integrand
q(z)U(x(z))/zk is holomorphic, and |k| = β, the Cauchy estimate
yields

log |η|v ≤
( 1

m

(
1 +

1

κ

)) 1
d
β + max

1≤i≤m
hv (Qi )− β logRv + o(β). (2)

Now if V ⊂ MK and α ≤ β are large enough, this contradicts
André’s inequality upon adding (1) (on MK \ V ) to (2) over all
v ∈ V . Thus André’s condition forces identical vanishing
Q1f1 + · · ·+ Qmfm ≡ 0, completing the proof of the André’s
criterion, and of the holonomicity theorem.



p-adic Eisenstein series

The p-adic zeta function is best understood as the constant term
in the q-expansion of a p-adic (rigid analytic) family of Eisenstein
series, whose non-constant Fourier coefficients are just divisor-sum
functions. This was Serre’s approach to the p-adic
Kubota-Leopoldt L-function, to use the whole Eisenstein family for
bootstrapping analytic properties from the non-constant terms to
the constant term.
Concretely, we shall start with the classical (algebraic, with p-Euler
factor removed) weight-2k Eisenstein series

E ∗2k := (1− p2k−1)
ζ(1− 2k)

2
+
∞∑
n=1

σ∗2k−1(n)qn ∈ Q + qZ[[q]];

here and throughout, σ∗α(n) :=
∑

d |n, (d ,p)=1

dα.



p-adic Eisenstein series

We have also the non-algebraic p-adic Eisenstein series of the
negative (opposite) weight −2k :

E−2k :=
ζp(2k + 1)

2
+
∞∑
n=1

σ∗−2k−1(n)qn ∈ ζp(2k + 1)

2
+ qQ[[q]]

=:
ζp(2k + 1)

2
+ E ′−2k .

It is an overconvergent Up-eigenform of weight −2k and level
Γ0(p). Then the product

H := E ∗2kE−2k = E ∗2k · (E ′−2k +
ζp(2k + 1)

2
).

is a weight 0 overconvergent Up-eigenform. Its slope is finite
(non-zero eigenvalue).



Overconvergent eigenforms of finite slope: Buzzard’s
analytic continuation theorem

The reference is:

Buzzard K.: Analytic continuation of overconvergent
eigenforms, J. Amer. Math. Soc., vol. 16, no. 1, pp. 29–
55.
Calegari F.: Irrationality of certain p-adic periods for small
p, IMRN, no. 20 (2005), pp. 1235–1249.

The statement (in a particular case) is that if f is a rigid-analytic
section of ω⊗k over a strict neighborhood of the rigid connected
component of the ordinary locus containing the cusp ∞ ∈ X0(p),
and which is an eigenform for Upf = apf with a non-zero
eigenvalue ap 6= 0, then f has an automatic analytic continuation
across the entire supersingular locus (stopping, with a natural
boundary unless f is algebraic, at the rigid connected component
of the other cusp 0 ∈ X0(p)).



The 2-adic ordinary disks in X0(2): applying Buzzard’s
theorem in Calegari’s method

Let now p = 2. We work on the modular curve X0(2) ∼= P1 with
the Hauptmodul

x = x(q) :=
∆(2τ)

∆(τ)
= q

∞∏
n=1

(1 + qn)24,

in which we may formally expand

q = x − 24x2 + 852x3 − 35744x4 + · · · ∈ x + x2Z[[x ]].

In this coordinate, it is readily seen that the ordinary component of
the cusp ∞ is just the unit disk |x |2 ≤ 1. As the Fricke involution
w2 swaps 212x with 1/x , it follows that the ordinary component of
the other cusp 0 is given by |x |2 ≥ 212.



The 2-adic ordinary disks in X0(2): applying Buzzard’s
theorem in Calegari’s method

Upshot: Buzzard’s analytic continuation for the overconvergent
weight-0 eigenform H = E ∗2kE−2k means precisely that H(x) is
convergent on the disk |x |2 ≤ 212. (But its two individual factors
E ∗2k(x) and E−2k(x) are both only convergent on |x |2 ≤ 1.)

Suppose now for contradiction that ζ2(2k + 1) ∈ Q; meaning
precisely that H(x) ∈ Q[[x ]]. Then

τ(H(x)) = 2k+1, convergence radii ρ2 = 212, ρp = 1 at p /∈ {2,∞};

. . .but ρ∞ = 2−6, since (1 + i)/2 is an elliptic point and one
checks x((1 + i)/2) = −2−6.
We have 3 <

∑
v∈MQ

log ρv = 6 log 2 < 5, so at this point Calegari

in [IMRN, 2005] could conclude irrationality of ζ2(3) but not of
ζ2(5).



Conclusion of the irrationality proof for ζ2(5)

We can now continue his method by applying the arithmetic
holonomicity theorem. Set k = 2 in the previous, whence —
assuming for contradiction that ζ2(5) ∈ Q — we have τ(H(x)) = 5
with radii r2 = 212 and rp = 1 for all odd primes p. For the
Archimedean region, follow x(q) by the further fractional-linear
transformation

q(z) : {z ∈ C : |z | < 1/5} → B := {q ∈ C : |q + 3/16| < 5/16},

z 7→ z

1 + 3z
= z + z2

∞∑
n=0

(−3)n+1zn,

a conformal isomorphism from the centered disk D(0; 1/5) in the
z-plane onto the pointed domain (B, 0) in the q-plane, showing in
particular that the latter has conformal mapping radius 1/5. In
effect we use the analyticity of H(x(q)) ∈ C[[q]] on the region B in
the q-plane.



Conclusion of the irrationality proof for ζ2(5)

One calculates

sup
∂B
|x(q)| = |x(1/8)| = 3.2316 . . . ,

a reasonably small value (compare to
sup|q|=1/5 |x(q)| = |x(1/5)| = 51.768 . . . for the same radius 1/5 in
the q-plane). We thus select:

I Rp := 1 and xp(z) = z , if p /∈ {2,∞};
I R2 := 212 at the 2-adic place and x2(z) = z ;

I R∞ := 1/5 at the Archimedean place and

x∞(z) := x(q(z)) = x(z/(1+3z)) =
z

1 + 3z

∞∏
n=1

(
1+
( z

1 + 3z

)n)24
.



Conclusion of the irrationality proof for ζ2(5)

With those numerics now, the arithmetic holonomicity theorem
yields an upper bound by

≤ 12 log 2 + log+ |x(1/8)|
12 log 2 + log (1/5)− 5

<
9.5

6.7− 5
= 5.58 . . . < 6

on the minimal order of a linear ODE satisfied by H(x) over Q(x).
This is a contradiction, since it is well-known that H(x) is
holonomic with minimal r = 6. It is a general fact that for f (τ) a
modular form of weight w , and x(τ) a non-constant modular
function, the multi-valued function f (x) satisfies a linear
differential equation with algebraic function coefficients of the
minimum order = w + 1. (See section 2.3 of Kontsevich and
Zagier’s paper Periods, in: Mathematics Unlimited—2001 and
Beyond, Springer (2001), pp. 771–808.)
The contradiction only means that ζ2(5) /∈ Q.


