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The Tate conjecture + Drinfeld’s lemma

This is work in progress which focuses on marrying two phenomena:

Tate’s conjecture on algebraic cycles, and

Drinfeld’s lemma on varieties in characteristic p.
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The Tate conjecture

Let k be a finitely generated field, and let X be a smooth projective
variety over k.

Conjecture

The cycle class map

Ai (X )⊗Q` → H2i (Xks ,Q`)(i)Gal(ks/k)

is surjective.

Here Ai (X ) is the Chow group of algebraic cycles of X of codimension i ,
modulo rational equivalence.
The conjecture is hard because algebraic cycles are difficult to construct.
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The Tate conjecture and BSD over function fields

Theorem (Tate, Milne)

Assume the Tate conjecture. Let E be an elliptic curve over a function
field K. Then the BSD conjecture holds for E :

ords=1 L(E/K , s) = rkE (K ).

The elliptic curve E/K corresponds to an elliptic fibration E → X , where
X/Fq is the curve whose function field is K . The Tate conjecture gets
applied to the surface E/Fq.

Factors of (1− q1−s) in L(E/K , s) correspond to certain GFq -invariant
lines in H2(EFq

,Q`)(1); invoking the Tate conjecture produces cycles in

A1(E) = Pic E , which maps onto E (K ).
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Modularity for elliptic curves over function fields

Once again, let X/Fq be a curve with function field K , and let E/K be an
elliptic curve. Assume E has split multiplicative reduction at a place
∞ ∈ |X |, with conductor N∞.

There is a curve X∞0 (N) over K , the Drinfeld modular curve,
parametrizing Drinfeld A-modules with Γ0(N) structure.
(A = H0(X\ {∞} ,OX ).)

There is a modular parametrization X∞0 (N)→ E over K , analogous to
the case of elliptic curves over Q.

There’s even an analytic description of X∞0 (N)K∞ as H/Γ0(N), where

H = P1,an
K∞
\P1(K∞) is Drinfeld’s upper half-plane.
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Drinfeld-Heegner points

Recall our uniformization X∞0 (N)→ E . Let K ′/K be a quadratic
extension satisfying the Heegner condition with respect to E , so that
ords=1 L(E/K ′, s) is odd. There are “Drinfeld-Heegner points”
ξK ′ ∈ DivX∞0 (N) for a quadratic extension K ′/K , which can be pushed
into E to obtain points yK ′ ∈ E (K ′).

Theorem (Brown, Ulmer, Yun-Zhang)

L′(E/K ′, 1) = ht(yK ′) up to an explicit nonzero constant. Therefore if
E/K ′ has analytic rank 1, it has Mordell-Weil rank 1. (Tate had already
observed that rkan(E ) ≥ rkMW(E ), so there is no need for a
Kolyvagin-type theorem.)

If L′(E/K ′, 1) = 0, then we expect rkMW(E/K ′) ≥ 3, but the
unifomization seems to be of no help constructing points of E (K ′).
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Shtukas and their moduli spaces

In the function field setting, there exists a notion of shtukas with multiple
legs, which currently does not exist over number fields. Recall our curve
X/Fq.

Definition

Let S/Fq be a scheme, and let P,Q : S → X. An Drinfeld X -shtuka over
S is a pair (F , φ), where:

F is a vector bundle over X ×Fq S

φ : (id× FrS)∗F 99K F is a rational map, which is an isomorphism
away from the graphs ΓP , ΓQ ⊂ X ×Fq S.

We require that φ have a “simple pole” at P and a “simple zero” at Q.
These are the legs of the shtuka.
In this talk, our vector bundles will have rank 2.
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Shtukas and their moduli spaces

Definition

Let S/Fq be a scheme, and let P,Q : S → X. An Drinfeld X -shtuka over
S is a pair (F , φ), where:

F is a vector bundle over X ×Fq S

φ : (id× FrS)∗F 99K F is a rational map, which is an isomorphism
away from the graphs ΓP , ΓQ ⊂ X ×Fq S.

Let Sht2 be the moduli stack of Drinfeld X -shtukas (2 = number of legs).
This is a Deligne-Mumford stack. The projection Sht2 → X × X (sending
a shtuka to its pair of legs) is relative dimension 2.

It is also possible to add level structures, e.g. Sht2
0(N) for an effective

divisor N ⊂ X (this means Γ0(N)-level structure).
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Uniformization by spaces of shtukas?

Now let E/K be a non-isotrivial elliptic curve of conductor N. Let E → X
be the corresponding elliptic surface. Then E ×Fq E → X ×Fq X is a
(relative) surface.

We also have the surface Sht2
0(N)→ X ×Fq X . Let η be the generic point

of X ×Fq X .

Expectation

There exists a cycle in A2(Sht2
0(N)×X×X E ×Fq E), inducing a nontrivial

Gal(η/η)-equivariant map H2(Sht2
0(N)η)→ H2((E ×Fq E)η).

By Drinfeld, the cohomology of H1(E)⊗ H1(E) ⊂ H2(E × E) appears in
H2(Sht2

0(N)); by the Tate conjecture there should exist an algebraic
correspondence inducing this.
Pedantic note: the Tate conjecture might not literally apply to our
Sht2

0(N), which is not even of finite type; to address this we might instead
use a space of D-shtukas, where D/K is a nonsplit quaternion algebra.
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Uniformization by spaces of shtukas

Expectation

There exists a nontrivial algebraic correspondence Sht2
0(N) 99K E ×Fq E .

We might call such an E “2-modular”.

The big questions are then:

1 Can we find examples of E/K which are 2-modular?

2 If E is 2-modular, can we use the uniformization by Sht2
0(N) to solve

BSD for E?
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An example: X = P1
F2

, N = (0) + 2(1) + (∞).

Let’s look at the case X = P1
F2

, N = (0) + 2(1) + (∞). There is a unique
cuspidal automorphic form for GL2 at this level, and it corresponds to an
elliptic curve

Et : y2 + (t + 1)xy = x3.

Meanwhile, Sht2
0(N) is birational to a K3 elliptic surface of rank 18,

defined over η = SpecF2(P,Q), with equation

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2,

where

a1(t) = (P + 1)(Q + 1)t

a2(t) = (P + 1)(Q + 1)t(t + P)(t + Q)

a3(t) = (P + 1)(Q + 1)t(t + P)(t + Q)(t + 1)(t + PQ)
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An example: X = P1
F2

, N = (0) + 2(1) + (∞).

Elkies observed that (0, 0) is a 6-torsion section of Sht2
0(N)→ P1

t , and
that in fact Sht2

0(N) is the universal K3 elliptic surface with 6-torsion
section.

Theorem (Elkies)

Working over η = SpecF2(P,Q), there exists a finite-to-one map from
Sht2

0(N)η onto the Kummer surface Km(EP × EQ)η.

Recall that Km(EP × EQ) is the desingularization of (EP × EQ)/[−1]. It is
a K3 elliptic surface of rank 18. The cartesian diagram

Z //

��

EP × EQ

��
Sht2

0(N) // Km(EP × EQ)

now shows that Et is 2-modular!
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Heegner-Drinfeld cycles

Let E/K be an elliptic curve over a function field, and assume that E is
2-modular, so that we have a correspondence c : Sht2

0(N) 99K E × E over
X × X .

Let K ′/K be a quadratic extension satisfying the Heegner hypothesis.
This time L(E/K ′, s) is even. Then there exists a Heegner-Drinfeld cycle
ξK ′ ∈ Z 2(Sht2

0(N)X ′×X ′); this is essentially the locus of shtukas with “CM
by K ′”. Let xK ′ = c(ξK ′), so that xK ′ ∈ Z 2(E ′ × E ′), where E ′ = E ×X X ′.

Theorem (Yun-Zhang)

We have L(2)(E/K ′, 1) = h(xK ′) up to an explicit nonzero constant.

This is true regardless of whether L(E/K ′, 1) is 0 or not!! There is a
similar formula for higher derivatives.
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Theorem (Yun-Zhang)

For the Heegner-Drinfeld cycle xK ′ ∈ A2(E ′ × E ′), we have
L(2)(E/K ′, 1) = h(xK ′) up to an explicit nonzero constant.

Let’s suppose rkan(E/K ′) = 2. The theorem says that xK ′ ∈ A2(E ′ ×E ′) is
nonzero. On the other hand, BSD would have us believe that there exist
classes R1,R2 ∈ A2(E ′) whose images span E (K ′), and that L(2)(E/K ′, 1)
should relate to the regulator det 〈Ri ,Rj〉.

This suggests that, up to a constant:

xK ′ = R1 ⊗ R2 − R2 ⊗ R1 ∈ A1(E ′)⊗ A1(E ′) ⊂ A2(E ′ × E ′).

If we knew that xK ′ belonged to A1(E ′)⊗ A1(E ′), this would be a way of
constructing points of Mordell-Weil.
Yun-Zhang already imply that xK ′ is “alternating in the two legs”, but this
is not enough to imply that xK ′ belongs to A1(E ′)⊗ A1(E ′).
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Partial Frobenius

There is a feature of this story we have not yet leveraged. The surface
Sht2

0(N)→ X × X has a partial Frobenius structure. (Away from the
diagonal, anyway.) This means an endomorphism Φ1 of Sht2

0(N) making
the diagram commute:

Sht2
0(N)

Φ1 //

��

Sht2
0(N)

��
X × X

FrX ×id
// X × X .

Similarly for Φ2, and Φ1Φ2 = Φ2Φ1 equals absolute Frobenius.

The product E × E has an obvious partial Frobenius structure, namely
Φ1 = FrE ×id and Φ2 = id× FrE .
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Partial Frobenius structures

Let X1 and X2 be nice schemes over Fp. For a scheme Y → X1 ×Fp X2 we
may talk of a partial Frobenius (PF) structure on Y : this means a
FrX1 ×1-linear endomorphism Φ1 : Y → Y , and similarly a Φ2, such that
Φ1Φ2 = Φ2Φ1 = FrY .

The obvious example is the split structure Y = X1 ×Fp X2, with
Φ1 = FrX1 ×1, etc.

Another example: Xi = SpecFp[t±1
i ], i = 1, 2, so that

X1 ×Fp X2 = SpecFp[t±1
1 , t±2

2 ]. Let

Y = SpecFp[t±1
1 , t±2

2 , y ]/(yp−1 = t1t2). There is a PF structure with
Φ1(y) = t1y , Φ2(y) = t2y .

This PF structure is nonsplit. However it is a quotient of a split structure:
Y = Ỹ /G , where Ỹ = X ′1 ×Fp X

′
2 carries the split PF structure, each

X ′i → Xi is an étale µp−1-torsor, and G = µp−1 acting diagonally.
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Drinfeld’s lemma

Theorem (Drinfeld)

Let Y → X1 × X2 be a finite étale morphism with PF structure. Then
Y ∼= (X̃1 × X̃2)/H, where X̃i → X are finite Galois, and
H ⊂ Gal(X̃1/X1)× Gal(X̃2/X2).

In other words, finite étale PF structures are all quotients of split ones.

Other PF structures Y → X1 ×X2, like our shtuka moduli spaces Sht2
0(N),

are much more complicated. But Drinfeld’s lemma shows that the
cohomology H i (Yη,Q`), a priori admitting only an action of π1(X1 × X2),
actually admits an action of π1(X1)× π1(X2).
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PF structures on abelian varieties

Let X1 and X2 be (not necessariy projective) smooth curves over Fp.

Here’s a way to construct an abelian scheme over X1 × X2 with PF
structure: choose an abelian scheme A1 → X1, and an étale G -torsor
X ′2 → X2. Get G to act on A1, and define Y = (A1 × X ′2)/G , with G
acting diagonally. Then Y may not be split, but its pullback to X1 ×X ′2 is.

In fact, any abelian scheme over X1 × X2 with PF structure becomes split
over X ′1 × X ′2, where X ′i → Xi is some finite étale cover! (Think about
each irreducible summand of the π1(X1)× π1(X2)-module H1(Aη,Q`). It
must be of the form ρ1� ρ2, where the weights of ρ1 and ρ2 sum up to 1.)
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Set-up for the PF Tate conjecture

Let Y → X1 × X2 be a projective and smooth, and equipped with a PF
structure. Then H i (Yη,Q`) is a representation of π1(X1)× π1(X2) by
Drinfeld’s lemma.

Define the Tate twist Q`(r1, r2) as the exterior tensor product
Q`(r1)�Q`(r2), a representation of π1(X1)× π1(X2).

On the algebraic cycle side, F1 and F2 act on Ar (Y ), with F1F2 acting as
pr . Let Ar1,r2(Y ) denote the subgroup where Fi acts as pri .

Thus if Y = Y1 × Y2 is split, then Ar1,r2(Y ) contains the image of
Ar1(Y1)⊗ Ar2(Y2).
For each pair (r1, r2) with r1 + r2 = r we have the cycle class map

Ar1,r2(Y )⊗Q` → H2r (Yη,Q`)(r1, r2)π1(X1)×π1(X2).
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The PF Tate conjecture / splitting of cycles

Let Y → X1 × X2 be a smooth projective PF structure. Evidence is
admittedly scant, but I can’t resist suggesting these two conjectures:

Conjecture (PF Tate)

The cycle class map

Ar1,r2(Y )⊗Q` → H2r (Yη,Q`)(r1, r2)π1(X1)×π1(X2)

is surjective.

Conjecture (Splitting of cycles)

If Y = Y1 × Y2 is a split PF structure, then

Ar1(Y1)⊗ Ar2(Y2)→ Ar1,r2(Y1 × Y2)

is surjective.
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PF Tate conjecture

Conjecture (PF Tate)

The cycle class map

Ar1,r2(Y )⊗Q` → H2r (Yη,Q`)(r1, r2)π1(X1)×π1(X2)

is surjective.

At the very least, when Y = Y1 × Y2 is a split structure, the Künneth
formula shows that Tate implies PF Tate, and indeed that the RHS is
spanned by Ar1(Y1)⊗ Ar2(Y2).

For an abelian scheme Y with PF structure, we have seen that Y becomes
split after passage to a finite étale cover X ′1 × X ′2. The Tate conjecture for
divisors (r = 1) is known for abelian varieties (Faltings/Zarhin), so the PF
Tate conjecture is true unconditionally in this case.
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Consequences of the PF Tate conjecture

Let K be the function field of a curve X/Fq, and let E/K be an elliptic
curve of conductor N.

The PF Tate conjecture predicts an algebraic correspondence
c : Sht2

0(N) 99K E × E over X × X , which is in a sense equivariant for the
PF structures on either side. Let’s call this state of affairs “E is 2-modular
+ EPF”. Then c induces maps Ar1,r2(Sht2

0(N))→ Ar1,r2(E × E).

Now suppose K ′/K is quadratic, satisfying the Heegner condition with
respect to N, such that E/K ′ has analytic rank 2.

The Drinfeld-Heegner cycle ξK ′ is PF-stable on the nose! So its class lies
in A1,1(Sht2

0(N)). Its image xK ′ = c(ξK ′) lies in A1,1(E × E).
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Consequences of the PF Tate conjecture

Suppose that E/K ′ has analytic rank 2.

The Drinfeld-Heegner cycle ξK ′ lies in A1,1(Sht2
0(N)). Its image

xK ′ = c(ξK ′) lies in A1,1(E × E).

Under the splitting cycles conjecture, xK ′ lies in the image of
A1(E)⊗ A1(E). By Yun-Zhang, xK ′ actually lies in the antisymmetric part
of A2(E × E)⊗Q, which means it comes from an element of
∧2A1(E)⊗Q. (Reasoning: when the 2 legs collide, xK ′ becomes a
Drinfeld-Heegner point coming from a space of shtukas with one leg. But
since L′(E/K ′, 1) = 0, this latter point is torsion.)

Also by Yun-Zhang, the height of xK ′ is nonzero. This is enough to imply
that the Mordell-Weil rank of E/K ′ is 2.
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Conclusion

This kind of strategy should work for any rank r .

Theorem

Assume that E/K is r-modular + EPF, and that the splitting cycles
conjecture holds for E r . If rkan(E/K ′) = r , then rkMW(E/K ′) = r .

Unfortunately, I do not know whether the example E/F2(t) is 2-modular
+ EPF (someone please help me verify!).

Moral: assume a strong (PFE) version of the Tate conjecture (and in
particular assume BSD). Let E/K ′ have rank r . Then the
Heegner-Drinfeld cycle coming from Shtr0(N) (r -legged shtukas) spans the
one-dimensional space ∧rE (K ′).

Thank you for listening!
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