Partial Frobenius structures, the Tate conjecture, and BSD over function fields

Jared Weinstein

Boston University

jsweinst@bu.edu

July 8, 2020

This is work in progress which focuses on marrying two phenomena:

- Tate's conjecture on algebraic cycles, and
- Drinfeld's lemma on varieties in characteristic *p*.

Let k be a finitely generated field, and let X be a smooth projective variety over k.

Conjecture

The cycle class map

$$A^i(X)\otimes \mathbf{Q}_\ell o H^{2i}(X_{k^s},\mathbf{Q}_\ell)(i)^{\operatorname{Gal}(k^s/k)}$$

is surjective.

Here $A^i(X)$ is the Chow group of algebraic cycles of X of codimension *i*, modulo rational equivalence.

The conjecture is hard because algebraic cycles are difficult to construct.

Theorem (Tate, Milne)

Assume the Tate conjecture. Let E be an elliptic curve over a function field K. Then the BSD conjecture holds for E:

 $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rk} E(K).$

The elliptic curve E/K corresponds to an *elliptic fibration* $\mathcal{E} \to X$, where X/\mathbf{F}_q is the curve whose function field is K. The Tate conjecture gets applied to the surface \mathcal{E}/\mathbf{F}_q .

Factors of $(1 - q^{1-s})$ in L(E/K, s) correspond to certain $G_{\mathbf{F}_q}$ -invariant lines in $H^2(\mathcal{E}_{\mathbf{F}_q}, \mathbf{Q}_\ell)(1)$; invoking the Tate conjecture produces cycles in $A^1(\mathcal{E}) = \operatorname{Pic} \mathcal{E}$, which maps onto E(K). Once again, let X/\mathbf{F}_q be a curve with function field K, and let E/K be an elliptic curve. Assume E has split multiplicative reduction at a place $\infty \in |X|$, with conductor $N\infty$.

There is a curve $X_0^{\infty}(N)$ over K, the *Drinfeld modular curve*, parametrizing Drinfeld *A*-modules with $\Gamma_0(N)$ structure. ($A = H^0(X \setminus \{\infty\}, \mathcal{O}_X)$.)

There is a modular parametrization $X_0^{\infty}(N) \to E$ over K, analogous to the case of elliptic curves over **Q**.

There's even an analytic description of $X_0^{\infty}(N)_{K_{\infty}}$ as $\mathcal{H}/\Gamma_0(N)$, where $\mathcal{H} = \mathbf{P}_{K_{\infty}}^{1,\mathrm{an}} \setminus \mathbf{P}^1(K_{\infty})$ is Drinfeld's upper half-plane.

Recall our uniformization $X_0^{\infty}(N) \to E$. Let K'/K be a quadratic extension satisfying the Heegner condition with respect to E, so that $\operatorname{ord}_{s=1} L(E/K', s)$ is odd. There are "Drinfeld-Heegner points" $\xi_{K'} \in \operatorname{Div} X_0^{\infty}(N)$ for a quadratic extension K'/K, which can be pushed into E to obtain points $y_{K'} \in E(K')$.

Theorem (Brown, Ulmer, Yun-Zhang)

 $L'(E/K', 1) = ht(y_{K'})$ up to an explicit nonzero constant. Therefore if E/K' has analytic rank 1, it has Mordell-Weil rank 1. (Tate had already observed that $rk_{an}(E) \ge rk_{MW}(E)$, so there is no need for a Kolyvagin-type theorem.)

If L'(E/K', 1) = 0, then we expect $rk_{MW}(E/K') \ge 3$, but the unifomization seems to be of no help constructing points of E(K').

In the function field setting, there exists a notion of shtukas with multiple legs, which currently does not exist over number fields. Recall our curve X/\mathbf{F}_q .

Definition

Let S/\mathbf{F}_q be a scheme, and let $P, Q: S \to X$. An Drinfeld X-shtuka over S is a pair (\mathcal{F}, ϕ) , where:

- \mathcal{F} is a vector bundle over $X \times_{\mathbf{F}_q} S$
- $\phi: (\mathrm{id} \times \mathrm{Fr}_{\mathcal{S}})^* \mathcal{F} \dashrightarrow \mathcal{F}$ is a rational map, which is an isomorphism away from the graphs $\Gamma_P, \Gamma_Q \subset X \times_{\mathbf{F}_q} S$.

We require that ϕ have a "simple pole" at P and a "simple zero" at Q. These are the *legs* of the shtuka.

In this talk, our vector bundles will have rank 2.

Definition

Let S/\mathbf{F}_q be a scheme, and let $P, Q: S \to X$. An Drinfeld X-shtuka over S is a pair (\mathcal{F}, ϕ) , where:

- \mathcal{F} is a vector bundle over $X \times_{\mathbf{F}_{a}} S$
- $\phi: (\mathrm{id} \times \mathrm{Fr}_S)^* \mathcal{F} \dashrightarrow \mathcal{F}$ is a rational map, which is an isomorphism away from the graphs $\Gamma_P, \Gamma_Q \subset X \times_{\mathbf{F}_q} S$.

Let Sht^2 be the moduli stack of Drinfeld X-shtukas (2 = number of legs). This is a Deligne-Mumford stack. The projection $\text{Sht}^2 \rightarrow X \times X$ (sending a shtuka to its pair of legs) is relative dimension 2.

It is also possible to add level structures, *e.g.* $\text{Sht}_0^2(N)$ for an effective divisor $N \subset X$ (this means $\Gamma_0(N)$ -level structure).

Uniformization by spaces of shtukas?

Now let E/K be a non-isotrivial elliptic curve of conductor N. Let $\mathcal{E} \to X$ be the corresponding elliptic surface. Then $\mathcal{E} \times_{\mathbf{F}_q} \mathcal{E} \to X \times_{\mathbf{F}_q} X$ is a (relative) surface.

We also have the surface $\operatorname{Sht}_0^2(N) \to X \times_{\mathbf{F}_q} X$. Let η be the generic point of $X \times_{\mathbf{F}_q} X$.

Expectation

There exists a cycle in $A^2(\operatorname{Sht}_0^2(N) \times_{X \times X} \mathcal{E} \times_{\mathbf{F}_q} \mathcal{E})$, inducing a nontrivial $\operatorname{Gal}(\overline{\eta}/\eta)$ -equivariant map $H^2(\operatorname{Sht}_0^2(N)_{\overline{\eta}}) \to H^2((\mathcal{E} \times_{\mathbf{F}_q} \mathcal{E})_{\overline{\eta}})$.

By Drinfeld, the cohomology of $H^1(\mathcal{E}) \otimes H^1(\mathcal{E}) \subset H^2(\mathcal{E} \times \mathcal{E})$ appears in $H^2(\operatorname{Sht}_0^2(N))$; by the Tate conjecture there should exist an algebraic correspondence inducing this.

Pedantic note: the Tate conjecture might not literally apply to our $\operatorname{Sht}_0^2(N)$, which is not even of finite type; to address this we might instead use a space of *D*-shtukas, where D/K is a nonsplit quaternion algebra.

Expectation

There exists a nontrivial algebraic correspondence $\operatorname{Sht}_0^2(N) \dashrightarrow \mathcal{E} \times_{\mathbf{F}_a} \mathcal{E}$.

We might call such an E "2-modular".

The big questions are then:

- Can we find examples of E/K which are 2-modular?
- If E is 2-modular, can we use the uniformization by Sht₀²(N) to solve BSD for E?

An example: $X = \mathbf{P}_{\mathbf{F}_2}^1$, $N = (0) + 2(1) + (\infty)$.

Let's look at the case $X = \mathbf{P}_{\mathbf{F}_2}^1$, $N = (0) + 2(1) + (\infty)$. There is a unique cuspidal automorphic form for GL_2 at this level, and it corresponds to an elliptic curve

$$E_t: y^2 + (t+1)xy = x^3.$$

Meanwhile, $Sht_0^2(N)$ is birational to a K3 elliptic surface of rank 18, defined over $\eta = Spec \mathbf{F}_2(P, Q)$, with equation

$$y^{2} + a_{1}(t)xy + a_{3}(t)y = x^{3} + a_{2}(t)x^{2},$$

where

$$\begin{aligned} a_1(t) &= (P+1)(Q+1)t \\ a_2(t) &= (P+1)(Q+1)t(t+P)(t+Q) \\ a_3(t) &= (P+1)(Q+1)t(t+P)(t+Q)(t+1)(t+PQ) \end{aligned}$$

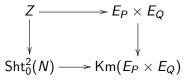
An example: $X = \mathbf{P}_{\mathbf{F}_2}^1$, $N = (0) + 2(1) + (\infty)$.

Elkies observed that (0,0) is a 6-torsion section of $\operatorname{Sht}_0^2(N) \to \mathbf{P}_t^1$, and that in fact $\operatorname{Sht}_0^2(N)$ is the universal K3 elliptic surface with 6-torsion section.

Theorem (Elkies)

Working over $\eta = \text{Spec } \mathbf{F}_2(P, Q)$, there exists a finite-to-one map from $\text{Sht}_0^2(N)_\eta$ onto the Kummer surface $\text{Km}(E_P \times E_Q)_\eta$.

Recall that $\text{Km}(E_P \times E_Q)$ is the desingularization of $(E_P \times E_Q)/[-1]$. It is a K3 elliptic surface of rank 18. The cartesian diagram



now shows that E_t is 2-modular!

Let E/K be an elliptic curve over a function field, and assume that E is 2-modular, so that we have a correspondence $c \colon \operatorname{Sht}_0^2(N) \dashrightarrow \mathcal{E} \times \mathcal{E}$ over $X \times X$.

Let K'/K be a quadratic extension satisfying the Heegner hypothesis. This time L(E/K', s) is even. Then there exists a Heegner-Drinfeld cycle $\xi_{K'} \in Z^2(\operatorname{Sht}^2_0(N)_{X' \times X'})$; this is essentially the locus of shtukas with "CM by K'''. Let $x_{K'} = c(\xi_{K'})$, so that $x_{K'} \in Z^2(\mathcal{E}' \times \mathcal{E}')$, where $\mathcal{E}' = \mathcal{E} \times_X X'$.

Theorem (Yun-Zhang)

We have $L^{(2)}(E/K',1) = h(x_{K'})$ up to an explicit nonzero constant.

This is true regardless of whether L(E/K', 1) is 0 or not!! There is a similar formula for higher derivatives.

Theorem (Yun-Zhang)

For the Heegner-Drinfeld cycle $x_{K'} \in A^2(\mathcal{E}' \times \mathcal{E}')$, we have $L^{(2)}(\mathcal{E}/K', 1) = h(x_{K'})$ up to an explicit nonzero constant.

Let's suppose $\operatorname{rk}_{\operatorname{an}}(E/K') = 2$. The theorem says that $x_{K'} \in A^2(\mathcal{E}' \times \mathcal{E}')$ is nonzero. On the other hand, BSD would have us believe that there exist classes $R_1, R_2 \in A^2(\mathcal{E}')$ whose images span E(K'), and that $L^{(2)}(E/K', 1)$ should relate to the regulator det $\langle R_i, R_j \rangle$.

This suggests that, up to a constant:

$$x_{\mathcal{K}'} = \mathcal{R}_1 \otimes \mathcal{R}_2 - \mathcal{R}_2 \otimes \mathcal{R}_1 \in \mathcal{A}^1(\mathcal{E}') \otimes \mathcal{A}^1(\mathcal{E}') \subset \mathcal{A}^2(\mathcal{E}' \times \mathcal{E}').$$

If we knew that $x_{K'}$ belonged to $A^1(\mathcal{E}') \otimes A^1(\mathcal{E}')$, this would be a way of constructing points of Mordell-Weil.

Yun-Zhang already imply that $x_{K'}$ is "alternating in the two legs", but this is not enough to imply that $x_{K'}$ belongs to $A^1(\mathcal{E}') \otimes A^1(\mathcal{E}')$.

There is a feature of this story we have not yet leveraged. The surface $\operatorname{Sht}_0^2(N) \to X \times X$ has a *partial Frobenius structure*. (Away from the diagonal, anyway.) This means an endomorphism Φ_1 of $\operatorname{Sht}_0^2(N)$ making the diagram commute:

$$\begin{array}{c}
\operatorname{Sht}_{0}^{2}(N) \xrightarrow{\Phi_{1}} \operatorname{Sht}_{0}^{2}(N) \\
\downarrow & \downarrow \\
X \times X \xrightarrow{Fr_{X} \times \operatorname{id}} X \times X.
\end{array}$$

Similarly for Φ_2 , and $\Phi_1 \Phi_2 = \Phi_2 \Phi_1$ equals absolute Frobenius.

The product $\mathcal{E} \times \mathcal{E}$ has an obvious partial Frobenius structure, namely $\Phi_1 = \mathsf{Fr}_{\mathcal{E}} \times \mathrm{id}$ and $\Phi_2 = \mathrm{id} \times \mathsf{Fr}_{\mathcal{E}}$.

Partial Frobenius structures

Let X_1 and X_2 be nice schemes over \mathbf{F}_p . For a scheme $Y \to X_1 \times_{\mathbf{F}_p} X_2$ we may talk of a partial Frobenius (PF) structure on Y: this means a $\operatorname{Fr}_{X_1} \times 1$ -linear endomorphism $\Phi_1 \colon Y \to Y$, and similarly a Φ_2 , such that $\Phi_1 \Phi_2 = \Phi_2 \Phi_1 = \operatorname{Fr}_Y$.

The obvious example is the *split structure* $Y = X_1 \times_{\mathbf{F}_p} X_2$, with $\Phi_1 = \operatorname{Fr}_{X_1} \times 1$, etc.

Another example:
$$X_i = \operatorname{Spec} \mathbf{F}_p[t_i^{\pm 1}]$$
, $i = 1, 2$, so that
 $X_1 \times_{\mathbf{F}_p} X_2 = \operatorname{Spec} \mathbf{F}_p[t_1^{\pm 1}, t_2^{\pm 2}]$. Let
 $Y = \operatorname{Spec} \mathbf{F}_p[t_1^{\pm 1}, t_2^{\pm 2}, y]/(y^{p-1} = t_1t_2)$. There is a PF structure with
 $\Phi_1(y) = t_1 y$, $\Phi_2(y) = t_2 y$.

This PF structure is nonsplit. However it is a quotient of a split structure: $Y = \tilde{Y}/G$, where $\tilde{Y} = X'_1 \times_{\mathbf{F}_p} X'_2$ carries the split PF structure, each $X'_i \to X_i$ is an étale μ_{p-1} -torsor, and $G = \mu_{p-1}$ acting diagonally.

Theorem (Drinfeld)

Let $Y \to X_1 \times X_2$ be a finite étale morphism with PF structure. Then $Y \cong (\tilde{X}_1 \times \tilde{X}_2)/H$, where $\tilde{X}_i \to X$ are finite Galois, and $H \subset \operatorname{Gal}(\tilde{X}_1/X_1) \times \operatorname{Gal}(\tilde{X}_2/X_2)$.

In other words, finite étale PF structures are all quotients of split ones.

Other PF structures $Y \to X_1 \times X_2$, like our shtuka moduli spaces $\operatorname{Sht}_0^2(N)$, are much more complicated. But Drinfeld's lemma shows that the cohomology $H^i(Y_{\overline{\eta}}, \mathbf{Q}_\ell)$, a priori admitting only an action of $\pi_1(X_1 \times X_2)$, actually admits an action of $\pi_1(X_1) \times \pi_1(X_2)$.

Let X_1 and X_2 be (not necessarily projective) smooth curves over \mathbf{F}_p .

Here's a way to construct an abelian scheme over $X_1 \times X_2$ with PF structure: choose an abelian scheme $A_1 \rightarrow X_1$, and an étale *G*-torsor $X'_2 \rightarrow X_2$. Get *G* to act on A_1 , and define $Y = (A_1 \times X'_2)/G$, with *G* acting diagonally. Then *Y* may not be split, but its pullback to $X_1 \times X'_2$ is.

In fact, any abelian scheme over $X_1 \times X_2$ with PF structure becomes split over $X'_1 \times X'_2$, where $X'_i \to X_i$ is some finite étale cover! (Think about each irreducible summand of the $\pi_1(X_1) \times \pi_1(X_2)$ -module $H^1(A_{\overline{\eta}}, \mathbf{Q}_\ell)$. It must be of the form $\rho_1 \boxtimes \rho_2$, where the weights of ρ_1 and ρ_2 sum up to 1.)

Set-up for the PF Tate conjecture

Let $Y \to X_1 \times X_2$ be a projective and smooth, and equipped with a PF structure. Then $H^i(Y_{\overline{\eta}}, \mathbf{Q}_{\ell})$ is a representation of $\pi_1(X_1) \times \pi_1(X_2)$ by Drinfeld's lemma.

Define the Tate twist $\mathbf{Q}_{\ell}(r_1, r_2)$ as the exterior tensor product $\mathbf{Q}_{\ell}(r_1) \boxtimes \mathbf{Q}_{\ell}(r_2)$, a representation of $\pi_1(X_1) \times \pi_1(X_2)$.

On the algebraic cycle side, F_1 and F_2 act on $A^r(Y)$, with F_1F_2 acting as p^r . Let $A^{r_1,r_2}(Y)$ denote the subgroup where F_i acts as p^{r_i} .

Thus if $Y = Y_1 \times Y_2$ is split, then $A^{r_1,r_2}(Y)$ contains the image of $A^{r_1}(Y_1) \otimes A^{r_2}(Y_2)$. For each pair (r_1, r_2) with $r_1 + r_2 = r$ we have the cycle class map

$$\mathcal{A}^{r_1,r_2}(Y)\otimes \mathbf{Q}_\ell
ightarrow \mathcal{H}^{2r}(Y_{\overline{\eta}},\mathbf{Q}_\ell)(r_1,r_2)^{\pi_1(X_1) imes\pi_1(X_2)}.$$

The PF Tate conjecture / splitting of cycles

Let $Y \rightarrow X_1 \times X_2$ be a smooth projective PF structure. Evidence is admittedly scant, but I can't resist suggesting these two conjectures:

Conjecture (PF Tate)

The cycle class map

$$\mathcal{A}^{r_1,r_2}(Y)\otimes \mathbf{Q}_\ell o \mathcal{H}^{2r}(Y_{\overline{\eta}},\mathbf{Q}_\ell)(r_1,r_2)^{\pi_1(X_1) imes\pi_1(X_2)}$$

is surjective.

Conjecture (Splitting of cycles)

If $Y = Y_1 \times Y_2$ is a split PF structure, then

$$A^{r_1}(Y_1)\otimes A^{r_2}(Y_2)
ightarrow A^{r_1,r_2}(Y_1 imes Y_2)$$

is surjective.

Conjecture (PF Tate)

The cycle class map

$$\mathcal{A}^{r_1,r_2}(Y)\otimes \mathbf{Q}_\ell o \mathcal{H}^{2r}(Y_{\overline{\eta}},\mathbf{Q}_\ell)(r_1,r_2)^{\pi_1(X_1) imes\pi_1(X_2)}$$

is surjective.

At the very least, when $Y = Y_1 \times Y_2$ is a split structure, the Künneth formula shows that Tate implies PF Tate, and indeed that the RHS is spanned by $A^{r_1}(Y_1) \otimes A^{r_2}(Y_2)$.

For an abelian scheme Y with PF structure, we have seen that Y becomes split after passage to a finite étale cover $X'_1 \times X'_2$. The Tate conjecture for divisors (r = 1) is known for abelian varieties (Faltings/Zarhin), so the PF Tate conjecture is true unconditionally in this case. Let K be the function field of a curve X/\mathbf{F}_q , and let E/K be an elliptic curve of conductor N.

The PF Tate conjecture predicts an algebraic correspondence $c: \operatorname{Sht}_0^2(N) \dashrightarrow \mathcal{E} \times \mathcal{E}$ over $X \times X$, which is in a sense equivariant for the PF structures on either side. Let's call this state of affairs "*E* is 2-modular $+ \operatorname{EPF}$ ". Then *c* induces maps $A^{r_1,r_2}(\operatorname{Sht}_0^2(N)) \to A^{r_1,r_2}(\mathcal{E} \times \mathcal{E})$.

Now suppose K'/K is quadratic, satisfying the Heegner condition with respect to N, such that E/K' has analytic rank 2.

The Drinfeld-Heegner cycle $\xi_{K'}$ is PF-stable on the nose! So its class lies in $A^{1,1}(\operatorname{Sht}_0^2(N))$. Its image $x_{K'} = c(\xi_{K'})$ lies in $A^{1,1}(\mathcal{E} \times \mathcal{E})$.

Suppose that E/K' has analytic rank 2.

The Drinfeld-Heegner cycle $\xi_{K'}$ lies in $A^{1,1}(\operatorname{Sht}_0^2(N))$. Its image $x_{K'} = c(\xi_{K'})$ lies in $A^{1,1}(\mathcal{E} \times \mathcal{E})$.

Under the splitting cycles conjecture, $x_{K'}$ lies in the image of $A^1(\mathcal{E}) \otimes A^1(\mathcal{E})$. By Yun-Zhang, $x_{K'}$ actually lies in the antisymmetric part of $A^2(\mathcal{E} \times \mathcal{E}) \otimes \mathbf{Q}$, which means it comes from an element of $\wedge^2 A^1(\mathcal{E}) \otimes \mathbf{Q}$. (Reasoning: when the 2 legs collide, $x_{K'}$ becomes a Drinfeld-Heegner point coming from a space of shtukas with one leg. But since $L'(\mathcal{E}/\mathcal{K}', 1) = 0$, this latter point is torsion.)

Also by Yun-Zhang, the height of $x_{K'}$ is nonzero. This is enough to imply that the Mordell-Weil rank of E/K' is 2.

This kind of strategy should work for any rank r.

Theorem

Assume that E/K is r-modular + EPF, and that the splitting cycles conjecture holds for \mathcal{E}^r . If $\operatorname{rk}_{\operatorname{an}}(E/K') = r$, then $\operatorname{rk}_{\operatorname{MW}}(E/K') = r$.

Unfortunately, I do not know whether the example $E/\mathbf{F}_2(t)$ is 2-modular + EPF (someone please help me verify!).

Moral: assume a strong (PFE) version of the Tate conjecture (and in particular assume BSD). Let E/K' have rank r. Then the Heegner-Drinfeld cycle coming from $\operatorname{Sht}_0^r(N)$ (r-legged shtukas) spans the one-dimensional space $\wedge^r E(K')$.

Thank you for listening!