M3/4/5P12 PROGRESS TEST 2

Question 1. Let G be a finite group. Let V be a representation of G, with character χ_{V}.
(a) What is the definition of the dual representation V^{*} ?
(b) What is the character $\chi_{V^{*}}$ of the dual representation V^{*}, in terms of χ_{V} ? Justify your answer.
(c) Let W be another representation of G, with character χ_{W}. What is the character $\chi_{V \otimes W}$ of the tensor product representation $V \otimes W$, in terms of χ_{V} and χ_{W} ? You just need to state the answer.
(d) Let $V_{\text {triv }}$ be the one-dimensional trivial representation of G, with character $\chi_{\text {triv }}$. Show that

$$
\left\langle\chi_{V \otimes W}, \chi_{t r i v}\right\rangle=\left\langle\chi_{V}, \chi_{W^{*}}\right\rangle .
$$

(e) Suppose V and W are irreducible representations. If W^{*} is not isomorphic to V, how many copies of $V_{\text {triv }}$ appear in the decomposition of $V \otimes W$ into irreducibles? How many copies of $V_{\text {triv }}$ appear in the decomposition of $V \otimes V^{*}$ into irreducibles? Justify your answers.

Solution 1. (a) The vector space V^{*} is $\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$. The action of G is defined by $\rho_{V^{*}}(g) f=f \circ \rho_{V}\left(g^{-1}\right) .1$ mark
(b) If we fix a basis B for V and consider the dual basis B^{*} for V^{*}, then the matrix $\left[\rho_{V^{*}}(g)\right]_{B^{*}}=\left[\rho_{V}(g)\right]_{B}^{-t}$, the inverse transpose matrix. So we have $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)$, since a matrix and its transpose have the same trace. Since $\chi_{V}(g)=\zeta_{1}+\zeta_{2}+\cdots \zeta_{n}$ where the ζ_{i} are the eigenvalues of $\rho_{V}(g)$ (which are roots of unity), we have $\chi_{V}\left(g^{-1}\right)=\zeta_{1}^{-1}+\zeta_{2}^{-1}+\cdots \zeta_{n}^{-1}=\overline{\chi_{V}(g)}$. So $\chi_{V^{*}}=\overline{\chi_{V}} .1$ mark for $\chi_{V^{*}}=\overline{\chi_{V}}, 2$ more marks for justification. Total: 3 marks.
(c) $\chi_{V \otimes W}=\chi_{V} \chi_{W} .1$ mark
(d) We have $\left\langle\chi_{V \otimes W}, \chi_{t r i v}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}(g)$. On the other hand,

$$
\left\langle\chi_{V}, \chi_{W^{*}}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W^{*}}(g)}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}(g)
$$

where the last equality is by part (b). So we get the same answer. 3 marks
(e) The number of times $V_{\text {triv }}$ appears in the decomposition of $V \otimes W$ is equal to $\left\langle\chi_{V \otimes W}, \chi_{\text {triv }}\right\rangle$. By the previous part, this is equal to $\left\langle\chi_{V}, \chi_{W^{*}}\right\rangle$. Since W is irreducible, W^{*} is irreducible. Since χ_{V} and $\chi_{W^{*}}$ are not isomorphic, $\left\langle\chi_{V}, \chi_{W^{*}}\right\rangle=0$, so the first answer is 0 .

The number of times $V_{t r i v}$ appears in the decomposition of $V \otimes V^{*}$ is equal to $\left\langle\chi_{V \otimes V^{*}}, \chi_{t r i v}\right\rangle$. By the previous part, this is equal to $\left\langle\chi_{V}, \chi_{V^{* *}}\right\rangle$. Since V is irreducible and $V^{* *} \cong V$, this number is equal to 1.2 marks, partial credit if you do something sensible but don't get all the way to the correct answers!

Question 2. (a) Let G be a finite group. State the column orthogonality relations for the irreducible characters of G.
(b) Here is an incomplete character table for a group of order 24 , with 7 conjugacy classes.

	$g_{1}=e$	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
Size of conj. class	1	1	6	4	4	4	4
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	ω	ω^{2}	ω^{2}	ω
χ_{4}	2	-2	0	-1	-1	1	1

In the table, $\omega=e^{2 \pi i / 3}$.
(i) Find another irreducible character χ_{3} of dimension 1 (i.e. with $\chi_{3}(e)=$ 1).
(ii) Find two more distinct irreducible characters χ_{5}, χ_{6} of dimension two.
(iii) Work out the complete character table for this group of order 24, justifying your answer.

Solution 2. (a) Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of G, and let $g, h \in G$. The column orthogonality relations are

$$
\sum_{i=1}^{r} \overline{\chi_{i}(g)} \chi_{i}(h)=0
$$

if h is not conjugate to G, and

$$
\sum_{i=1}^{r} \overline{\chi_{i}(g)} \chi_{i}(h)=\frac{|G|}{|C(g)|}
$$

if h is conjugate to g, where $C(g)$ is the conjugacy class of $g .2$ marks
(b) We write V_{i} for an irrep with character χ_{i}.
(i) We let $\chi_{3}=\overline{\chi_{2}}$. This is an irreducible character because V_{2}^{*} is an irrep. It is distinct from χ_{1} and χ_{2}, since its value on g_{4} is different. 2 marks Some of you tried to find χ_{3} by using the row orthogonality relations. But this gives you something like 4 equations in 6 unknowns, so it seems impossible to determine χ_{3} this way.
(ii) We let $\chi_{5}=\chi_{2} \chi_{4}$ and $\chi_{6}=\chi_{3} \chi_{4}$. These are irreducible characters because V_{2}, V_{3} have dimension 1 , so the tensor product representations $V_{2} \otimes V_{4}$ and $V_{3} \otimes V_{4}$ are irreducible. They are distinct from each other and χ_{4} because they take different values on $g_{4} .2$ marks

We know there are 7 irreducible characters because there are 7 conjugacy classes. We can work out χ_{7} using column orthogonality. There are a few different ways to do this, but here's an example.
We have $1^{2}+1^{2}+1^{2}+2^{2}+2^{2}+2^{2}+\chi_{7}(e)^{2}=24$, so $\chi_{7}(e)=3$. Using column orthogonality for the first and second columns, we get $3-12+3 \chi_{7}\left(g_{2}\right)=0$, so $\chi_{7}\left(g_{2}\right)=3$. For the first and third columns, we get $3+3 \chi_{7}\left(g_{3}\right)=0$ so $\chi_{7}\left(g_{3}\right)=-1$. Finally, for the last 4 columns, applying the column orthogonality relation to each column with itself
gives

$$
6 \times 1+\left|\chi_{7}\left(g_{i}\right)\right|^{2}=\frac{|G|}{\left|C\left(g_{i}\right)\right|}=\frac{24}{4}=6
$$

which implies that $\chi_{7}\left(g_{i}\right)=0$ for $i \geq 4$. This completes the character table. To summarise, we have | | $g_{1}=e$ | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| χ_{7} | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 4 marks

