M3/4/5P12 PROGRESS TEST 1 (ALTERNATIVE VERSION)

PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RE-SULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group and let $\chi : G \to \mathbb{C}^{\times}$ be a group homomorphism. Let V be a representation of G. We define a map

$$e_{\chi}: V \to V$$

by

$$e_{\chi}(v) = \frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_V(g) v.$$

We also define a subspace V^{χ} of V by

$$V^{\chi} = \{ v \in V : \rho_V(g)v = \chi(g)v \text{ for all } g \in G \}.$$

- (a) Show that V^{χ} is a subrepresentation of V.
- (b) Show that e_χ is a G-linear map, that e_χ e_χ = e_χ, and that the image of e_χ is equal to V^χ (i.e. e_χ is a G-linear projection with image V^χ).
- (c) Now suppose we have another group homomorphism $\chi' : G \to \mathbb{C}^{\times}$. Show that if $\chi \neq \chi'$ then $e_{\chi'} \circ e_{\chi} = 0$.
- (d) Consider the linear map $f: V \to V$ given by $\sum_{\chi} e_{\chi}$, where the sum runs over all the homomorphisms $\chi: G \to \mathbb{C}^{\times}$. Show that f is a G-linear projection, and that the kernel of f has no one-dimensional subrepresentations.

Question 2. Consider the symmetric group S_4 of permutations of $\{1, 2, 3, 4\}$. Write Ω for the subset $\{(12)(34), (13)(24), (14)(23)\} \subset S_4$.

Define an action of S_4 on Ω by $g \cdot \omega = g \omega g^{-1}$. Consider the representation of S_4 on the vector space $\mathbb{C}\Omega$ with basis $\{[\omega] : \omega \in \Omega\}$ and group action defined by

$$\rho_{\mathbb{C}\Omega}(g)[\omega] = [g \cdot \omega].$$

- (a) By computing eigenspaces for $\rho_{\mathbb{C}\Omega}(12)$ and $\rho_{\mathbb{C}\Omega}(13)$, or otherwise, show that $\mathbb{C}\Omega$ has a unique one-dimensional subrepresentation U_1 , which is spanned by $\sum_{\omega \in \Omega} [\omega]$.
- (b) Deduce that $\mathbb{C}\Omega$ is isomorphic as a representation of S_4 to $U_1 \oplus U_2$ where U_2 is an irreducible two-dimensional representation of S_4 . You don't need to find U_2 explicitly.
- (c) Show that S_4 has an irreducible representation of dimension 3. You may assume without proof that S_4 has exactly two isomorphism classes of onedimensional representations. Again, you don't need to find this representation explicitly.

Date: Thursday February 18, 2016.