M3/4/5P12 PROGRESS TEST 1 (ALTERNATIVE VERSION)

PLEASE WRITE YOUR NAME AND CID NUMBER ON EVERY SCRIPT THAT YOU HAND IN. FAILURE TO DO THIS MAY RESULT IN YOU NOT RECEIVING MARKS FOR QUESTIONS THAT YOU ANSWER.

Note: all representations are assumed to be on finite dimensional complex vector spaces.

Question 1. Let G be a finite group and let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism. Let V be a representation of G. We define a map

$$
e_{\chi}: V \rightarrow V
$$

by

$$
e_{\chi}(v)=\frac{1}{|G|} \sum_{g \in G} \chi(g)^{-1} \rho_{V}(g) v
$$

We also define a subspace V^{χ} of V by

$$
V^{\chi}=\left\{v \in V: \rho_{V}(g) v=\chi(g) v \text { for all } g \in G\right\}
$$

(a) Show that V^{χ} is a subrepresentation of V.
(b) Show that e_{χ} is a G-linear map, that $e_{\chi} \circ e_{\chi}=e_{\chi}$, and that the image of e_{χ} is equal to V^{χ} (i.e. e_{χ} is a G-linear projection with image V^{χ}).
(c) Now suppose we have another group homomorphism $\chi^{\prime}: G \rightarrow \mathbb{C}^{\times}$. Show that if $\chi \neq \chi^{\prime}$ then $e_{\chi^{\prime}} \circ e_{\chi}=0$.
(d) Consider the linear map $f: V \rightarrow V$ given by $\sum_{\chi} e_{\chi}$, where the sum runs over all the homomorphisms $\chi: G \rightarrow \mathbb{C}^{\times}$. Show that f is a G-linear projection, and that the kernel of f has no one-dimensional subrepresentations.

Question 2. Consider the symmetric group S_{4} of permutations of $\{1,2,3,4\}$. Write Ω for the subset $\{(12)(34),(13)(24),(14)(23)\} \subset S_{4}$.

Define an action of S_{4} on Ω by $g \cdot \omega=g \omega g^{-1}$. Consider the representation of S_{4} on the vector space $\mathbb{C} \Omega$ with basis $\{[\omega]: \omega \in \Omega\}$ and group action defined by

$$
\rho_{\mathbb{C} \Omega}(g)[\omega]=[g \cdot \omega] .
$$

(a) By computing eigenspaces for $\rho_{\mathbb{C} \Omega}(12)$ and $\rho_{\mathbb{C} \Omega}(13)$, or otherwise, show that $\mathbb{C} \Omega$ has a unique one-dimensional subrepresentation U_{1}, which is spanned by $\sum_{\omega \in \Omega}[\omega]$.
(b) Deduce that $\mathbb{C} \Omega$ is isomorphic as a representation of S_{4} to $U_{1} \oplus U_{2}$ where U_{2} is an irreducible two-dimensional representation of S_{4}. You don't need to find U_{2} explicitly.
(c) Show that S_{4} has an irreducible representation of dimension 3. You may assume without proof that S_{4} has exactly two isomorphism classes of onedimensional representations. Again, you don't need to find this representation explicitly.

