M3/4/5P12 PROBLEM SHEET 4 (EXTRA EXERCISES)

Please send any corrections or queries to j.newton@imperial.ac.uk. These additional exercises work out the character tables of S_{5} and A_{5}. They are fairly long/tricky but I've included them because it's good to see the computation of these character tables!
Exercise 1. Let $G=S_{n}$ and set $\Omega=\{1, \ldots, n\}$. Recall that we have an n-dimensional rep $\mathbb{C} \Omega$ of S_{n}, with a one-dimensional subrepresentation spanned by $\sum_{i=1}^{n}[i]$. Let $V \subset \mathbb{C} \Omega$ be a complementary subrepresentation to this onedimensional rep. The aim of this exercise is to show that V is irreducible.

For $g \in S_{n}$ write $F i x_{\Omega}(g)$ for the subset $\{i \in \Omega: g i=i\} \subset \Omega$. Recall that

$$
\chi_{\mathbb{C} \Omega}(g)=\left|F i x_{\Omega}(g)\right| .
$$

(See Exercise 7 on Problem Sheet 3).
(1) For $i, j \in \Omega$ define $\delta_{i, j}=0$ if $i \neq j$ and $\delta_{i, i}=1$. Show that

$$
\left|F i x_{\Omega}(g)\right|=\sum_{i=1}^{n} \delta_{g i, i}
$$

(2) Show that

$$
\left\langle\chi_{\mathbb{C}}, \chi_{\mathbb{C}}\right\rangle=\frac{1}{n!} \sum_{g \in S_{n}}\left(\sum_{i=1}^{n} \delta_{g i, i}\right)^{2} .
$$

(3) By multiplying out the square in the previous equation, and reordering the sum, show that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathrm{C} \Omega}\right\rangle=\frac{1}{n!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j} .
$$

(4) Show that if $i=j$ then

$$
\sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j}=(n-1)!
$$

(5) Show that if $i \neq j$ then

$$
\sum_{g \in S_{n}} \delta_{g i, i} \delta_{g j, j}=(n-2)!
$$

(6) Deduce that

$$
\left\langle\chi_{\mathbb{C} \Omega}, \chi_{\mathbb{C}}\right\rangle=2 .
$$

(7) Finally, show that

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=1
$$

and deduce that V is an irreducible representation of S_{n}.
Exercise 2. There are 7 conjugacy classes in S_{5}, with representatives

$$
e,(12),(123),(1234),(12345),(12)(34),(12)(345)
$$

and sizes

$$
1,10,20,30,24,15,20
$$

respectively.
Recall that the one-dimensional characters of S_{5} are given by $\chi_{\text {triv }}$ and $\chi_{\text {sign }}$.

[^0](1) In this previous exercise we found a four-dimensional irrep V for S_{5}. Write down the character χ_{V} of V and show that $V^{\prime}:=V \otimes V_{\text {sign }}$ gives a fourdimensional irrep which is not isomorphic to V.
(2) Using Exercise 6 on Problem Sheet 3, find the character of $\wedge^{2} V$ and show that $\wedge^{2} V$ is irreducible.
(3) Again using Exercise 6 on Problem Sheet 3, find the character of $S^{2} V$ and show that $S^{2} V \cong V_{\text {triv }} \oplus V \oplus W$, where W is a representation of dimension 5. Show moreover that W is irreducible, and $W^{\prime}:=W \otimes V_{\text {sign }}$ is another, non-isomorphic, irrep of dimension 5.
We have now found all the irreps of S_{5}, and their characters. There are 7 isomorphism classes of irreps: $V_{t r i v}, V_{\text {sign }}, V, V^{\prime}, \wedge^{2} V, W$ and W^{\prime}.

Exercise 3. There are 5 conjugacy classes in A_{5}, with representatives

$$
e,(123),(12345),(13452),(12)(34)
$$

and sizes

$$
1,20,12,12,15
$$

respectively.
(1) Show that the representations V and W of the previous exercise restrict to irreducible representations of A_{5} (which we still call V, W).
(2) Show that the representation $\wedge^{2} V$ restricts to a representation X of A_{5} whose character χ_{X} has $\left\langle\chi_{X}, \chi_{X}\right\rangle=2$. Deduce that X decomposes as a direct sum of two non-isomorphic irreducible representations Y, Z of A_{5}.
(3) Deduce that the complete list of irreps (up to isomorphism) of A_{5} is given by $V_{\text {triv }}, V, W, Y, Z$, and show that $\operatorname{dim}(Y)^{2}+\operatorname{dim}(Z)^{2}=18$, hence $\operatorname{dim}(Y)=$ $\operatorname{dim}(Z)=3$.

Here's the character table so far (note that we know $\chi_{Y}+\chi_{Z}$ because we know χ_{X}):

$\chi_{\text {triv }}$	1	(123)	(12345)	(13452)	$(12)(34)$
χ_{V}	4	1	1	1	1
χ_{W}	5	-1	0	-1	0
χ_{Y}	3	a	b	c	1
χ_{Z}	3	$-a$	$1-b$	$1-c$	$-2-d$

(4) Show that if V is a rep of A_{5} then $\overline{\chi_{V}(g)}=\chi_{V}(g)$. Hint: If $g \in A_{5}$ then g^{-1} is conjugate to g, so $\chi_{V}\left(g^{-1}\right)=\chi_{V}(g)$.
(5) Using the column orthogonality relations

$$
\sum_{i=1}^{r}\left|\chi_{i}(g)\right|^{2}=|G| /|C(g)|
$$

where $C(g)$ is the conjugacy class of g, show that $a=0, d=-1$ and b, c are both solutions to the quadratic equation $x^{2}-x-1=0$.
(6) Conclude that the character table of A_{5} is given by

	e	(123)	(12345)	(13452)	$(12)(34)$
$\chi_{\text {triv }}$	1	1	1	1	1
χ_{V}	4	1	-1	-1	0
χ_{W}	5	-1	0	0	1
χ_{Y}	3	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	-1
χ_{Z}	3	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	-1

[^0]: Date: Thursday $25^{\text {th }}$ February, 2016.

