M3/4/5P12 PROBLEM SHEET 4 (EXTRA EXERCISES)

Please send any corrections or queries to j.newton@imperial.ac.uk. These additional exercises work out the character tables of S_5 and A_5 . They are fairly long/tricky but I've included them because it's good to see the computation of these character tables!

Exercise 1. Let $G = S_n$ and set $\Omega = \{1, \ldots, n\}$. Recall that we have an *n*-dimensional rep $\mathbb{C}\Omega$ of S_n , with a one-dimensional subrepresentation spanned by $\sum_{i=1}^{n} [i]$. Let $V \subset \mathbb{C}\Omega$ be a complementary subrepresentation to this one-dimensional rep. The aim of this exercise is to show that V is irreducible.

For $g \in S_n$ write $Fix_{\Omega}(g)$ for the subset $\{i \in \Omega : gi = i\} \subset \Omega$. Recall that

$$\chi_{\mathbb{C}\Omega}(g) = |Fix_{\Omega}(g)|.$$

(See Exercise 7 on Problem Sheet 3).

(1) For $i, j \in \Omega$ define $\delta_{i,j} = 0$ if $i \neq j$ and $\delta_{i,i} = 1$. Show that

$$|Fix_{\Omega}(g)| = \sum_{i=1}^{n} \delta_{gi,i}.$$

(2) Show that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \sum_{g \in S_n} \left(\sum_{i=1}^n \delta_{gi,i} \right)^2$$

(3) By multiplying out the square in the previous equation, and reordering the sum, show that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = \frac{1}{n!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j}.$$

(4) Show that if i = j then

$$\sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j} = (n-1)!$$

(5) Show that if $i \neq j$ then

$$\sum_{g \in S_n} \delta_{gi,i} \delta_{gj,j} = (n-2)!$$

(6) Deduce that

$$\langle \chi_{\mathbb{C}\Omega}, \chi_{\mathbb{C}\Omega} \rangle = 2.$$

(7) Finally, show that

$$\langle \chi_V, \chi_V \rangle = 1$$

and deduce that V is an irreducible representation of S_n .

Exercise 2. There are 7 conjugacy classes in S_5 , with representatives

e, (12), (123), (1234), (12345), (12)(34), (12)(345)

and sizes

1, 10, 20, 30, 24, 15, 20

respectively.

Recall that the one-dimensional characters of S_5 are given by χ_{triv} and χ_{sign} .

Date: Thursday 25th February, 2016.

- (1) In this previous exercise we found a four-dimensional irrep V for S_5 . Write down the character χ_V of V and show that $V' := V \otimes V_{sign}$ gives a four-dimensional irrep which is not isomorphic to V.
- (2) Using Exercise 6 on Problem Sheet 3, find the character of $\wedge^2 V$ and show that $\wedge^2 V$ is irreducible.
- (3) Again using Exercise 6 on Problem Sheet 3, find the character of S^2V and show that $S^2V \cong V_{triv} \oplus V \oplus W$, where W is a representation of dimension 5. Show moreover that W is irreducible, and $W' := W \otimes V_{sign}$ is another, non-isomorphic, irrep of dimension 5.

We have now found all the irreps of S_5 , and their characters. There are 7 isomorphism classes of irreps: $V_{triv}, V_{sign}, V, V', \wedge^2 V, W$ and W'.

Exercise 3. There are 5 conjugacy classes in A_5 , with representatives

e,

and sizes

respectively.

- (1) Show that the representations V and W of the previous exercise restrict to irreducible representations of A_5 (which we still call V, W).
- (2) Show that the representation $\wedge^2 V$ restricts to a representation X of A_5 whose character χ_X has $\langle \chi_X, \chi_X \rangle = 2$. Deduce that X decomposes as a direct sum of two non-isomorphic irreducible representations Y, Z of A_5 .
- (3) Deduce that the complete list of irreps (up to isomorphism) of A_5 is given by V_{triv}, V, W, Y, Z , and show that $\dim(Y)^2 + \dim(Z)^2 = 18$, hence $\dim(Y) = \dim(Z) = 3$.

Here's the character table so far (note that we know $\chi_Y + \chi_Z$ because we know χ_X):

	e	(123)	(12345)	(13452)	(12)(34)
χ_{triv}	1	1	(12345) 1 -1 0 b	1	1
χ_V	4	1	-1	-1	0
χ_W	5	-1	0	0	1
χ_Y	3	a	b	c	d
χ_Z	3	-a	1-b	1 - c	-2 - d

- (4) Show that if V is a rep of A_5 then $\overline{\chi_V(g)} = \chi_V(g)$. Hint: If $g \in A_5$ then g^{-1} is conjugate to g, so $\chi_V(g^{-1}) = \chi_V(g)$.
- (5) Using the column orthogonality relations

$$\sum_{i=1}^{r} |\chi_i(g)|^2 = |G|/|C(g)|$$

where C(g) is the conjugacy class of g, show that a = 0, d = -1 and b, c are both solutions to the quadratic equation $x^2 - x - 1 = 0$.

(6) Conclude that the character table of A_5 is given by

	e	(123)	(12345) 1	(13452)	(12)(34)
χ_{triv}	1	1	1 -1 0	1	1
χ_V	4	1	-1	-1	0
χ_W	5	-1	0	0	1
χ_Y	3	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	-1
χ_Z	3	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	-1

 $\mathbf{2}$