M3/4/5P12 PROBLEM SHEET 4

Please send any corrections or queries to j.newton@imperial.ac.uk
Exercise 1. Let G be a finite group, and $g \in G$ an element of order 2. Let V be a representation of G. Show that $\chi_{V}(g)$ is an integer and that

$$
\chi_{V}(g) \equiv \operatorname{dim} V \quad(\bmod 2) .
$$

Hint: recall that $\chi_{V}(g)$ is a sum of eigenvalues of $\rho_{V}(g)$.
Exercise 2. Let $\chi: G \rightarrow \mathbb{C}$ be a function. Define $\operatorname{ker} \chi$ by

$$
\operatorname{ker} \chi=\{g \in G: \chi(g)=\chi(e)\}
$$

Now suppose V is a representation of G, with $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ the homomorphism giving the action of G on V, and χ_{V} the character of V.

Show that $\operatorname{ker} \chi_{V}=\operatorname{ker} \rho_{V}$.

Exercise 3. In this exercise we are going to work out the character table of $A_{4} \subset$ S_{4}, the group of even permutations of $\{1,2,3,4\}$. There are 4 conjugacy classes in A_{4}, with representatives e, (123), (132), (12)(34) and sizes $1,4,4,3$ respectively.
(1) Show that A_{4} has an irreducible representation U of dimension 3 with character given by

$$
\chi_{U}(e)=3, \chi_{U}(123)=\chi_{U}(132)=0, \chi_{U}((12)(34))=-1 .
$$

Hint: restrict a three-dimensional irrep of S_{4} to the subgroup A_{4}
(2) Show that A_{4} has three isomorphism classes of irreps of dimension 1, one isomorphism class of irreps of dimension 3 and these are all the irreps.

You've now shown that the character table of A_{4} looks like:

	e	(123)	(132)	$(12)(34)$
$\chi_{\text {triv }}$	1	1	1	1
χ_{U}	3	0	0	-1
χ_{3}	1	$?$	$?$	$?$
χ_{4}	1	$?$	$?$	$?$

(3) Show that $\chi_{3}((12)(34))=\chi_{4}((12)(34))=1$. Hint: use the fact that $\left\langle\chi, \chi^{\prime}\right\rangle=0$ if $\chi \neq \chi^{\prime}$ are distinct irreducible characters.
(4) Fill in the rest of the character table. Hint: if χ is the character of a one-dimensional rep then $\chi(123)^{3}=\chi(132)^{3}=1$. We also know that $\left\langle\chi_{3}, \chi_{\text {triv }}\right\rangle=\left\langle\chi_{4}, \chi_{\text {triv }}\right\rangle=0$.
(5) (More advanced question) Show that the representations with characters χ_{3} and χ_{4} are obtained by inflating representations of a quotient of A_{4} which is isomorphic to the cyclic group C_{3}.

Exercise 4. (1) Let U be the three-dimensional irrep of A_{4} found in the previous exercise. Find the decomposition of $U \otimes U$ into irreducibles.
(2) Let V be the two-dimensional irrep of S_{4} found in lectures. Find the decomposition into irreducibles of the restriction of V to a representation of A_{4}.

Exercise 5. Let G be a finite group such that every irrep of G is one-dimensional. Show that G is Abelian. Hint: how many conjugacy classes does G have?

Exercise 6. Let G be a finite group, with irreducible characters $\chi_{1}, \chi_{2} \ldots, \chi_{r}$. Fix an element $g \in G$. Show that g is in the centre of G (i.e. $g h=h g$ for all $h \in G$) if and only if

$$
\sum_{i=1}^{r} \chi_{i}(g) \overline{\chi_{i}(g)}=|G|
$$

Exercise 7. (1) Write down the character table of S_{3}.
(2) Consider the class function $\phi: S_{3} \rightarrow \mathbb{C}$ defined by $\phi(e)=4, \phi(12)=$ $0, \phi(123)=-5$. Write ϕ as a linear combination of irreducible characters of S_{3}.
(3) Is ϕ the character of a representation of S_{3} ?

