M3/4/5P12 PROBLEM SHEET 3

Please send any corrections or queries to j.newton@imperial.ac.uk
Exercise 1. (1) Let V be a finite dimensional vector space. Consider the map

$$
\alpha: V \rightarrow\left(V^{*}\right)^{*}
$$

defined by letting $\alpha(v)$ be the linear map

$$
\alpha(v): V^{*} \rightarrow \mathbb{C}
$$

given by $\alpha(v)(\delta)=\delta(v)$, for $\delta \in V^{*}$. Show that this map is an isomorphism of vector spaces.
(2) If V is a representation of G, show that α is a G-linear isomorphism.

Exercise 2. Let G be a finite group and consider the regular representation $\mathbb{C} G$. Show that the dual $(\mathbb{C} G)^{*}$ is isomorphic to $\mathbb{C} G$ as a representation of G.

The next two exercises explain a way to think about tensor products of vector spaces without fixing bases. They are not essential for the course.
Exercise 3. Let V, W and X be complex vector spaces. A map

$$
f: V \times W \rightarrow X
$$

is called bilinear if it is linear in each variable separately. That is, $f\left(a v_{1}+b v_{2}, w\right)=$ $a f\left(v_{1}, w\right)+b f\left(v_{2}, w\right)$ and $f\left(v, a w_{1}+b w_{2}\right)=a f\left(v, w_{1}\right)+b f\left(v, w_{2}\right)$ for $a, b \in \mathbb{C}$.
(1) Show that the map $\pi: V \times W \rightarrow V \otimes W$ which takes (v, w) to $v \otimes w$ is a bilinear map. Note that we have implicitly fixed bases of V, W to define $V \otimes W$.
(2) Show that for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: V \otimes W \rightarrow X$ such that $f=h \circ \pi$.
(3) This part is trickier Suppose $\pi^{\prime}: V \times W \rightarrow U$ is a bilinear map, and for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: U \rightarrow X$ such that $f=h \circ \pi^{\prime}$. Show that there is a unique isomorphism $i: U \rightarrow V \otimes W$ such that $i \circ \pi^{\prime}=\pi$.
Remarks: Part (2) of the exercise says that tensor products are a way to turn bilinear maps into linear maps.

We can also use this exercise to give an alternative (basis-independent) definition of the tensor product. We say that a vector space U, together with a bilinear map $\pi: V \times W \rightarrow U$ 'is a tensor product' of V and W if for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: V \otimes W \rightarrow X$ such that $f=h \circ \pi$. Part (2) says that a tensor product of V and W exists (it's the tensor product $V \otimes W$ we have already defined with a chosen basis of V and W).

Part (3) says that a tensor product of V and W is unique up to unique isomorphism, so to all intents and purposes any two tensor products of V and W are the same mathematical object.

Exercise 4. Let V, W be two vectors spaces, with bases A and B. Let $\mathbb{C}[V \times W]$ be the (infinite dimensional) complex vector space with basis given by symbols $\{v * w: v \in V, w \in W\}$. Define a linear map $\mathbb{C}[V \times W] \rightarrow V \otimes W$ by taking $v * w$ to $v \otimes w$.
(1) Let $E \subset \mathbb{C}[V \times W]$ be the subspace spanned by the elements

$$
\left(a v_{1}+b v_{2}\right) * w-a\left(v_{1} * w\right)-b\left(v_{2} * w\right), \quad v *\left(a w_{1}+b w_{2}\right)-a\left(v * w_{1}\right)-b\left(v * w_{2}\right)
$$

with $a, b \in \mathbb{C}, v_{i}, v \in V$ and $w_{i}, w \in W$.
Note that a map of sets $f: V \times W \rightarrow X$ gives a linear map

$$
F: \mathbb{C}[V \times W] \rightarrow X
$$

defined by $F(v * w)=f(v, w)$. Show that f is bilinear if and only if $F(u)=0$ for all $u \in E$.
(2) Show that the map $(v, w) \mapsto v * w$ defines a bilinear map from $V \times W$ to the quotient vector space $\mathbb{C}[V \times W] / E$.
(3) Using Exercise 3, show that there is a unique isomorphism

$$
i: \mathbb{C}[V \times W] / E \rightarrow V \otimes W
$$

satisfying $i(v * w+E)=v \otimes w$.

Exercise 5. (1) Let V and W be representations of G and suppose W has dimension one. Show that $V \otimes W$ is irreducible if and only if V is irreducible.
(2) Let V and W be representations of G. Show that $V \otimes W$ is isomorphic as a representation of G to $W \otimes V$.

Exercise 6. (1) Let V be a representation of G and consider the map f : $V \otimes V \rightarrow V \otimes V$ given by $f\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$. Show that f is a G-linear map.
(2) Define $S^{2} V$ to be the subspace of $x \in V \otimes V$ such that $f(x)=x$. Define $\wedge^{2} V$ to be the subspace of $x \in V \otimes V$ such that $f(x)=-x$. Show that $S^{2} V$ and $\wedge^{2} V$ are subrepresentations of $V \otimes V$ and $V \otimes V \cong S^{2} V \oplus \wedge^{2} V$.
(3) Show that $(1 / 2)\left(f+\mathrm{id}_{V}\right)$ is a projection with image $S^{2} V$ and $(1 / 2)\left(f-\mathrm{id}_{V}\right)$ is a projection with image $\wedge^{2} V$.
(4) Show that if $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis of V, then $\left\{a_{i} \otimes a_{j}-a_{j} \otimes a_{i}: i<j\right\}$ is a basis of $\wedge^{2} V$. What are the dimensions of $S^{2} V$ and $\wedge^{2} V$ in terms of $\operatorname{dim}(V)=n$? Can you find a basis for $S^{2} V$?
(5) Suppose $g \in G$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues (with multiplicity) of $\rho_{V}(g)$. Show that the eigenvalues of $\rho_{\wedge^{2} V}(g)$ are $\left\{\lambda_{i} \lambda_{j}: i<j\right\}$.
(6) Show that the characters $\chi_{\wedge^{2} V}$ and $\chi_{S^{2} V}$ are given by

$$
\chi_{\wedge^{2} V}(g)=\frac{\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)}{2}
$$

$$
\chi_{S^{2} V}(g)=\frac{\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)}{2} .
$$

Exercise 7. Let G be a group acting on a finite set Ω. Recall that we have defined a representation $\mathbb{C} \Omega$ of G. Show that the character $\chi_{\mathbb{C} \Omega}$ satisfies: $\chi_{\mathbb{C} \Omega}(g)$ is equal to the number of fixed points for g in Ω.

Exercise 8. (1) Let G be a finite group. Show that if G is simple (i.e. G is non-trivial and the only normal subgroups of G are $\{e\}$ and G) then a representation of G is either trivial or faithful.
(2) Suppose every non-trivial irreducible representation of a finite group G is faithful. Show that G is a simple group. Hint: if G is not simple then there is a normal subgroup N of G such that G / N is simple.

