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Course Arrangements Lecture 1
Send comments, questions, requests etc. to j.newton@imperial.ac.uk. The course

homepage is http://wwwf.imperial.ac.uk/˜jjmn07/M3P12.html. Problem sheets and
solutions, lecture notes and other information will all be posted here. There is no black-
board page for this course.

Problems classes. Problems classes will take place in the Tuesday lecture slot of odd
weeks from week 3 (January 26) onwards.

Assessment. 90% of your mark is from the final exam, 10% from two progress tests (5%
each) on Tuesday February 16 and Tuesday March 15.

Office hour. There will an office hour, in office 656, every Thursday 4–5pm, starting week
2 (January 21) and ending week 10 (March 17).

Other reading. The course webpages for 2014 http://wwwf.imperial.ac.uk/˜epsegal/
repthy.html and 2015 https://sites.google.com/site/matthewtowers/m3p12 contain
lecture notes and problem sheets. The course content this year will be very similar, but
the material will be reorganised a little.

Here are some textbooks:
• G. James and M. Liebeck, Representations and Characters of Groups. The first 19

sections of this book cover almost all of the course, apart from the final part on
semisimple algebras. You should be able to access an ebook version through the
Imperial library website.
• J. P. Serre, Linear Representations of Finite Groups. Part I of this book gives a

concise and elegant exposition of character theory.
• J. L. Alperin, Local Representation Theory. The first couple of sections cover the

part of the course on semisimple algebras. The rest of the book is about group
representation theory in positive characteristic, which we don’t cover.

Prerequisites. Group theory and linear algebra (as covered in, for example, the second
year course Algebra 2).
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Course outline. This course is an introduction to the representation theory of finite
groups over the complex numbers.

(1) Basic definitions and examples.
(2) ‘Structure theory of representations’: Maschke’s theorem on complete reducibility,

Schur’s lemma. Duals and tensor products of representations.
(3) Character theory: the character of a group representation, character tables and

orthogonality relations.
(4) The group algebra and representations as modules for the group algebra. Semisim-

ple algebras, matrix algebras, the Artin–Wedderburn theorem.

Some vague motivation. Groups often come with interesting actions on sets or vectors
spaces. In fact, most groups ‘in nature’ arise as symmetry groups of mathematical or
physical systems. For example, symmetry groups of regular polygons (dihedral groups),
symmetric groups, matrix groups (GLn(C), SOn(R),. . . ).

Let’s recall what a group action on a set is. Suppose we have a (left) group action on a
finite set Ω = {ω1, ω2, . . . , ωn}. Recall that this means there’s a map

G× Ω→ Ω
written (g, ω) 7→ g · ω such that e · ω = ω for all ω ∈ Ω and g · (h · ω) = (gh) · ω for all
g, h ∈ G and ω ∈ Ω.

I drew the example of D8, the symmetry group of the square. We can consider D8 acting
on (for example) the set of vertices of the square, or on the whole plane in which the square
is sitting.

Studying these group actions is interesting in its own right, and can also be used to
study the group itself. For example:

Theorem. Suppose a group G has cardinality |G| = paqb with p, q prime and a, b ∈ Z≥0.
Then G is not simple. In other words, G has a proper normal subgroup.

The easiest proof of this theorem crucially uses representation theory. We probably won’t
be able to include it in this course (it uses a small amount of algebraic number theory), but
you can find the proof (and the necessary extra material) in James and Liebeck’s textbook.

Representation theory also has a wide range of applications across mathematics, physics,
chemistry,. . . . Some examples:

• Particle physics is intimately connected with representation theory, particularly the
representation theory of Lie groups and Lie algebras. Fundamental particles like
quarks correspond to vectors in representations of symmetry groups (e.g. SU(3)).
See http://arxiv.org/abs/0904.1556 for much more!
• In number theory, if K/Q is a Galois extension it has a Galois group Gal(K/Q) and

studying representations of Gal(K/Q) (and related groups) is something of central
importance. The proof of Fermat’s last theorem crucially relies on the theory of
these Galois representations.
• Suppose we have a physical system modelled by (homogeneous, linear) differential

equations. The solutions to such a system of differential equations form a vector

http://arxiv.org/abs/0904.1556
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space, and if we have a group of symmetries G of our physical system, then G acts
on the solution space, making it into a representation of G.

1. Representations Lecture 2
1.1. First definitions.

Definition 1.1. Let G be a group. A representation of G on a vector space V is a collection
of linear maps

ρV (g) : V → V

for each g ∈ G, such that
(1) ρV (e) = idV
(2) ρV (gh) = ρV (g) ◦ ρV (h)

If V has dimension d, we say that the representation has dimension d.

Let’s give our first examples of group representations:

Example 1.1. (1) Let G be any group, V any vector space, and ρ(g) = idV for all
g ∈ G. This is called the trivial representation of G on V . If V isn’t specified, then
‘the trivial representation of G’ usually means the trivial representation of G on
the one–dimensional vector space C.

(2) Let G = D2n, the symmetry group of a regular n-gon R2 (centred at the origin).
D2n acts by rotations and reflections on R2 (which are linear maps). This defines
a representation of D2n on R2. Extending linearly, we get a representation of D2n
on R2

(3) G = Cn = {e, g, g2, . . . gn−1} a cyclic group of order n. Let ζ ∈ µn(C) be an nth
root of unity, V = C. Define ρV by setting ρV (gi) to be multiplication by ζ i.

(4) Let G be any group and χ : G → C× a group homomorphism. Let V be any
complex vector space. We get a representation of G on V by setting

ρV (g)v = χ(g)v
for g ∈ G and v ∈ V .

(5) Finally we give an important family of examples. Let Ω = {ω1, . . . , ωn} be a
finite set with an action of G. We define CΩ to be the C-vector space with basis
[ω1], . . . , [ωn], so the elements of CΩ are formal sums ∑n

i=1 ai[ωi] with ai ∈ C. For
g ∈ G we define ρCΩ(g) to be the linear map which satisfies

ρCΩ(g)[ωi] = [g · ωi]
for i = 1, . . . n.

Here are two important special cases of this example:
(a) G = Sn, Ω = {1, . . . , n} with the usual permutation action of Sn. This gives

an n-dimensional representation of Sn.
(b) G any finite group, Ω = G, with the action given by multiplication of G

on itself. So g · h = gh for g ∈ G, h ∈ Ω. This gives a |G|-dimensional
representation CG of G, called the regular representation.
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Let’s give a slightly cleaner definition of a representation.

Definition 1.2. Let V be a vector space. Then GL(V ) is the group whose elements are
invertible linear maps V → V , with group multiplication given by composition of maps.

Lemma 1.1. Let V, {ρV (g) : g ∈ G} be a representation of G on V . Then g 7→ ρV (g)
gives a homomorphism

ρV : G→ GL(V ).
Conversely, if ρV : G→ GL(V ) is a homomorphism then we get a representation of G on
V by letting g acts as ρV (g).

Proof. This is immediate from the definitions. �

Now we can rewrite Definition 1.1:

Definition 1.1’. A representation of G on a vector space V is a homomorphism
ρV : G→ GL(V ).

Definition 1.3. A representation is faithful if ρV is injective.

Exercise 1.1. For what choices of ζ does Example 3 above give a faithful representation.

Suppose a group G is generated by elements g1, . . . gn. So every element of G can be
written as a product of (powers of) gi’s. In particular, to give a homomorphism

ρ : G→ GL(V )
it suffices to give ρ(gi) for i = 1, . . . n.

Example 1.2. Let G = D2n. This group has generators s, t with s rotation by 2π/n
and t a reflection. They satisfy relations sn = t2 = e and tst = s−1. To write down a
representation ρV : D2n → GL(V ) it is equivalent to give S, T ∈ GL(V ) with S = ρV (s),
T = ρV (t), such that Sn = T 2 = idV and TST = S−1.

For example, let D = D8 and consider Example 2 above. This representation can be
given explicitly by settingLecture 3

S =
(

0 −1
1 0

)
T =

(
−1 0
0 1

)
.

1.2. Matrix representations. In the D8 example we saw that we could describe a group
representation by writing down matrices. More generally, to give a map ρ : G → GL(V )
we can fix a basis (b1, . . . , bn) for V and then write down invertible n×n matrices for each
g ∈ G.

Recall that GLn(C) is the group of invertible n × n complex matrices. Fixing a basis
B = (b1, . . . , bn) for V gives an isomorphism

PB : GL(V ) ∼= GLn(C).
We take f ∈ GL(V ) and pass to the associated matrix [f ]B ∈ GLn(C).
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Definition 1.4. A (complex) matrix representation of dimension n of a group G is a
homomorphism

r : G→ GLn(C).
So if (V, ρ) is an n-dimensional representation, and B is a basis of V , we get a homo-

morphism ρB := PB ◦ ρ : G → GLn(C) which is an n-dimensional matrix representation.
We’re just taking the matrix of each linear map ρ(g) with respect to the basis B.

Conversely, if r : G → GLn(C) is a matrix representation and V = Cn (thought of as
column vectors), then we get ρr : G→ GL(V ) by setting ρ(g)v = r(g)v, where on the right
hand side we do matrix multiplication.

1.3. Maps of representations, equivalence of matrix representations. In linear
algebra it’s important to consider linear maps between different vector spaces. If V and
W are two vector spaces then a linear map f : V → W is a map of sets such that
f(λv+µw) = λf(v)+µf(w). In other words, f ‘commutes with’ the vector space operations
of scalar multiplication and addition. If we have a pair of representations (V, ρ), (W,σ) we
want to consider linear maps f : V → W which commute with the action of G.
Definition 1.5. Let (V, ρV ), (W, ρW ) be representations of G. A linear map f : V → W
is G-linear if f(ρV (g)v) = ρW (g)f(v) for all g ∈ G and v ∈ V .
Definition 1.6. Two representations (V, ρV ), (W, ρW ) are isomorphic if there is an invert-
ible G-linear map f : V → W . We say that such an f is a G-linear isomorphism.
Exercise 1.2. Suppose f : V → W is a G-linear isomorphism. Show that the map
f−1 : W → V is G-linear. Deduce that ‘being isomorphic’ is an equivalence relation
on representations.
Proposition 1.1. Let (V, ρ) and (W,σ) be two representations of dimension m,n respec-
tively. Let A = a1, . . . , am be a basis for V and B = b1, . . . , bn be a basis for W . Let f
be a linear map f : V → W . Let [f ]A,B be the n × m matrix (n rows, m columns) with
entries (fij)i,j satisfying faj = ∑n

i=1 fijbi. Then f is G-linear if and only if [f ]A,BρA(g) =
σB(g)[f ]A,B for all g ∈ G.
Proof. Fix g ∈ G. It suffices to check that f ◦ ρ(g) = σ(g) ◦ f if and only if [f ]A,BρA(g) =
σB(g)[f ]A,B. The linear map f ◦ ρ(g) : V → W has associated matrix [f ]A,BρA(g) with
respect to the bases A,B [matrix multiplication corresponds to composition of linear maps]
and σ(g) ◦ f has associated matrix σB(g)[f ]A,B. So we just use the fact that two linear
maps are equal if and only if their associated matrices are equal. �

Corollary 1.1. Let (V, ρ) and (W,σ) be two representations of dimension n. Let A =
a1, . . . , an be a basis for V and B = b1, . . . , bn a basis for W . Then ρ and σ are isomorphic
if and only if there is an n×n invertible matrix P with PρA(g)P−1 = σB(g) for all g ∈ G.
Proof. First we suppose there is a matrix P as in the statement of the proposition. Let
f : V → W be the linear map with associated matrix [f ]A,B = P . Since P is invertible,
f is invertible. Applying Proposition 1.1 we deduce that f is G-linear. So f gives an
isomorphism between ρ and σ.
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Second, we suppose that ρ and σ are isomorphic. Let f : (V, ρ) → (W,σ) be an
isomorphism, and set P = [f ]A,B. Applying Proposition 1.1 again, we deduce that
PρA(g) = σB(g)P for all g ∈ G. Rearranging gives PρA(g)P−1 = σB(g) as desired. �

Lecture 4
Definition 1.7. We say that two n-dimensional matrix representations r, s are equivalent
if there is an n× n invertible matrix P with Pr(g)P−1 = s(g) for all g ∈ G.

Remark 1.1. Let (V, ρ), (W,σ) and A,B be as in Corollary 1.1. The two representations ρ, σ
are isomorphic if and only if their associated matrix representations ρA, σB are equivalent.

Remark 1.2. Let (V, ρ) be a representation of dimension n. Let A and B be two bases for
V . Since a representation is isomorphic to itself (via the identity map) Corollary 1.1 says
that there is an invertible matrix P such that PρA(g)P−1 = ρB(g) for all g ∈ G. In fact,
we can take P to be the change of basis matrix with entries Pij satisfying aj = ∑n

i=1 Pijbi.

1.4. Direct sums of representations, indecomposable representations. One way
to build representations of a group is to combine representations together. The simplest
way to do this is the direct sum. Recall that if V and W are two vector spaces, we get a
new vector space V ⊕W whose elements consist of ordered pairs (v, w) with v ∈ V and
w ∈ W . If we have representations (V, ρ), (W,σ) of G there is a natural way to define a
representation of G on the vector space V ⊕W .

Definition 1.8. Suppose we have linear maps α : V → V and β : W → W . Then we get
a linear map α⊕ β : V ⊕W → V ⊕W by defining (α⊕ β)(v, w) = (α(v), β(w)).

Definition 1.9. Let (V, ρ), (W,σ) be representations. The direct sum representation
(V ⊕W, ρ⊕ σ) is given by

ρ⊕ σ : G→ GL(V ⊕W )
g 7→ ρ(g)⊕ σ(g).

Remark 1.3. The injective linear maps iV : V → V ⊕W and iW : W → V ⊕W given by
v 7→ (v, 0) and w 7→ (0, w) are G-linear.

Exercise 1.3. Let (V, ρ), (W,σ) be representations. Fix bases A for V and B for W . Write
A⊕B for the basis of V ⊕W given by (a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn). Describe the
matrix representation (ρ⊕ σ)A⊕B in terms of the matrix representations ρA and σB.

Definition 1.10. A representation is decomposable if it is isomorphic to a direct sum of
two representations of smaller dimension. In other words, we have V ∼= U⊕W with both U
and W non-zero. If a representation is not decomposable, we say that it is indecomposable.

Example 1.3. Let’s consider the cyclic group with two elements C2 = 〈g : g2 = e〉. What
are the one-dimensional representations of C2? Let V+ be a one-dimensional vector space
with basis vector v+ and trivial action of C2. Let V− be a one-dimensional vector space with
basis vector v− and action of C2 given by gv− = −v−. Every one-dimensional representation
of C2 is isomorphic to either V+ or V−. We get a two-dimensional representation of C2,
V+ ⊕ V−.
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We know another two-dimensional representation of C2, the regular representation CC2.
This has basis [e], [g] with action of G given by g[e] = [g], g[g] = [e].

Proposition 1.2. The regular representation CC2 is isomorphic to V+ ⊕ V−.

Proof. The map f : CC2 → V+ ⊕ V− given by f([e]) = (v+, v−), f([g]) = (v+,−v−) is a
G-linear isomorphism. �

Remark 1.4. Let’s redo the above proof in terms of matrix representations. The matrix

of g under the regular representation with respect to the basis [e], [g] is
(

0 1
1 0

)
, and the

matrix of g acting on V+ ⊕ V− with respect to the basis (v+, 0), (0, v−) is
(

1 0
0 −1

)
, so to

show the two representations are isomorphic we need to find an invertible 2× 2 matrix P
such that

P

(
0 1
1 0

)
P−1 =

(
1 0
0 −1

)
.

In other words we need to diagonalise a matrix. P =
(

1 1
1 −1

)
works, and corresponds to

the map f in the proof above.

Fact 1.1. Let G be a finite Abelian group and V a representation of G. Then V is isomor-
phic to a direct sum of one-dimensional representations of G. This follows from Problem
6 on Problem Sheet 1, and amounts to the fact that we can simultaneously diagonalise
commuting diagonalisable matrices.

Lecture 5
1.5. Subrepresentations, irreducible representations.

Definition 1.11. A subrepresentation of a representation (V, ρ) for a group G is a vector
subspace W ⊂ V such that ρ(g)w ∈ W for all g ∈ G and w ∈ W .

Exercise 1.4. Suppose g1, . . . gr generate G and let V be a representation of G. Suppose
W ⊂ V is a subspace such that ρ(gi)w ∈ W for all w in W and i = 1, . . . , r. Then W is a
subrepresentation of V .

Suppose W is a subrepresentation of V . Since ρ(g) restricts to a linear map from W to
W for each g, we get a representation (W, ρ|W ). The inclusion map W → V is obviously
G-linear, so we get a morphism of representations (W, ρ|W )→ (V, ρ).

Example 1.4. Suppose f : V → W is a G-linear map between representations of G. The
kernel of f

ker(f) = {v ∈ V : f(v) = 0}
is a subrepresentation of V . The image of f

im(f) = {f(v) : v ∈ V }
is a subrepresentation of W.
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Example 1.5. Let (V, ρ) be a representation of G. A non-zero simultaneous eigenvector for
the linear maps {ρ(g) : g ∈ G} spans a one-dimensional subrepresentation of V . Conversely,
if we have a one-dimensional subrepresentation W of V then any basis vector of W is a
simultaneous eigenvector for the linear maps {ρ(g) : g ∈ G}.

Example 1.6. Let G be any finite group. Let Ω be a finite set with a G-action, and
consider the representation CΩ. The one-dimensional subspace of CΩ with basis vector
v0 = ∑

ω∈Ω[ω] is a subrepresentation, isomorphic to the trivial representation. Indeed, for
every g ∈ G we have

g · v0 =
∑
ω∈Ω

g[ω] =
∑
ω∈Ω

[g · ω] =
∑
ω∈Ω

[ω].

Definition 1.12. If V is a non-zero representation whose only subrepresentations are
{0} ⊂ V and V ⊂ V , we say that V is irreducible. If V is non-zero and not irreducible, we
say that it is reducible.

Lemma 1.2. An irreducible representation is indecomposable.

Proof. Suppose for a contradiction that V is irreducible but decomposable. This means
that V ∼= W1 ⊕ W2, with both W1 and W2 non-zero. But then the image of the map
W1 → W1 ⊕W2 → V is a proper subrepresentation of V , so V is reducible, which is a
contradiction. �

In the next section we will show that the converse holds: an indecomposable represen-
tation is always irreducible.

Example 1.7. We saw earlier that the only indecomposable representations of Abelian
groups are one-dimensional. Let’s give an example of an irreducible two-dimensional rep-
resentation of S3. Generators for S3 are s, t with s = (123) and t = (23). The relations are

s3 = e, t2 = e and tst = s−1. Define a matrix representation by r(s) =
(
−1/2 −

√
3/2√

3/2 −1/2

)
,

r(t) =
(
−1 0
0 1

)
. Checking the relations shows that this defines a homomorphism S3 →

GL2(C) and so we get a representation ρ of S3 on C2. In fact this is the representation we
get by viewing S3 as the symmetry group of a triangle in R2.

We’re going to show that it’s irreducible. Since ρ is two-dimensional, it is reducible if
and only if it has a one-dimensional subrepresentation. Equivalently, ρ is reducible if and
only if the matrices r(s) and r(t) have a non-zero simultaneous eigenvector. It’s an exercise
to check that there are no non-zero simultaneous eigenvectors for these matrices.

1.6. Summary of this chapter. We defined representations and matrix representations,
and gave some examples. We saw how to go between representations and matrix repre-
sentations by choosing a basis. We defined morphisms of representations (a.k.a G-linear
maps), isomorphisms, direct sums and subrepresentations. We defined the notions of in-
decomposable and irreducible representations and gave an example of a two-dimensional
irreducible representation (for S3).
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2. More on representations

2.1. Maschke’s theorem. The goal of this subsection is to show that every representation
of a group G is isomorphic to a finite direct sum of irreducible representations. First we
want to understand what it means for a representation to be isomorphic to a direct sum
of two representations.
Definition 2.1. Let V be a vector space, and U ⊂ V a vector subspace. We say that a
vector subspace W ⊂ V is complementary to U if U ∩W = {0} and U + W = V (i.e. U
and W span V ).
Proposition 2.1. Let (V, ρ) be a representation and let U ⊂ V be a subrepresentation.
Suppose W ⊂ V is a subrepresentation of V , which is complementary to U . Then V is
isomorphic to the direct sum representation U ⊕W . A G-linear isomorphism is given by
(u,w) 7→ u+ w.
Proof. The map (u,w) 7→ u + w is a G-linear map from U ⊕W to V . We just need to
check that it is an invertible map of vector spaces (in other words, an isomorphism of vector
spaces). This is now just linear algebra: if u + w = 0 then u = −w ∈ U ∩W and since
W is complementary to U we have u = w = 0. So the map is injective. It is surjective
because U +W = V . �

Now we can state the main result of this section of the course:
Theorem 2.1 (Maschke’s theorem). Let G be a finite group, and let V be a representation
of G. Suppose we have a subrepresentation U ⊂ V . Then there exists a subrepresentation
W ⊂ V which is complementary to U . We therefore have an isomorphism of representa-
tions V ∼= U ⊕W .
Remark 2.1. (1) The fact that V ∼= U ⊕W follows from Proposition 2.1.

(2) It is easy to find a subspace W ′ of V which is complementary to U . For example, if U
has a basis u1, . . . um we extend to a basis u1, . . . um, um+1, . . . um+n for V and then
let W ′ equal the span of um+1, . . . um+n. The content of the Theorem is that we can
find a G-stable subspace (a.k.a subrepresentation) W of V which is complementary
to U .

(3) The Theorem fails for infinite groups. For example, consider G = Z, the represen-
tation of Z on C2 given by

1 7→
(

1 1
0 1

)
and the one-dimensional subrepresentation U = C.(1, 0). There is no Z-stable
subspace of C2 which is complementary to U .

Before we start proving the Theorem, let’s give two corollaries.
Corollary 2.1. An indecomposable representation of a finite group G is irreducible.
Proof. Suppose, for a contradiction, that V is indecomposable but reducible. So we have
a subrepresentation U ⊂ V which is not equal to {0} or V . Maschke’s theorem tells us



10 JAMES NEWTON

that we have a complementary subrepresentation W ⊂ V and V ∼= U ⊕W . Since U is not
equal to V , W is non-zero, and we have shown that V is actually decomposable. This is a
contradiction and so we have proved that indecomposable implies irreducible. �

Corollary 2.2. Every (finite-dimensional) representation V of a finite group G is isomor-
phic to a direct sum

V1 ⊕ V2 ⊕ · · · ⊕ Vr
with each Vi an irreducible representation of G.

Proof. We induct on the dimension of V . It is obvious that a one-dimensional represen-
tation is irreducible. Now let V have dimension n and suppose that every representation
of dimension < n is isomorphic to a direct sum of irreducible representations. If V is
irreducible we are done. Otherwise, we let {0} 6= U ( V be a proper subrepresentation.
Maschke’s theorem implies that V ∼= U ⊕W for some subrepresentation W of V , and both
U and W have dimension strictly less than n. By the inductive hypothesis, U and W are
isomorphic to direct sums of irreducible representations. Therefore V is also isomorphic to
a direct sum of irreducible representations. �

Lecture 6
In order to prove Maschke’s theorem, we have to find a way to come up with comple-

mentary subspaces. The next Lemma gives us a way to do that:

Lemma 2.1. Let V be a vector space and suppose we have a linear map
f : V → V

such that f ◦ f = f . Then ker(f) ⊂ V is a complementary subspace to im(f) ⊂ V , so
V ∼= ker(f)⊕ im(f).

If V is a representation of a group G and f : V → V is a G-linear map, then V is
isomorphic to ker(f)⊕ im(f) as representations of G.

Proof. The rank–nullity theorem says that dim(ker f) + dim(im f) = dim(V ). Suppose
v ∈ im(f) ∩ ker(f). Since v ∈ im(f) we can write v = f(u) and so f(v) = f ◦ f(u) =
f(u) = v. But we also have v ∈ ker(f), so f(v) = 0. We conclude that v = 0. So
im(f) ∩ ker(f) = {0}. We conclude that ker f and im f are complementary subspaces.

Alternatively, consider the linear map v 7→ (v − f(v), f(v)) from V to ker(f) ⊕ im(f).
It is an injective map, since if f(v) = 0 then v− f(v) = v so if both f(v) and v− f(v) are
zero then v = 0. It is also surjective since the map (u,w) 7→ u+ w gives an inverse.

If V is a representation of G then, since ker f and im f are subrepresentations of V which
are complementary subspaces, we get the desired isomorphism of G-representations. �

Definition 2.2. Let f : V → V be a linear map with f ◦ f = f . Then we say that f is
a projection. If V is a representation of G and f is G-linear, we say that f is a G-linear
projection.

Example 2.1. Let V = U ⊕W and let πU : V → V be the map given by (u,w) 7→ u.
Then πU is a projection, with kerπU = W and im πU = U . The above Lemma says that
all projections look like this, after composing with an isomorphism.
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Example 2.2. Here’s a general example of a G-linear projection. Let G be a finite group
(finiteness is crucial here) and let V be any representation of G.

We define a map e1 : V → V by

e1(v) = 1
|G|

∑
g∈G

ρV (g)v.

Then e1 is a G-linear projection with image the invariants

V G = {v ∈ V |ρV (g)v = v∀g ∈ G}.

To check this we first check that e1 is G-linear and that e1 has image contained in V G.
Checking e1 is G-linear is similar to checking that the image is contained in V G so we just
do the second check. Suppose that h ∈ G and v ∈ V . Then

ρV (h)e1(v) = 1
|G|

∑
g∈G

ρV (hg)v.

The right hand side can be rewritten as
1
|G|

∑
g∈G

ρV (g)v = e1(v)

and so e1(v) ∈ V G.
Next we check that the restriction e1|V G is the identity. This shows that im e1 ⊃ V G.

Combined with the previous observation that im e1 ⊂ V G we get that im e1 = V G. Then
we also get that e1 ◦ e1 = e1 since e1(e1(v)) = e1(v).

Definition 2.3. Let V,W be two representations of G and let HomC(V,W ) be the vector
space of linear maps (not just the G-linear maps) between them. We make this into a
representation of G by defining

(g · f)v = ρW (g)f(ρV (g−1)v).

Lemma 2.2. A linear map f ∈ HomC(V,W ) is G-linear if and only if g · f = f for all
g ∈ G. In other words, HomC(V,W ) = HomG(V,W ).

Proof. An exercise. �

Corollary 2.3. V , W as before. Let f ∈ HomC(V,W ). Then e1(f) ∈ HomG(V,W ). Note
that

e1(f) : v 7→ 1
|G|

∑
g∈G

ρW (g)f(ρV (g−1)v).

Proof. This combines Example 2.2 with Lemma 2.2. �

Proof of Maschke’s Theorem, Theorem 2.1. Recall what we want to prove: Let V
be a representation of a finite group G. Let U ⊂ V be a subrepresentation. Then there
exists a complementary subrepresentation W ⊂ V to U .
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Proof. First we pick a complementary subspace (not necessarily a subrepresentation!) W ′

to U . For example, we can pick a basis v1, . . . vm for U , extend to a basis v1, . . . vm, vm+1, . . . , vm+n
for V and then let W ′ be the subspace spanned by vm+1, . . . , vm+n. This gives us a pro-
jection map πU : V → V with image U : if v = ∑m+n

i=1 λivi we define πU(v) = ∑m
i=1 λivi.

However, πU is not necessarily G-linear. But Corollary 2.3 tells us how to produce a
G-linear map: we set π = e1πU : V → V .

We claim that π is a G-linear projection with image U . If this claim is correct, then we
have proved the theorem, since we can take W = ker(π). First we check that π has image
contained in U . If v ∈ V then

e1πU(v) = 1
|G|

∑
g∈G

ρV (g)
(
πU(ρV (g−1)v)

)
.

Since πU has image equal to U , and U is stable under the action of G, this is a linear
combination of vectors in U , hence is in U .

Now we check that the restriction of π to U is the identity. Suppose u ∈ U . Then

π(u) = e1πU(u) = 1
|G|

∑
g∈G

ρV (g)
(
πU(ρV (g−1)u)

)
.

Since u ∈ U , and therefore ρV (g−1)u ∈ U , we have πU(ρV (g−1)u) = ρV (g−1)u, so

π(u) = 1
|G|

∑
g∈G

u = u.

This shows that π ◦ π(v) = π(v).
As in Example 2.2 we conclude that π is a G-linear projection with image U . �

2.2. Schur’s lemma and Abelian groups.

Theorem 2.2 (Schur’s lemma). Let V and W be irreducible reps of G.
(1) Let f : V → W be a G-linear map. Then f is either an isomorphism or the zero

map.
(2) Let f : V → V be a G-linear map. Then f = λ idV for some λ ∈ C.
(3) If V and W are isomorphic then

dim HomG(V,W ) = 1
otherwise, HomG(V,W ) = {0}.

Proof. (1) Suppose f is not the zero map. We are going to show that f is an iso-
morphism. The image of f is a subrepresentation of W , and it is non-zero since
f is non-zero. Since W is irreducible, the image of f must be all of W . So f is
surjective.

Similarly, the kernel of f is a subrepresentation of V . Since f is non-zero, the
kernel of f is not all of V . Since V is irreducible, the kernel of f must be {0}.
So f is injective. We have shown that f is a bijective G-linear map, so it is an
isomorphism of representations.
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(2) Since V is a finite dimensional complex vector space, every linear map from V to
V has at least one eigenvalue. Let λ be an eigenvalue of f . Consider the map

f − λ idV : V → V.

Since f and λ idV are G-linear, their difference f − λ idV is G-linear. Now part
1 implies that f − λ idV is either the zero map or an isomorphism. Since λ is an
eigenvalue of f the kernel of f − λ idV is non-zero. Therefore f − λ idV is not an
isomorphism, and must be the zero map. So f = λ idV .

(3) This follows from parts (1) and (2).
� Lecture 7

Schur’s lemma allows us to give a proof of Fact 1.1.

Corollary 2.4. Suppose G is a finite Abelian group. Then every irreducible representation
of G is one-dimensional.

Proof. Let V, ρV be an irreducible representation of G. Pick any h in G and consider
ρV (h) : V → V.

Since G is Abelian, the map ρV (h) is G-linear. Indeed, for g ∈ G we have
ρV (h) ◦ ρV (g) = ρV (hg) = ρV (gh) = ρV (g) ◦ ρV (h),

so ρV (h) is G-linear.
By Schur’s lemma, ρ(h) = λh idV for some λh ∈ C. So every element of G acts on

V as multiplication by a scalar in C. In particular, every vector subspace of V is a
subrepresentation of V . Since V is also irreducible, it must be one-dimensional. �

We can now described all the irreps of Abelian groups (and using Theorem 2.1 this
gives a description of all the representations of Abelian groups). First we start with cyclic
groups:

Exercise 2.1. Let V be an irreducible representation of Cn = {e, g, . . . , gn−1}. Then there
exists ζ ∈ C with ζn = 1 such that V is isomorphic to the one-dimensional representation
given by C with g acting as multiplication by ζ.

The n irreducible representations given by choosing
ζ = 1, ζ = e

2πi
n . . . ζ = e

2πi
n

(n−1)

are all non-isomorphic, so there are n isomorphism classes of irreducible representations of
Cn.

Fact 2.1. Every finite Abelian group is isomorphic to a product of cyclic groups.

So now we suppose that G = Cn1 ×Cn2 × · · · ×Cnr . Let’s denote a generator of Cnj by
gj. For integers 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1,. . . , 0 ≤ kr ≤ kr − 1 we can define an
irreducible representation of G by letting gj act as multiplication by e

2πi
nj

(kj).
This gives |G| = n1n2 · · ·nr non-isomorphic irreducible representations of G, and every

irreducible representation of G is isomorphic to one of these representations.
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2.3. Uniqueness of decomposition into irreps. We’ve shown that every rep V of a
finite group G is isomorphic to a direct sum of irreps. In this subsection we’re going to
prove that this decomposition as a direct sum of irreps is unique, up to reordering and
isomorphism.

Lemma 2.3. Suppose V = V1 ⊕ V2 ⊕ · · ·Vd = ⊕d
i=1 Vi with each Vi a rep of G. Let W be

any rep of G. Then
(1) HomC(W,V ) = ⊕d

i=1 HomC(W,Vi) (more precisely there is a natural isomorphism
between these two complex vector spaces)

(2) HomC(V,W ) = ⊕d
i=1 HomC(Vi,W )

(3) HomG(W,V ) = ⊕d
i=1 HomG(W,Vi)

(4) HomG(V,W ) = ⊕d
i=1 HomG(Vi,W )

Proof. Let’s write down the natural isomorphism between the two sides of part (1). Suppose
f is a linear map from W to V . Then for each i = 1, . . . , d we get a linear map fi : W → Vi
by taking f and composing with the map πi : V → Vi which picks out the ith component.
So we define a map

α : HomC(W,V )→
d⊕
i=1

HomC(W,Vi)

by setting
α(f) = (f1, f2, . . . , fd).

Now we just need to check this map is invertible. Indeed we can write down the inverse

α−1 :
d⊕
i=1

HomC(W,Vi)→ HomC(W,V )

by defining α−1(f1, f2, . . . , fd) to be the linear map from W to V which takes w to
(f1(w), f2(w), . . . , fd(w)).

Part (2) is proved in a similar way. Suppose λ is a linear map from V to W . Then
for each i = 1, . . . , d we get a linear map λi : Vi → W by composing λ with the map
ιi : Vi → V which takes v to v in the ith component and 0 in all the other components.

Then the natural isomorphism

β : HomC(V,W )→
d⊕
i=1

HomC(Vi,W )

is given by setting
β(λ) = (λ1, λ2, . . . , λd).

To show part (3), we just need to show that α and α−1 both take G-linear maps to
G-linear maps, which is a straightforward check. Likewise, part (4) follows from part (2).
Alternatively we can deduce parts (3) and (4) from the statements of parts (1) and (2), by
applying the projection map e1 from Example 2.2. �
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Proposition 2.2. Let V be a rep of a group G, with V ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vr and each Vi
an irrep of G. Let W be an irrep of G. Then the number of Vi which are isomorphic to W
is equal to dimC HomG(W,V ) which also equals dimC HomG(V,W ).

Lecture 8

Proof. By Lemma 2.3 we have an isomorphism

HomG(W,V ) ∼=
r⊕
i=1

HomG(W,Vi)

so equating the dimensions of both sides we get

dimC HomG(W,V ) =
r∑
i=1

dimC HomG(W,Vi).

Theorem 2.2 (Schur’s lemma) now tells us that the right hand side is the number of Vi
which are isomorphic to W .

A very similar argument, beginning with the isomorphism

HomG(V,W ) ∼=
r⊕
i=1

HomG(Vi,W )

shows that this number also equals dimC HomG(V,W ). �

Corollary 2.5. Let V be a rep of G and suppose that we have

V ∼= V1 ⊕ · · · ⊕ Vr

and
V ∼= W1 ⊕ · · · ⊕Ws

with the Vi and Wj all irreps. Then r = s and the decompositions are the same up to
reordering and isomorphism. In other words, there is a permutation σ of {1, . . . , d} such
that Vi ∼= Wσi for i = 1, . . . , d.

Proof. Let W be any irrep of G. By Proposition 2.2, the number of Vi which are isomorphic
to W is equal to dimC HomG(W,V ). But this number is also the number of Wj which are
isomorphic to W . This proves the Corollary. �

Remark 2.2. We have proved that for any rep V of a finite group G, we have

V ∼=
⊕
W

W⊕ dimC HomG(V,W )

where the direct sum runs over distinct representatives for the isomorphism classes of irreps
of G. The notation is that W⊕ dimC HomG(V,W ) is a direct sum of dimC HomG(V,W ) copies of
W . If dimC HomG(V,W ) = 0 then the notation W⊕0 means that we take the zero vector
space (or ignore the rep W , since it does not show up in the decomposition of V into
irreducibles).
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2.4. Decomposition of the regular representation. We are going to investigate the
decomposition of the regular representation CG of a finite group G. Since

CG ∼=
⊕
W

W⊕ dimC HomG(CG,W )

we need to investigate the dimension of the vector spaces HomG(CG,W ) for irreps W .

Proposition 2.3. Let V be a representation of G. The map
eve : HomG(CG, V )→ V

given by taking a G-linear map f to f([e]) is an isomorphism of complex vector spaces.

Proof. We check the map is injective and surjective. First injectivity: suppose that f([e]) =
0. This implies that ρV (g)f([e]) = 0 for all g ∈ G. Since f is G-linear, we conclude that
f(ρCG[e]) = f([g]) = 0 for all g ∈ G. So f = 0 (since it is zero on every element of a basis
for CG).

Now surjectivity: let v ∈ V . We define fv : CG → V by fv([g]) = ρV (g)v. This fv is a
G-linear map, since

fv(ρCG(h)[g]) = fv([hg]) = ρV (hg)v = ρV (h)fv([g]).
Moreover, we have eve(fv) = ρV (e)v = v, so fv is a preimage of v. �

Corollary 2.6. Let G be a finite group.
(1) We have a G-linear isomorphism

CG ∼=
⊕
W

W dimCW

where the direct sum runs over distinct representatives for the isomorphism classes
of irreps of G.

(2) There are finitely many isomorphism classes of irreps of G.
(3) Let W1, . . . ,Wr be distinct representatives for the isomorphism classes of irreps of

G. Set di = dimCWi. Then

|G| =
r∑
i=1

d2
i .

Proof. The above proposition shows that for any irrep W , dimC HomG(CG,W ) = dimCW .
Applying Remark 2.2 gives part 1.

We deduce part 2 from part 1, since CG is finite dimensional.
Finally, part 3 also follows from part 1: it says the dimensions of the isomorphic repre-

sentations CG and ⊕W W dimCW are equal. �

Example 2.3. (1) First we let G be any finite Abelian group. We have shown that
the number of isomorphism classes of irreps of G is equal to |G|, and they are all
one-dimensional. So the equality in Corollary 2.6 reads

|G| =
|G|∑
i=1

12.
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(2) Now we consider G = S3. On Problem Sheet 2, we say that Sn has two distinct
isomorphism classes of one-dimensional representation. So for G = S3 the equality
in Corollary 2.6 reads

6 = 12 + 12 + d2
3 + · · ·+ d2

r

with d3, . . . , dr all ≥ 2. We can conclude from this that in fact r = 3 and the
dimensions of the three isomorphism classes of irreps are 1, 1 and 2. We already
found an irreducible two-dimensional representation (Example 1.7), so now we have
proved that every irrep of S3 is isomorphic to one of: the trivial rep of dimension
one, the one-dimensional rep given by the sign homomorphism, the two-dimensional
rep defined in Example 1.7.

2.5. Duals and tensor products. Warning: I have reordered the material here compared
to how I lectured it. I think what’s written here should be clearer for those of you who
aren’t familiar with dual vector spaces.

Earlier in the course we considered the complex vector space of linear maps HomC(V,W ),
where V and W are two complex vector spaces. If V and W are representations of a group
G, we defined a representation of G on the vector space HomC(V,W ) (see Definition 2.3).

We’re going to consider a special case of this construction, where W is the vector space
C with the trivial action of G (i.e. W is the one-dimensional trivial rep of G).

Definition 2.4. If V is a complex vector space, let V ∗ = HomC(V,C) be the dual vector
space, of linear maps from V to C.

If V is a representation of G, we define a representation of G on the vector space V ∗ by
setting

ρV ∗(g)(f) = f ◦ ρV (g−1)
for f ∈ V ∗ and g ∈ G. In other words, ρV ∗(g)(f) is the linear map from V to C given by
v 7→ f(ρV (g−1)v).

Lecture 9
Example 2.4. Suppose V is the n-dimensional vector space of column vectors of length n.
Then V ∗ can be identified with the n-dimensional vector space of row vectors of length n.
A row vector x is viewed as a linear map from V to C by taking v to the matrix product
xv (i.e. the scalar product).

Example 2.5. Let B = b1, . . . , bn be a basis of V . For each i = 1, . . . , n we define an
element δi ∈ V ∗ by δi(bj) = 0 if i 6= j and δi(bi) = 1. Let B∗ denote the elements δ1, . . . , δn
of V ∗. Then this is a basis of V ∗, called the dual basis to B.

Here’s a proof that B∗ is a basis. Suppose we have (λ1, . . . , λn) ∈ Cn and f = ∑n
i=1 λiδi =

0. Applying f to bj we get f(bj) = λj = 0. So λi = 0 for all i, and we have shown that B∗
is a linearly independent set of vectors in V ∗.

Now we show that B∗ spans V ∗. Suppose f ∈ V ∗. Set λi = f(bi). Then consider the
linear combination f ′ = ∑n

i=1 λiδi. We have f ′(bj) = λj = f(bj) for all j, and so f ′ = f .
This shows that f is in the span of B∗. So we have shown that B∗ is a basis for V ∗.
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Example 2.6. Let’s work out the dual of a one-dimensional representation. Suppose V is
a one-dimensional vector space. Then we have a homomorphism

χ : G→ C×

such that ρV (g)v = χ(g)v for all v ∈ V . We’ll write Vχ for this representation, to remember
the action of G.

Now consider the dual space V ∗χ and let δ ∈ V ∗χ . We have ρV ∗χ (g)δ = δ ◦ ρVχ(g−1). Since
ρVχ(g−1) is multiplication by χ(g)−1 we have ρVχ∗(g)δ = χ(g)−1δ, so the one-dimensional
representation V ∗χ has action of G given by the homomorphism χ−1. We can also write χ
for this character, since for each g χ(g) is a root of unity: this implies that χ(g−1) is equal
to χ(g), the complex conjugate of χ(g).

Exercise 2.2. Let V be a finite dimensional vector space. Consider the map
α : V → (V ∗)∗

defined by letting α(v) be the linear map
α(v) : V ∗ → C

given by α(v)(δ) = δ(v), for δ ∈ V ∗. Show that this map is an isomorphism of vector
spaces.

If V is a representation of G, show that α is a G-linear isomorphism.

Proposition 2.4. Let V be a (finite-dimensional) representation of a group G. Then V
is irreducible if and only if V ∗ is irreducible.

Proof. First we show that V reducible implies V ∗ reducible. Suppose V ∼= U ⊕W . Then
(the proof of) Lemma 2.3 gives us an isomorphism

HomC(V,C) ∼= HomC(U,C)⊕ HomC(W,C)
or in other words

V ∗ ∼= U∗ ⊕W ∗

and it’s easy to check this isomorphism is G-linear. We deduce that V ∗ is reducible.
Now suppose V ∗ is reducible. We have just shown that (V ∗)∗ is reducible. Exercise 2.2

tells us that V is reducible (since V ∼= (V ∗)∗).
Therefore we have shown that V is reducible if and only if V ∗ is reducible. Equivalently,

V is irreducible if and only if V ∗ is irreducible. �

Suppose V is a rep of G and B is a basis of V . We are going to compute the matrix
rep given by V ∗ with respect to the dual basis B∗. First we are going to do a little linear
algebra:

Suppose V is a vector space, and f : V → V is a linear map. Then we define the dual
map f ∗ : V ∗ → V ∗ by f ∗(δ) = δ ◦ f . In other words we define f ∗(δ) to be the linear map
from V to C which takes v to δ(f(v)). Fix a basis B = b1, . . . , bn of V and denote the
matrix [f ]B by M . Write B∗ = δ1, . . . , δn for the dual basis of V ∗.

Claim. The matrix [f ∗]B∗ is the transpose M t of the matrix M : recall that (M t)i,j = Mj,i.
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Proof. Let’s consider f ∗(δi). We have

f ∗(δi)(bj) = δi(f(bj)) = δi(
n∑
k=1

Mk,jbk) = Mi,j.

We conclude that
f ∗(δi) =

n∑
j=1

Mi,jδj

which shows that [f ∗]B∗ = M t. �

We can now show the following Proposition:
Proposition 2.5. Let V be a rep of G, fix a basis B of V , and write M for the matrix
[ρV (g)]B. Then

[ρV ∗(g)]B∗ = (M−1)t.
Proof. From the definition of the dual representation, we have ρV ∗(g) = ρV (g−1)∗. Since
the matrix [ρV (g−1)]B is equal to M−1 the Proposition follows from the above Claim. �

Remark 2.3. We write M−t for the matrix (M−1)t. In fact, we also have M−t = (M t)−1,
since M t(M−1)t = (M−1M)t is equal to the identity matrix, as is (M−1)tM t = (MM−1)t
(we use that (AB)t = BtAt).
Example 2.7. Let’s give another example of computing the dual representation. Let V
be the two-dimensional irrep of S3 defined in Example 1.7. It follows from Proposition 2.4
that V ∗ is also a two-dimensional irrep of S3. But we showed in Example 2.3 that there is
only one isomorphism class of two-dimensional irreps of S3. So V ∗ is isomorphic to V !

We can give a different proof that V ∗ is isomorphic to V using the computation of the
matrix rep. Recall that we defined V (or rather, the associated matrix rep with respect

to the standard basis of C2) by ρV (123) =
(
−1/2 −

√
3/2√

3/2 −1/2

)
, ρV (23) =

(
−1 0
0 1

)
. To

give the matrix rep for V ∗ we just need to compute the matrices ρV (123)−t and ρV (23)−t.
But if you do the computation, you see that these matrices are equal to their own inverse
transpose. So we get exactly the same matrix rep for V ∗, which shows that V and V ∗ are
isomorphic.

Now we’re moving on to tensor products.
Definition 2.5. Let V and W be two vector spaces, with a basis A = a1, . . . , am for V
and a basis B = b1, . . . , bn for W . We define V ⊗W to be the mn-dimensional vector space
with basis (denoted A⊗B) given by the symbols ai ⊗ bj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

If v = ∑m
i=1 λiai ∈ V and w = ∑n

j=1 µjbj ∈ W we define v ⊗ w to be the element of
V ⊗W given by

v ⊗ w =
∑
i,j

λiµj(ai ⊗ bj).

Warning. Not every element of V ⊗W is of the form v ⊗ w for v ∈ V and w ∈ W . For
example, suppose m = n = 2 and consider a1 ⊗ b1 + a2 ⊗ b2 ∈ V ⊗W . This element is not
equal to v ⊗ w for any v ∈ V , w ∈ W .
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Lecture 10 Definition 2.6. Let V and W be representations of G with bases A,B as before. We
define linear maps

ρV⊗W (g) : V ⊗W → V ⊗W
by

ρV⊗W (g) : ai ⊗ bj 7→ ρV (g)ai ⊗ ρV (g)bj.
We will eventually show that this defines a representation of G on the vector space

V ⊗ W . First we’ll describe the matrix corresponding to the linear map ρV⊗W (g) with
respect to the basis A⊗B.

Let M = [ρV (g)]A and N = [ρW (g)]B. We’re going to write M ⊗ N for the matrix
corresponding to the linear map ρV⊗W (g) with respect to the basis A⊗B.

It’s simplest to refer to specify entries of the matrix M ⊗N by a pair (i, j), (s, t), where
1 ≤ i, s ≤ m and 1 ≤ j, t ≤ n. This means that we have matrix entries (M ⊗ N)(i,j),(s,t)
which satisfy

ρV⊗W (g)(as ⊗ bt) =
∑
i,j

(M ⊗N)(i,j),(s,t)ai ⊗ bj.

Lemma 2.4. With the above notation, we have
(M ⊗N)(i,j),(s,t) = MisNjt.

Proof. By definition we have
ρV⊗W (g)(as ⊗ bt) = ρV (g)as ⊗ ρW (g)bt

= (
∑
i

Misai)⊗ (
∑
j

Njtbj)

=
∑
i,j

MisNjt(ai ⊗ bj).

This proves the lemma. �

Proposition 2.6. Let V and W be reps of G, with bases A and B. Then there exists an
isomorphism of vector spaces

α : V ⊗W ∼= HomC(V ∗,W )
with

α ◦ ρV⊗W (g) = ρHomC(V ∗,W )(g) ◦ α
for all g ∈ G.
Proof. We’re going to start by writing down a basis for HomC(V ∗,W ). We have a dual
basis A∗ = δ1, . . . , δm for V ∗. For 1 ≤ i ≤ m and 1 ≤ j ≤ n we define fij ∈ HomC(V ∗,W )
by fij(δk) = 0 if k 6= i and fij(δi) = bj.

Let’s show that this gives a basis for HomC(V ∗,W ). If we consider the matrix [f ]A∗,B
associated to f ∈ HomC(V ∗,W ) we get an isomorphism of vector spaces

HomC(V ∗,W )→Mn,m(C)
f 7→ [f ]A∗,B.
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A basis for the space of n×m matrices Mn,m is given by taking the matrices with 1 in the
(j, i) entry and 0 everywhere else (for i,j varying with 1 ≤ i ≤ m and 1 ≤ j ≤ n). Under
our isomorphism these basis elements correspond to the fij. So the fij form a basis.

Now we define the map α by α(ai ⊗ bj) = fij. This is an isomorphism of vetor spaces,
since it takes a basis to a basis. We now need to check the claim that

α ◦ ρV⊗W (g) = ρHomC(V ∗,W )(g) ◦ α
for all g ∈ G.

First we compute α ◦ ρV⊗W (g)(as ⊗ bt). As usual we write M = [ρV (g)]A and N =
[ρW (g)]B. So we have

ρV⊗W (g)(as ⊗ bt) = ρV (g)as ⊗ ρW (g)bt =
∑
i,j

MisNjtai ⊗ bj

by Lemma 2.4. So we have

α ◦ ρV⊗W (g)(as ⊗ bt) =
∑
i,j

MisNjtfij.

Now we need to show that
ρHomC(V ∗,W )(g)fst =

∑
i,j

MisNjtfij.

Equivalently, we need to show that for 1 ≤ i ≤ m we have

(ρHomC(V ∗,W )(g)fst)(δi) =
∑
j

MisNjtbj.

So now we compute (ρHomC(V ∗,W )(g)fst)(δi). By definition we have

ρHomC(V ∗,W )(g)fst = ρW (g) ◦ fst ◦ ρV ∗(g−1).
We have

ρV ∗(g−1)δi =
m∑
k=1

Mikδk

by Proposition 2.5. Now we apply fst, to get
fst ◦ ρV ∗(g−1)δi = Misbt.

Finally, we apply ρW (g) to get

(ρHomC(V ∗,W )(g)fst)(δi) = MisρW (g)bt =
∑
j

MisNjtbj

as desired. �

Corollary 2.7. Let V,W be reps of G and fix bases A,B of V,W respectively.
(1) The map g 7→ ρV⊗W (g) defines a representation of G on V ⊗W .
(2) The map α in the above Proposition gives a G-linear isomorphism between V ⊗W

and HomC(V ∗,W ).
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(3) If we change the bases A, B, the new representation V ⊗W (recall that the definition
of this representation used our fixed bases) is isomorphic to one defined by the bases
A, B.

Proof. The first two parts follow immediately from the Proposition. The third part follows
from the second part: whatever choice of bases we make, we get a representation which is
isomorphic to HomC(V ∗,W ). �

Lecture 11
Corollary 2.8. Let V and W be representations of G. Then HomC(V,W ) is isomorphic
(as a representation of G) to V ∗ ⊗W .
Proof. By Corollary 2.7, we have an isomorphism

V ∗ ⊗W ∼= HomC((V ∗)∗,W ).
By Exercise 2.2, we also have an isomorphism (of reps of G) (V ∗)∗ ∼= V , so we have an
isomorphism

HomC((V ∗)∗,W ) ∼= HomC(V,W ).
So coming Corollary 2.7 and Exercise 2.2 we get the desired isomorphism

V ∗ ⊗W ∼= HomC(V,W ).
�

Now let’s think about some examples of the tensor product construction. We’ll suppose
that dimW = 1, with a basis vector b1. A representation of G on W is given by a
homomorphism χ : G→ C×: we have ρW (g)w = χ(g)w for w ∈ W and g ∈ G.

By definition, V ⊗W has a basis a1 ⊗ b1, . . . , am ⊗ b1, and the action of G is given by
ρV⊗W (g)ai ⊗ b1 = χ(g)ρV (g)ai ⊗ b1.

So the matrix representation with respect to the basis A⊗B is given by

[ρV⊗W (g)]A⊗B = χ(g)[ρV (g)]A.
Example 2.8. (1) To give a more concrete example, let’s suppose dim V is also equal

to 1. So we have two homomorphisms χV , χW which are the one-dimensional ma-
trix representations associated to V and W . Then V ⊗ W is a one-dimensional
representation whose associated matrix representation is the homomorphism

G→ C×

g 7→ χ1(g)χ2(g)
(2) Let’s consider the irreducible two-dimensional rep of S3, V , given by Example 1.7.

Let W be the one-dimensional rep of S3 given by the sign homomorphism. Then

the matrix rep associated to V ⊗W is determined by (123) 7→
(
−1/2 −

√
3/2√

3/2 −1/2

)

and (23) 7→
(

1 0
0 −1

)
. Although it looks like this is a different representation to V ,

in fact it is isomorphic to V (see problem sheet 3).
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3. Character theory

3.1. Traces. Recall that if M is a n× n matrix we define the trace Tr(M) to be the sum
of the diagonal entries of M , i.e.

Tr(M) =
n∑
i=1

Mii

One nice property of the trace is that if M,N are two n× n matrices, then Tr(MN) =
Tr(NM). As a consequence, if P ∈ GLn(C) is an invertible matrix, then Tr(P−1MP ) =
Tr(PP−1M) = Tr(M).

Definition 3.1. Let f : V → V be a linear map. Let B be a basis for V . We define
Tr(f) = Tr([f ]B)

Remark 3.1. Since Tr(P−1MP ) = Tr(M) the value of Tr([f ]B) is independent of the choice
of basis B for V . So Tr(f) is well-defined, independently of the choice of B.

Definition 3.2. Let V be a rep of G. The character of V , denoted χV is the complex
valued function

χV : G→ C
g 7→ Tr(ρV (g))

Remark 3.2. In general, χV is not a homomorphism, it is just a function from G to C.

Example 3.1. (1) Assume dimV = 1. Then the action of G on V is determined by a
homomorphism

χ : G→ C×.
We have ρV (g)v = χ(g)v for all g ∈ G and v ∈ V . In this case the character χV is
just equal to χ.

(2) Let’s return to example 1.7. We have χV (123) = −1 and χV (23) = 0. Note that we
can’t just write down χV (g) for general g from these two calculations, even though
(123) and (23) generate S3, since χV is not a homomorphism.

Lecture 12
Lemma 3.1. Suppose V and W are two isomorphic representations of a group G. Then
χV = χW .

Proof. If V is isomorphic to W , then choosing bases A, B for V , W respectively we get
equivalent matrix representations (see Corollary 1.1). In other words there is a matrix
P ∈ GLn(C) such that

P [ρV (g)]AP−1 = [ρW (g)]B
for all g ∈ G. In particular, ρV (g) and ρW (g) are conjugate matrices and hence have the
same trace, so χV (g) = χW (g). �

We will prove the converse, that representations with the same character are isomorphic,
later. The next proposition gives some basic properties of characters:
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Proposition 3.1. Let V be a representation of G (a finite group).
(1) If g, h ∈ G are conjugate, i.e. there is a k ∈ G with g = khk−1, then

χV (g) = χV (h).
(2) χV (e) = dim(V )
(3) χV (g−1) = χV (g), the complex conjugate of χV (g).
(4) The absolute value |χV (g)| satisfies

|χV (g)| ≤ dim(V )
and we have equality |χV (g)| = dim(V ) if and only if ρV (g) = λ idV for some
λ ∈ C×.

Proof. (1) Since g = khk−1 we have ρV (g) = ρV (k)ρV (h)ρV (k)−1. The traces of conju-
gate matrices are equal, so χV (g) = χV (h).

(2) We have ρV (e) = idV and the trace of idV is equal to dim(V ).
(3) Since ρV (g) is diagonalisable (by Exercise 2 on Problem Sheet 1, or by considering

V as a rep of the cyclic group generated by g which therefore decomposes as a
direct sum of one dimensional irreps), we have a basis A for V such that the matrix
[ρV (g)]A is a diagonal matrix with entries λ1, λ2, . . . , λd. So we have χV (g) =
λ1 + λ2 + · · · + λd and χV (g−1) = λ−1

1 + λ−1
2 + · · · + λ−1

d . Since gn = e for some
n ≥ 1, we also have λni = 1, so in fact the λi are roots of unity and we have λi = λ−1

i .
We conclude that

χV (g−1) = λ1 + λ2 + · · ·+ λd = χV (g).
(4) We again use the fact that χV (g) = λ1 + λ2 + · · ·+ λd with each λi a root of unity.

In particular we have |λi| = 1, so |χV (g)| ≤ ∑d
i=1 |λi| = d. We have equality if and

only if the arguments of all the complex numbers λi are equal, which implies that
all the λi are equal (since they have absolute value 1). This is the case if and only
if ρV (g) is multiplication by λ for some λ ∈ C×.

�

Corollary 3.1. (1) ρV (g) = idV if and only if χV (g) = dim(V )
(2) V is a faithful rep of G if and only if the set {g : χV (g) = dim(V )} is equal to {e}.

Proof. The second part follows from the first part. For the first one, one direction is
immediate: if ρV (g) = idV then the trace of ρV (g) is equal to dim(V ).

Conversely, if χV (g) = dim(V ) then part (4) of the Proposition implies that ρV (g) =
λ idV for some λ ∈ C×. Since the trace of λ idV is λ dim(V ) we can conclude that λ = 1
and ρV (g) = idV . �

Given representations V,W we have defined various other representations. The next
proposition computes the characters of these representations in terms of χV , χW .
Proposition 3.2. Let V and W be representations of a (finite) group G.

(1) χV⊕W = χV +χW , where this character is defined by (χV +χW )(g) = χV (g)+χW (g).
(2) χV⊗W = χV χW , defined by (χV χW )(g) = χV (g)χW (g).
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(3) χV ∗ = χV , defined by χV (g) = χV (g).
(4) χHomC(V,W ) = χV χW .

Proof. (1) If we fix bases A, B for V , W , then [ρV⊕W (g)]A⊕B is a block diagonal matrix
with blocks [ρV (g)]A and [ρW (g)]B, so its trace is the sum χV (g) + χW (g).

(2) If we let M = [ρV (g)]A and N = [ρW (g)]B then [ρV⊗W (g)]A⊗B has trace∑
i,j

MiiNjj

by Lemma 2.4. This is equal to the product
(
∑
i

Mii)(
∑
j

Njj) = Tr(M)Tr(N) = χV (g)χW (g).

(3) Again we set M = [ρV (g)]A. Recall that ρV ∗(g)A = M−t, the inverse transpose
(Proposition 2.5). Taking the transpose of a matrix doesn’t change the trace, so

χV ∗(g) = Tr(M−1) = χV (g−1) = χV (g)
where the last equality is by part 3 of Proposition 3.1.

(4) For this part, we use Corollary 2.7: we have a G-linear isomorphism HomC(V,W ) ∼=
V ∗ ⊗W , so applying parts (2) and (3) we get χHomC(V,W ) = χV χW .

� Lecture 13

Definition 3.3. Suppose V is an irrep of G. We say that the character χV is an irreducible
character of G.

If G is a finite group and V1, V2, . . . , Vr is a complete list of non-isomorphic irreps, then
the irreducible characters of G are given by χ1 = χV1 , χ2 = χV2 . . . χVr .

If V is any representation ofG, then we have χV = ∑r
i=1miχi, wheremi = dim HomG(V, Vi),

by Remark 2.2.

Exercise 3.1. We have χCG = ∑r
i=1(dim Vi)χi. On the other hand, you can compute directly

that χCG(g) = 0 if g 6= e whilst χCG(e) = |G|.
If you think about the case G = Cn then this gives the (perhaps familiar) fact that the

sum
r∑
j=1

e
2πi(j−1)

n

is equal to 0.

3.2. Inner product of characters.

Definition 3.4. Let C(G) be the complex vector space of functions from G to C. We let
Ccl(G) ⊂ C(G) be the subspace of functions satisfy f(kgk−1) = f(g) for all g, k ∈ G. In
other words Ccl(G) consists of functions which are constant on conjugacy classes, which
we call class functions.

The dimension of C(G) is equal to |G|. The dimension of Ccl(G) is equal to #ccl(G),
the number of conjugacy classes in G.
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Definition 3.5. If f1, f2 ∈ C(G) we define

〈f1, f2〉 = 1
|G|

∑
g∈G

f1(g)f2(g).

The pairing 〈, 〉 defines a Hermitian inner product on C(G), and on the subspace Ccl(G).
In other words, it is linear in the first variable, conjugate-linear in the second variable,
satisfies 〈f2, f1〉 = 〈f1, f2〉 and we have

〈f, f〉 = 1
|G|

∑
g∈G
|f(g)|2 ≥ 0

with 〈f, f〉 = 0 if and only if f = 0.
Theorem 3.1. Let V and W be two reps of G. Then

〈χV , χW 〉 = dim HomG(W,V ) = dim HomG(V,W ) = 〈χW , χV 〉.
We’ll prove this shortly. First we give some corollaries.

Corollary 3.2. Let V and W be irreps of G. Then 〈χV , χW 〉 = 1 if V and W are
isomorphic, and 〈χV , χW 〉 = 0 if V and W are not isomorphic.
Proof. This follows from Schur’s lemma plus the above Theorem. �

Recall that we are writing χ1, . . . , χr for the characters of the irreps V1, . . . , Vr.
Corollary 3.3. (1) χ1, . . . , χr form an orthonormal subset of Ccl(G). In other words,

we have 〈χi, χj〉 = 0 if i 6= j and it equals 1 if i = j.
(2) We have an inequality r ≤ #ccl(G).
(3) Let V be any rep of G. We have

V ∼=
r⊕
i=1

V
⊕〈χV ,χi〉
i

and
χV =

∑
〈χV , χi〉χi.

(4) Let V be a rep of G. V is irreducible if and only if 〈χV , χV 〉 = 1.
Proof. (1) This is immediate from the previous corollary.

(2) Since we have an orthonormal subset of size r in Ccl(G), we have
r ≤ dimCcl(G) = #ccl(G).

(3) This follows from the Theorem and Remark 2.2.
(4) If V is irreducible then the previous corollary implies that 〈χV , χV 〉 = 1. Conversely,

if
V ∼=

∑
i

V ⊕mii

then 〈χV , χV 〉 = ∑
im

2
i so 〈χV , χV 〉 = 1 implies that we have one mi = 1 and the

rest zero. This implies that V is irreducible.
�
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Remark 3.3. Note that number (3) of the above corollary implies that if two representations
have the same character, then they are isomorphic.

Lecture 14
Now we’re going to prove Theorem 3.1.

Proof of Theorem 3.1. Recall from Proposition 3.2 that

χV (g)χW (g) = χHomC(W,V )(g).

So we have
〈χV , χW 〉 = 1

|G|
∑
g∈G

χV (g)χW (g) = 1
|G|

∑
g∈G

χHomC(W,V )(g).

We can write 1
|G|
∑
g∈G χHomC(W,V )(g) as the trace of a single linear map, since we have

1
|G|

∑
g∈G

χHomC(W,V )(g) = 1
|G|

∑
g∈G

Tr(ρHomC(W,V )(g)) = Tr
 1
|G|

∑
g∈G

ρHomC(W,V )(g)
 .

Now we recall that we have seen the map 1
|G|
∑
g∈G ρHomC(W,V )(g) before. It is the G-linear

projection from example 2.2

e1 : HomC(W,V )→ HomC(W,V )

with image HomG(W,V ). To establish the Theorem, we need to prove that Tr(e1) =
dim(HomG(W,V )) = dim(im(e1)). This follows from Lemma 3.2.

Note that since 〈χW , χV 〉 = 〈χV , χW 〉 = 〈χV , χW 〉 we immediately get the other equalities
in the statement of Theorem 3.1. �

Lemma 3.2. Let V be a (finite dimensional) vector space and suppose f : V → V is a
projection. Then Tr(f) = dim(im(f)).

Proof. Recall that since f is a projection we have V ∼= im(f) ⊕ ker(f). In particular, if
v1, . . . , vm is a basis for ker(f) and vm+1, . . . , vm+n is a basis for im(f) then

v1, . . . , vm, vm+1, . . . , vm+n

is a basis for V . Consider the matrix of f with respect to this basis. We have f(vi) = 0
for i = 0, . . . ,m and f(vi) = vi for i = m + 1, . . . ,m + n. So the trace of this matrix is
equal to n, the dimension of im(f). �

3.3. Applications of character theory. We’re going to use character theory, particu-
larly Corollary 3.3, to compute some examples of decomposing representations of finite
groups into sums of irreducibles.

Example 3.2. First let G = C4 = {e, g, g2, g3}. Let’s consider the two-dimensional
representation given by a two-dimensional vector space V with action of G defined by

ρV (g) =
(
i 2
1 −i

)
.
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Note that we also have

ρV (g2) =
(

1 0
0 1

)
.

So we can write down the character χV of ρV by computing the trace of these matri-
ces. We also know what the irreducible characters of C4 are. For j = 1, . . . , 4 we have
an irreducible one-dimensional representation Vj with ρVj(g) equal to multiplication by
e2πi(j−1)/4 = ij−1. So the irreducible characters are χ1, . . . , χ4, where χj(ga) = ia(j−1). We
can collect the information about these characters into a table:

e g g2 g3

χV 2 0 2 0
χj 1 ij−1 (−1)j−1 (−i)j−1

Now we can work out 〈χV , χj〉 for each j. We have

〈χV , χj〉 = 1
4(2 + 2(−1)j−1)

so we conclude that 〈χV , χj〉 = 0 for j = 2, 4 and 〈χV , χj〉 = 1 for j = 1, 3.
Applying Corollary 3.3 we can deduce that V ∼= V1⊕V3. Note that although we haven’t

explicitly found one dimensional subrepresentations of V which are isomorphic to V1 or V3,
we have proven that they do exist!

Example 3.3. Now we’ll do a slightly more elaborate example. Let G = S4, and consider
the usual permutation action of G on Ω = {1, 2, 3, 4}. We get a four dimensional rep-
resentation CΩ and we can ask what it’s decomposition into irreducibles is. Recall from
Example 1.6 that we know that CΩ has a one-dimensional subrepresentation W , spanned
by the vector ([1] + [2] + [3] + [4]) ∈ CΩ. Also, W is isomorphic to the one-dimensional
trivial representation.

By Maschke’s theorem, there is a three dimensional subrepresentation U ⊂ CΩ, com-
plementary to W . We’re going to show that U is irreducible, so CΩ ∼= U ⊕ W is a
decomposition of CΩ into irreducible representations of G, one of dimension 1 and the
other of dimension 3. We will show U is irreducible by computing it’s character χU and
showing that 〈χU , χU〉 = 1.

Recall that characters are constant on conjugacy classes, so we just need to work out
χU(g) for representatives g of each conjugacy class. Again we organise this information in
a table. The first row gives an element of each conjugacy class in S4 (these are given by
the cycle type of a permutation). The second row records the size of each conjugacy class,
which will be useful for working out the inner product. The other rows give the values of
the characters χCG, χW and χU = χCG − χW .

We begin by writing down χCG: by question 7 on problem sheet 3, χCG(g) is equal to
the number of fixed points of the permutation g.
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e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χCG 4 2 1 0 0
χW 1 1 1 1 1
χU 3 1 0 -1 -1

Now we can compute 〈χU , χU〉. Recall that

〈χU , χU〉 = 1
24

∑
g∈S4

χU(g)χU(g).

We’ve written down the value of χU(g) for one g in each conjugacy class, so we need to
multiply each of these terms by the size of the conjugacy class to get all the values. So we
compute that

1
24

∑
g∈S4

χU(g)χU(g) = 1
24
(
32 + 6× (1)2 + 8× (0)2 + 3× (−1)2 + 6× (−1)2

)
= 1.

We conclude, using Corollary 3.3, that U is an irreducible representation of S4.
Lecture 15

3.4. Character tables. The character table is a way of collecting information about all
the irreducible characters of a finite group. Let G be a finite group. We have the set of
irreducible characters of G: χ1, χ2, . . . , χr. We’re also going to label the conjugacy classes
of G: C1, C2, . . . , Cs. We have proved (Corollary 3.3) that r ≤ s.

The character table for G is a table with columns indexed by the conjugacy classes
C1, . . . , Cs and rows indexed by the irreducible characters χ1, . . . , χr. The entry in the
table in the χi row and Cj column is then given by χi(Cj) := χi(gj) where gj ∈ Cj is a
representative for the conjugacy class Cj. So it looks like:

C1 C2 · · · Cs
χ1 χ1(g1) χ1(g2) · · · χ1(gs)
...
χr χr(g1) χr(g2) · · · χr(gs)

Example 3.4. Let’s start with a very small example. Let G = C2 = {e, g}. There are
two conjugacy classes {e} and {g}, and two irreducible characters defined by χ1(g) = 1,

χ2(g) = −1 and χi(e) = 1. So the character table is:
{e} {g}

χ1 1 1
χ2 1 -1

Example 3.5. Now we’re going to do a more interesting example, with G = S4. Recall
(from Problem sheet 2, Exercise 4) that there are two one-dimensional irreducible char-
acters of G: namely the trivial character χtriv which is defined by χtriv(g) = 1 for all
g ∈ G and the sign character χsign defined by χsign(g) = 1 if g is an even permutation
and χsign(g) = −1 if g is an odd permutation. We have also found an irreducible three-
dimensional representation U and computed its character. So we can start filling in the
character table:
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e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1

Note that I’ve added an extra row to tell us the size of the conjugacy classes, which is
useful for computations. I’ve also labelled each conjugacy class by a representative element:
for example, (12) denotes the conjugacy class of all transpositions.

So far we’ve found 3 irreducible characters. The sum of the squares of the dimensions is
1 + 1 + 9 = 11 which is a lot less than 24 = |G| so we haven’t found all of the irreducible
characters yet!

What we’ve done so far allows us to write down another irrep: we can consider U ′ :=
U ⊗Vsign where Vsign is the one dimensional rep with character χsign. The character χU ′ is
equal to χUχsign which is not equal to χU , and U ′ is also irreducible (see Problem Sheet 3:
the tensor product of an irrep with a one-dimensional rep is irreducible; alternatively we
can show that 〈χU ′ , χU ′〉 = 1). We conclude that we can put a new row in our character
table:

e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1
χU ′ 3 -1 0 -1 1

The sum of the squares of the dimensions of the irreps we’ve found so far is 1+1+9+9 =
20, so we conclude that there must be one more irrep of dimension 2 (since we already
found all the one-dimensional reps). Let’s add this (currently mysterious) two-dimensional
irrep into the character table:

e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1
χU ′ 3 -1 0 -1 1
χV 2 ? ? ? ?

Now the fun part is that we can work out what χV is, without constructing the represen-
tation V . We know that if χ is a irreducible character with χ 6= χV then 〈χV , χ〉 = 0. We
also know that V ⊗Vsign is a two-dimensional irrep, but since there is only one isomorphism
class of two-dimensional irreps we get that V ⊗Vsign ∼= V and so χV χsign = χV . This piece
of information immediately tells us that χV (12) = χV (1234) = 0.
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e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1
χU ′ 3 -1 0 -1 1
χV 2 0 a b 0

We’ve now labelled the two unknown entries in the character table by a, b. Now we use
the fact that 〈χV , χU〉 = 0. This says that 6− 3b = 0 which implies that b = 2.

e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1
χU ′ 3 -1 0 -1 1
χV 2 0 a 2 0

Finally we use the fact that 〈χV , χtriv〉 = 0. This says that 2 + 8a+ 6 = 0 which implies
that a = −1.

e (12) (123) (12)(34) (1234)
size of conjugacy class 1 6 8 3 6

χtriv 1 1 1 1 1
χsign 1 -1 1 1 -1
χU 3 1 0 -1 -1
χU ′ 3 -1 0 -1 1
χV 2 0 -1 2 0

So we’ve completed the character table!

Let’s try and say a bit more about the representation V of S4 whose character χV we
just computed. Recall that we can work out ker ρV from the character χV : by Corollary
3.1 we know that ker ρV is given by those g such that χV (g) = dim V = 2. So the kernel
is given by the normal subgroup H = {e, (12)(34), (13)(24), (14)(23)} of S4. This implies
that the action of G on V is given by first mapping G to the quotient group G/H and then
acting on V .

Definition 3.6. Suppose G is a finite group and N / G is a normal subgroup. Let V be
a representation of the quotient group G/N . Then we get a representation V of G, called
the inflation of V to G, with the same underlying vector space as the representation V
and action of G defined by

ρV (g) = ρV (gN).

Note that the inflated representation V is irreducible if and only if V is, because a
G-stable subspace of V is the same thing as a G/N -stable subspace of V .
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Let’s go back to our specific example with G = S4 and consider the representation V .
Since H = ker ρV the representation V is the inflation of a representation V of the quotient
group G/H. In fact V is a two-dimensional irrep of S4/H.

The quotient group S4/H is isomorphic to S3: consider the inclusion S3 ↪→ S4 given
by thinking of a permutation of {1, 2, 3} as a permutation of {1, 2, 3, 4} which fixes 4.
Composing with the quotient map S4 → S4/H gives a group homomorphism S3 → S4/H
between two groups of order 6. Moreover this map is injective (since S3 ∩ H = {e}) and
so S3 is isomorphic to S4/H.

We conclude that V is given by inflating the two-dimensional irrep of S3 ∼= S4/H to S4.
Finally, we observe that for G = S4 there are 5 conjugacy classes and 5 isomorphism

classes of irreps.
Fact 3.1. For any finite group G, the number of conjugacy classes is equal to the number
of isomorphism classes of irreps.

We will prove this fact in Chapter 4, but we’re going to assume it for the rest of this
Chapter. This fact implies that the character table of a finite group is square.Lecture 16

3.5. Key properties of the character table. As usual we denote the irreducible char-
acters by χ1, χ2, . . . , χr.

(1) The character table is square. In other words, the number of conjugacy classes
in a finite group G is equal to the number of irreducible characters.

(2) Row orthogonality (Corollary 3.3): 〈χi, χj〉 = 0 if i 6= j and 〈χi, χi〉 = 1. Recall-
ing the definition of the inner product 〈, 〉 we have:

1
|G|

∑
g∈G

χi(g)χj(g) = 0, 1

if i 6= j, i = j respectively.
Remark 3.4. Note that properties (1) and (2) recalled above imply that χ1, . . . , χr give an
orthonormal basis for the vector space Ccl(G) (with respect to the inner product 〈, 〉). This
is because χ1, . . . , χr are an orthonormal set of size r, with r = dimCcl(G).

Moreover, if f is a class function we have

f =
r∑
i=1
〈f, χi〉χi.

(3) Column orthogonality we refer to the content of the following Proposition as
the column orthogonality relations for the character table:

Proposition 3.3. Let g ∈ G, with conjugacy class C(g). Then for any h ∈ G we have
r∑
i=1

χi(g)χi(h) = 0

if h /∈ C(g) and
r∑
i=1

χi(g)χi(h) = |G|
|C(g)|
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if h ∈ C(g).

Proof. We consider the class function δg defined by δg(h) = 1 if h ∈ C(g) and δg(h) = 0
otherwise.

We have
δg =

r∑
i=1
〈δg, χi〉χi.

Going back to the definition of the inner product we compute that

〈δg, χi〉 = |C(g)|
|G|

χi(g).

So we have
δg =

r∑
i=1

|C(g)|
|G|

χi(g)χi.

Evaluating on h we get
r∑
i=1

|C(g)|
|G|

χi(g)χi(h) = 0

if h /∈ C(g) and
r∑
i=1

|C(g)|
|G|

χi(g)χi(h) = 1

if h ∈ C(g). Multiplying by |G|
|C(g)| gives the statement of the Proposition. �

Example 3.6. As our first example of the column orthogonality relations we take g = h =
e in the statement of Proposition 3.3. Since C(e) = {e}, we get

r∑
i=1

χi(e)χi(e) = |G|.

Recalling that χi(e) = dim Vi where Vi is an irrep with character χi, we get the familiar
equation

r∑
i=1

(dim Vi)2 = |G|.

Example 3.7. Here is an example of using the column orthogonality relations to fill
in some missing entries in a character table. Let’s take G = D8, with generators s, t
satisfying s4 = t2 = e, tst = s−1. There are 5 conjugacy classes (and therefore 5 irreducible
characters), and there are 4 isomorphism classes of one-dimensional representations. Using
the equation

r∑
i=1

(dim Vi)2 = |G|

gives that there is one remaining irreducible character, with dimension 2. So here is the
character table, with 4 unknown entries:
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e s t st s2

size of conjugacy class 1 2 2 2 1
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 1 1 -1 -1 1
χ4 1 -1 -1 1 1
χ5 2 a b c d

We apply the column orthogonality relations to the e column and each of the other
columns in turn. For example, taking g = e and h = s gives

0 =
5∑
i=1

χi(e)χi(s) = 1− 1 + 1− 1 + 2a = 2a

which implies that a = 0. Similarly, we get b = c = 0 and d = −2.

3.6. Row and column orthogonality. Here is another way of formulating row and
column orthogonality. We first define an r × r matrix B by

Bij =

√√√√ |Cj|
|G|

χi(gj)

where the conjugacy classes in G are C1, C2, . . . , Cr with representatives g1, g2, . . . , gr.

Proposition 3.4. The matrix B is unitary. In other words,

B−1 = B
t

Proof. It suffices to show that BBt = Ir (the r × r identity matrix).1
Let’s compute the (i, k) entry of the matrix BBt. We get

(BBt)ik =
r∑
j=1

χi(gj)χk(gj)
|Cj|
|G|

= 〈χi, χk〉

so we deduce from Corollary 3.3 that BBt is the identity matrix. �

The proof of the above Proposition shows that the fact that B is unitary is equivalent
to the row orthogonality. But if we multiply B and B

t the other way round, we see that
the fact that B is unitary is also equivalent to the column orthogonality! So these facts
are all equivalent.

We have

Ir = (Bt
B)ik =

√√√√ |C(gi)||C(gk)|
|G|2

r∑
j=1

χj(gi)χj(gk) = 0, 1

if i 6= k, i = k respectively and this amounts to the statement of Proposition 3.3.

1Note that this implies that det(B) det(Bt) 6= 0, so det(B) 6= 0 and therefore B is invertible, with
inverse B

t. So we don’t need to check that B
t
B = Ir as well.
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3.7. What can you tell about a group from its character table?
(1) Firstly, something negative: we can’t identify a group (up to isomorphism) from

its character table. For example, D8 and the quaternion group Q8 http://en.
wikipedia.org/wiki/Quaternion_group have the same character table.

(2) We can work out the centre of a group from its character table. See Question 6 on
Sheet 4.

(3) We can tell if a group is simple from its character table.
(4) We can find all the normal subgroups of a group from its character table.

We’ll finish this chapter by explaining the final two points.
Definition 3.7. Let χ : G→ C be a function. We define kerχ = {g ∈ G : χ(g) = χ(e)}.
Fact 3.2. If V is a rep of G, then kerχV = ker ρV . See Corollary 3.1 and Sheet 4 Question
2.

Combining this with Sheet 3 question 8, we deduce that a group G is simple if and only
if kerχ = {e} for every non-trivial irreducible character χ.

Finally, we explain the point about normal subgroups:
Proposition 3.5. Let G be a finite group and H /G a normal subgroup. Let χ1, χ2, . . . χr
be the irreducible characters of G.

(1) There is a rep V of G such that ker ρV = H.
(2) There is a subset I ⊂ {1, 2, . . . , r} such that

H =
⋂
i∈I

kerχi.

Proof. (1) For the first part we consider the regular representation C[G/H] of the
quotient group. We let V be the inflation (see Definition 3.6) of C[G/H] to a rep
of G. Then ker ρV = H (since C[G/H] is a faithful rep of G/H).

(2) Let V be as in part 1). We know that V is a direct sum of irreps, so we have

V ∼=
r⊕
i=1

V ⊕mii

for integers mi ≥ 0. We let I = {i : mi > 0}. Then we have
H = ker ρV =

⋂
i∈I

ker ρVi =
⋂
i∈I

kerχi.

� Lecture 17

4. Algebras and modules

In this chapter, our goal is to put the representation theory of finite groups in a slightly
more abstract context. We also need to prove Fact 3.1.

A basic example of an algebra is the matrix algebra Mn(C) of n × n matrices with
complex entries. Recall that this is a complex vector space (we can add matrices and scale
by complex numbers). But we can also multiply matrices. In other words we have a map

http://en.wikipedia.org/wiki/Quaternion_group
http://en.wikipedia.org/wiki/Quaternion_group
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m : Mn(C)×Mn(C)→Mn(C)
(M,N) 7→M ·N

given by matrix multiplication.
The multiplication map m has three key properties:
• m is bilinear : i.e. m(λ1M1 + λ2M2, N) = λ1m(M1, N) + λ2m(M2, N) and similarly

for m(M,λ1N1 + λ2N2).
• m is associative: i.e. L · (M ·N) = (L ·M) ·N .
• m is unital: i.e. there is an element, In (the identity matrix) such that In ·M =
M · In = M for all M ∈Mn(C).

Our general definition of an algebra is a vector space with a multiplication satisfying the
above three properties.

Definition 4.1. An algebra (over C) is a vector space (over C) equipped with a bilinear,
associative, unital map m : A× A→ A.

We write ab or a · b for m(a, b). Suppose 1A, 1′A are two units for the multiplication on
A. Then we have 1A1′A = 1′A (since 1A is a unit) and 1A1′A = 1A (since 1′A is a unit). So
1A = 1′A, and a unit is unique. We write 1A for the unit of A.

Alternative definition. If you’ve seen rings before: An algebra is a ring A, equipped
with a ring homomorphism

µ : C→ Z(A)
where Z(A) is the centre of A (recall that Z(A) = {z ∈ A : za = az∀a ∈ A}).

To go from the alternative definition to the ‘official definition’ we define the multiplication
map m to be given by ring multiplication, and the vector space structure on A to be given
by ring addition and multiplication by µ(λ) for λ ∈ C.

Conversely, starting with the official definition, you get a ring structure on A by defining
the ring multiplication to be given by the map m, and the ring homomorphism

µ : C→ Z(A)
is defined by µ(λ) = λ1A.

Example 4.1. (1) The first example is the complex numbers C with its usual multi-
plication.

(2) Let A = C[x] = {a0 + a1x + · · · + anx
n : n ≥ 0, ai ∈ C} be polynomials in one

variable over C. Then the usual multiplication on A makes it into an algebra. Note
that A is an infinite-dimensional vector space.

(3) Let A be a two-dimensional vector space with basis 1, x and multiplication given
by 12 = 1, 1x = x1 = x and x2 = 0. We can extend bilinearly to define the
multiplication on two arbitrary elements of A. This defines an algebra, with unit
1. If you are familiar with rings and ideals, A is isomorphic to the quotient of C[x]
by the ideal generated by x2.
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(4) Let V be a vector space. Let A = HomC(V, V ), with multiplication given by
composition of linear maps. This is an algebra, and if V has dimension n then
choosing a basis for V gives an isomorphism A ∼= Mn(C). We call HomC(V, V ) the
endomorphism algebra of V .

(5) Finally, the most important example for this chapter is given by the group algebra.
Let G be a (finite) group. We have already defined the vector space CG with basis
{[g] : g ∈ G}. We define a multiplication on CG by setting [g][h] = [gh] (and
extending bilinearly). The unit for this multiplication is [e]. The multiplication is
associative because the group multiplication is associative.

Let’s do a couple of examples of group algebras:

Example 4.2. (1) Let G = {e}, the trivial group. Then CG is a one-dimensional
vector space with basis [e] and the multiplication is given by

(λ[e])(µ[e]) = λµ[e].
(2) Let G = C2 = {e, g}, the cyclic group of order two. The group algebra CC2 is

two-dimensional with basis [e], [g]. The multiplication is given by
(λ1[e] + λ2[g])(µ1[e] + µ2[g]) = (λ1µ1 + λ2µ2)[e] + (λ1µ2 + λ2µ1)[g].

Definition 4.2. Let A,B be algebras. A linear map
f : A→ B

is an algebra homomorphism if
• f(1A) = 1B
• f(a1a2) = f(a1)f(a2)

An algebra homomorphism f is an isomorphism of algebras if f is an invertible linear map.

You can check that if f is an isomorphism of algebras then the inverse f−1 is also an
algebra homomorphism (and hence an isomorphism of algebras).

Definition 4.3. Let A,B be algebras. We define a multiplication on the direct sum A⊕B
by

(a1, b1)(a2, b2) = (a1a2, b1b2).
This makes A⊕B into an algebra, with unit (1A, 1B).

Example 4.3. Consider the two algebras CC2 and C⊕C, and the linear map defined by
f : CC2 → C⊕ C

[e] 7→ (1, 1)
[g] 7→ (1,−1)

Then f is an algebra homomorphism: we have f([e]) = (1, 1) and we need to check that
f(xy) = f(x)f(y) for x, y ∈ CC2. In fact it suffices to check for x, y basis elements (by
bilinearing of multiplication and linearity of f), and this is easy to do. Moreover, f is
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invertible as a map of vector spaces (since it takes a basis for the left hand side to a basis
for the right hand side). So f is an isomorphism of algebras.

The map f transports the slightly complicated multiplication law on CC2 (we wrote it
out above), to the simpler multiplication law on the direct sum algebra C⊕C. One of the
main results of this chapter will be to generalise this picture to the group algebra CG for
an arbitrary finite group G.

Lecture 18
4.1. The opposite algebra.

Definition 4.4. Let A be an algebra, with multiplication m : A × A → A. We define a
new algebra Aop: it has the same underlying vector space as A but the multiplication is
defined by

mop(a, b) = m(b, a).

Remark 4.1. If A is commutative, i.e. m(a, b) = m(b, a), then Aop = A.

Proposition 4.1. Let G be a group. The algebras CG and (CG)op are isomorphic, with
an isomorphism given by

I : CG→ (CG)op

[g] 7→ [g−1].

Proof. I is an isomorphism of vector spaces, since it takes a basis to a basis. So we just need
to check that I is an algebra homomorphism. It suffices to check that mop(I([g]), I([h])) =
I([g][h]). On the one hand, mop(I([g]), I([h])) = [h−1][g−1] = [h−1g−1]. On the other,
I([g][h]) = I([gh]) = [(gh)−1] = [h−1g−1]. �

Remark 4.2. The above Proposition tells us that group algebras are special: there are
algebras A such that Aop is not isomorphic to A.

4.2. Modules.

Definition 4.5. Let A be an algebra. A (left) A-module is a complex vector space M ,
together with an algebra homomorphism

ρ : A→ HomC(M,M).

Remark 4.3. If we have an A-module M , then we can define a map
A×M →M

(a,m) 7→ a ·m := ρ(a)(m)
which allows us to multiply elements of M by elements of A. This multiplication satisfies,
for m,n ∈M and a, b ∈ A:

(1) a · (m+ n) = a ·m+ a · n (since ρ(a) is linear)
(2) (a+ b) ·m = a ·m+ b ·m (since ρ is linear)
(3) (ab) ·m = a · (b ·m) (since ρ is an algebra homomorphism)
(4) 1A ·m = m (since ρ(1A) = idM)
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Proposition 4.2. Let G be a (finite) group. A CG-module is the same thing as a repre-
sentation of G.

Proof. We’ll describe how to go from a rep of G to a CG-module and vice versa. Let’s
start with a representation V of G. It comes equipped with a group homomorphism
ρV : G→ GL(V ). We make V into a CG-module by defining:

ρ : CG→ HomC(V, V )∑
g∈G

λg[g] 7→
∑
g∈G

λgρV (g).

The fact that ρ is a algebra homomorphism follows easily from the fact that ρV is a group
homomorphism.

Conversely, if we start with a CG-module M , we have an algebra homomorphism
ρ : CG→ HomC(M,M).

We define a group homomorphism
ρM : G→ GL(M)

g 7→ ρ([g]).
The fact that ρM is a homomorphism again follows easily from the fact that ρ is an algebra
homomorphism. Note that ρ([g]) is invertible, with inverse ρ([g−1]). �

Example 4.4. Consider the algebra A = C⊕C. We showed that A is isomorphic to CC2,
so understanding the modules for A is the same as understanding reps of C2. Let’s classify
one dimensional A-modules. So we have a one-dimensional vector space M , and we need
to define an algebra homomorphism

ρ : A→ HomC(M,M) = C.
A has a basis given by (0, 1) and (1, 0), so ρ is determined by the values ρ(1, 0) and

ρ(0, 1). Since ρ is an algebra homomorphism these values have to satisfy various relations.
We have
• ρ(1, 0)ρ(1, 0) = ρ((1, 0)(1, 0)) = ρ(1, 0)
• ρ(0, 1)ρ(0, 1) = ρ((0, 1)(0, 1)) = ρ(0, 1)
• ρ(0, 1)ρ(1, 0) = ρ((0, 1)(1, 0)) = ρ(0, 0) = 0
• ρ(0, 1) + ρ(1, 0) = ρ(1, 1) = 1.

Putting this all together, we see that there are two possibilities for ρ: we either have
ρ(0, 1) = 1, ρ(1, 0) = 0

or we have
ρ(0, 1) = 0, ρ(1, 0) = 1.

The fact that there are two possibilities correspond to the fact that C2 has two isomor-
phism classes of one-dimensional reps.

Lecture 19
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4.3. Last lecture. Last time, we defined A-modules for an algebra A and showed that
if G is a finite group then a module for the group algebra CG is the same thing as a
representation of G.

This tells us that modules for an algebra are generalisations of representations of a
group. Our next task is to generalise some definitions and results from earlier in the course
(for example, the definition of G-linear maps and Schur’s lemma) from representations to
modules.

4.4. The regular representation. Recall that if G is a (finite) group, we have defined a
representation of G on the vector space CG. Viewing this representation as a CG-module,
the action of CG is given by left multiplication. So we can generalise this example of a
module to any algebra A:

For any algebra A we get an A-module with underlying vector space A, and action of A
given by the algebra homomorphism

ρ : A→ HomC(A,A)
a 7→ ma

where ma denotes the map
ma : A→ A

b 7→ ab.

In other words, we let A act on itself by left multiplication.

4.5. Module homomorphisms.

Definition 4.6. Let A be an algebra and let M,N be A-modules. A linear map
f : M → N

is a module homomorphism, or A-linear map if f(a ·m) = a · f(m) for all m ∈M .
If f is invertible then we say that it is an isomorphism of A-modules.

Remark. If f is an invertible linear map and a module homomorphism, then the inverse
f−1 is also a module homomorphism (and therefore it’s an isomorphism of A-modules as
well).

Notation: if M and N are A-modules we write HomA(M,N) ⊂ HomC(M,N) for the
vector subspace of A-linear maps from M to N .

Lemma 4.1. Let A = CG and let M,N be A-modules (so we can also think of M , N as
reps of G). Then HomA(M,N) = HomG(M,N). In other words, a linear map f : M → N
is G-linear if and only if it is A-linear.

Proof. Suppose f : M → N is an A-linear map. Then, by definition, f([g] ·m) = [g] · f(m)
for g ∈ G and m ∈ M . But this says that f(ρM(g)m) = ρN(g)f(m), where ρM : G →
GL(M) and ρN : G → GL(N) define the action of G on the representations M , N . So f
is G-linear.
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Conversely, suppose f : M → N is a G-linear map. Then

f((
∑
g∈G

λg[g]) ·m) =
∑

λgf([g] ·m)

by linearity of f and now G-linearity tells us that this expression is equal to∑
λg[g] · f(m) = (

∑
λg[g]) · f(m).

We conclude that f is A-linear. �

This Lemma tells us that the notion of a module homomorphism is a generalisation of
the notion of G-linear maps.

4.6. Submodules and simple modules. Next, we generalise the notion of a subrepre-
sentation.

Definition 4.6. Let A be an algebra and let M be an A-module. A submodule of M is a
vector subspace N ⊂ M such that a · n ∈ N for all a ∈ A and n ∈ N . In other words, N
is an A-stable subspace of M .

Exercise 4.1. Let A = CG. Let M be an A-module. Show that a submodule of M is the
same thing as a subrepresentation of M .

Exercise 4.2. Let M,N be A-modules and suppose f : M → N is an A-linear map. Then
the kernel and image of f are submodules of M and N respectively.

Definition 4.7. If A is an algebra, M is an A-module and m ∈ M , then the submodule
generated by m, denoted A ·m is the subspace {a ·m : a ∈ A} ⊂ M . It is a submodule
because b · (a ·m) = (ba) ·m ∈ Am.

Definition 4.9. Let A be an algebra. A non-zero A-module M is simple if the only
submodules of M are {0} and M itself.

Exercise 4.3. Let A = CG. Let M be an A-module. Show that M is a simple CG-module
if and only if M is an irreducible representation of G.

Lemma 4.2. Let M be a simple A-module, and let m be a non-zero element of M . Then
A ·m = M .

Conversely, if M is a non-zero A-module, such that for every non-zero element m of M
we have A ·m = M , then M is simple.

Proof. Since A ·m is a submodule of M it is either zero or equal to M . But m is non-zero,
so A ·m is non-zero. We deduce that A ·m = M .

For the converse, suppose we have a non-zero submodule N ⊂ M . Let m ∈ N be a
non-zero element. Since N is a submodule, A ·m ⊂ N . But A ·m = M by assumption, so
N = M . Therefore the only submodules of M are {0} and M , so M is simple. �
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Remark. Suppose A is an algebra which is finite dimensional as a complex vector space.
Let M be a simple A-module. Then M is also finite dimensional as a complex vector space,
since M = A ·m, which means that the map

A→M

a 7→ a ·m
is a surjective linear map from the finite dimensional vector space A to M .

Example 4.5. (1) We know lots of examples of irreducible representations of finite
groups G, so we immediately get a stock of examples of simple modules for algebras
CG.

(2) Let A be any algebra, and let M be an A-module which is one-dimensional as a
complex vector space. Then M is a simple module.

(3) For n ≥ 1, consider the matrix algebraMn(C). Consider the standard n-dimensional
complex vector space Cn. Thinking of the elements of Cn as column vectors, we can
make Cn into an Mn(C)-module by letting a matrix act by matrix multiplication on
a column vector. Another way of defining this module is that HomC(Cn,Cn) is iso-
morphic to Mn(C) (take a linear map to the associated matrix with respect to the
standard basis). So we have an algebra homomorphism (in fact it’s an isomorphism)

ρ : Mn(C)→ HomC(Cn,Cn).
Cn is an example of a simple Mn(C)-module: if we let v ∈ Cn be any non-zero

vector, then the submodule Mn(C) · v generated by v is equal to Cn, because given
a non-zero vector v and an arbitrary vector w we can always find a matrix M such
that Mv = w. We deduce from Lemma 4.2 that Cn is a simple Mn(C)-module.

(4) Finally, let’s consider the algebra (which we saw before) A = C[x]/x2 with basis
{1, x}, unit 1 and multiplication determined by x2 = 0.

Suppose M is a simple module for A. Since A is commutative, the subspace
x ·M := {x ·m : m ∈M} ⊂M is an A-submodule of M . As M is simple we have
either x ·M = 0 or x ·M = M . If x ·M = M then we can apply the argument
again to show that x2 ·M = M . But x2 = 0, so x2 ·M = 0. Since M is non-zero,
this is a contradiction. So we have x ·M = 0. In other words multiplication by x
is the zero map on M . So a general element of A, of the form λ + µx, must act
on M as multiplication by λ. We conclude that the only simple modules for A are
one-dimensional, with λ+ µx acting as multiplication by λ.

Lecture 20
Having defined simple modules, we can now give a generalisation of Schur’s lemma.

Proposition 4.3. (1) Let A be an algebra and let M,N be simple A-modules. Suppose
f : M → N is an A-linear map. Then f = 0 or f is an isomorphism.

(2) Suppose A is an algebra which is finite dimensional as a complex vector space. Let
M be a simple A-module. Then an A-linear map

f : M →M

is equal to multiplication by a scalar λ ∈ C.
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Proof. The proofs are exactly the same as the proof of Schur’s lemma which we gave for
representations.

(1) ker f and im f are submodules of M,N respectively, so they are either {0} or the
whole module. The two possibilities we get are that f = 0 or ker f = {0}, im f = N ,
and in the latter case f is an isomorphism.

(2) Since A is finite dimensional over C, the same is true for M (by the remark after
Lemma 4.2). Now we argue as in the case of representations: f has an eigenvalue λ,
and f−λ idM has a non-zero kernel, so f−λ idM = 0 which implies that f = λ idM .

�

4.7. The centre of an algebra.

Definition 4.8. Let A be an algebra. The centre Z(A) of A is defined to be
Z(A) = {z ∈ A : za = az for all a ∈ A}.

The centre Z(A) is a commutative subalgebra of A.

Lemma 4.3. Let A be a finite dimensional algebra and M a simple A-module. Let z ∈
Z(A). Then there exists λz ∈ C (depending on z and M) such that

z ·m = λzm for all m ∈M.

Proof. Multiplication by z defines an A-linear map from M to M . Now apply Schur’s
lemma, Proposition 4.3. �

Proposition 4.4. Let A = CG. Then
Z(A) = {

∑
g∈G

f(g)[g] : f : G→ C is a class function}

Proof. We have z ∈ Z(A) if and only if z[h] = [h]z for all h ∈ G. Suppose z = ∑
g∈G λg[g].

Then z ∈ Z(A) if and only if z = [h−1]z[h] for all h ∈ G. In other words, we need∑
g∈G

λg[g] =
∑
g∈G

λg[h−1gh].

Letting g′ = h−1gh, the right hand side is equal to∑
g′∈G

λhg′h−1 [g′].

So z ∈ Z(A) if and only if λhgh−1 = λg for all h ∈ G. In other words, if and only if g 7→ λg
is a class function. �

Now given a class function f onG, we can associate an element of the centre∑g∈G f(g)[g] ∈
Z(CG). The following proposition tells us how this element acts on irreps of G.

Proposition 4.5. Let V be an irrep of G and f ∈ Ccl(G) a class function. Let
z =

∑
g∈G

f(g)[g].
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Then for v ∈ V we have
z · v = |G|

dim V
〈χV , f〉v.

Proof. We know by Schur’s lemma that there exists λz ∈ C such that
z · v = λzv

for v ∈ V . We just need to find the scalar λz. Consider the linear map
×z : V → V.

The trace of this map is equal to λz dim V . On the other hand, this map is equal to∑
g∈G f(g)ρV (g), which has trace ∑g∈G f(g)χV (g) = |G|〈χV , f〉. Comparing the two ex-

pressions for the trace, we get the statement of the proposition. �Lecture 21
We can now finally prove Fact 3.1.

Theorem 4.1. Let G be a finite group. The number of irreducible characters of G is equal
to the number of conjugacy classes in G.
Proof. Write χ1, . . . , χr for the irreducible characters of G. We know that χ1, . . . , χr are an
orthonormal subset of the vector space of class functions Ccl(G) (with respect to the inner
product 〈, 〉). Since the dimension of Ccl(G) is equal to the number of conjugacy classes in
G, it suffices to prove that χ1, . . . , χr are an orthonormal basis of Ccl(G).

Suppose f ∈ Ccl(G). We consider

f ′ := f −
r∑
i=1
〈f, χi〉χi.

We have
〈f ′, χj〉 = 0

for j = 1, . . . , r, by orthogonality of the irreducible characters. To prove the theorem, it
suffices to show that f ′ = 0.

We show that if f ′ ∈ Ccl(G) satisfies
〈f ′, χj〉 = 0

for j = 1, . . . , r then f ′ = 0. Indeed, let’s consider z ∈ Z(CG) defined by
z :=

∑
g∈G

f ′(g)[g].

Let V be an irreducible representation of G. Multiplication by z defines a linear map
of V , and Proposition 4.5 implies that this linear map is equal to zero, since 〈χV , f ′〉 =
〈f ′, χV 〉 = 0. We have an isomorphism of CG-modules

CG ∼=
r⊕
i=1

V dimVi
i

and multiplication by z on each component Vi is equal to 0, so multiplication by z is equal
to 0 on CG. But z[e] = z, so we conclude that z = 0. This implies that f ′ = 0, and we are
done. �
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4.8. Semisimple modules and algebras. In the above proof, we used that fact that the
regular representation decomposes as a direct sum of irreducible representations:

CG ∼=
r⊕
i=1

V dimVi
i .

In the remainder of the course we are going to discuss algebras A which have the property
that A (considered as an A-module) decomposes as a direct sum of simple A-modules.
First we give the definition of a direct sum of A-modules: it’s just like taking the direct
sum of representations of a group G.

Definition 4.9. Let A be an algebra and let M,N be A-modules. Then the vector space
M ⊕N is naturally an A-module, with action of A given by

a · (m,n) = (a ·m, a · n).

Definition 4.10. An A-module M is semisimple if: for every submodule L of M there
exists a submodule N of M with L ∩ N = {0} and L + N = M . In other words, there
exists a submodule N which is complementary to L.

Example 4.6. A simple module M is semisimple: the only submodules of M are {0} and
M , and they have complementary submodules M and {0}.

If A = CG, then every (finite dimensional) A-module is semisimple: this is Maschke’s
theorem.

Example 4.7. This is a non-example: Let A = C[x]/x2, the algebra with basis 1, x and
multiplication determined by x2 = 0 and 1 a unit. Consider the A-module M = A, and the
submodule L = C · x ⊂ A spanned by x. Exercise: L has no complementary submodule.

Lemma 4.4. Let M be an A-module, with an isomorphism
α : M ∼= S1 ⊕ S2 ⊕ · · · ⊕ Sn

to a direct sum of simple A-modules Si.
If L ⊂M is a submodule, then there exists a subset I ⊂ {1, . . . , n} such that α−1(⊕i∈I Si)

is a complementary submodule to L.

Proof. For simplicity we assume that M = S1 ⊕ S2 ⊕ · · · ⊕ Sn. Taking into account the
isomorphism α just adds some extra notation to the proof. Let I ⊂ {1, . . . , n} be maximal
such that L ∩ (⊕i∈I Si) = {0}. Set X = L ⊕ (⊕i∈I Si). To show the lemma, it suffices to
show that X = M . We do this by showing that for each j = 1, . . . , n, Sj ⊂ X. Since the
subspaces S1, . . . , Sn span M , this shows that X = M .

Suppose j ∈ I. Then by definition of X, Sj ⊂ X. Suppose j /∈ I. The vector space
Sj ∩X is a submodule of Sj, so it is either {0} or Sj (Sj is simple). If it is equal to Sj, we
are done. Suppose it is equal to {0}. Then L ∩ (⊕i∈I∪j Si) = {0}, which contradicts the
maximality of I. So we have proved the lemma. �

Lemma 4.5. Let M be an A-module, and assume M is a finite dimensional complex vector
space. Then the following are equivalent:
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(1) M ∼=
⊕n
i=1 Si with the Si simple A-modules

(2) M is a semisimple A-module
Proof. We showed that 2) implies 1) in the setting of group representations (Corollary 2.2).
Exactly the same proof works here.

Lemma 4.4 shows that 1) implies 2). �

Remark. The assumption that M is finite-dimensional is unnecessary, but then you have
to allow infinite direct sums and work a little bit harder. See, for example, Chapter XVII
of S. Lang ‘Algebra’ for this theory worked out in a more general setting. For simplicity
I’m going to put finite-dimensional hypotheses in everywhere!Lecture 22
Lemma 4.6. Let A be an algebra, and suppose M is a finite dimensional, semisimple
A-module. Let L ⊂M be a submodule. Then L is semisimple. Note that if N is a comple-
mentary submodule to L then N is also semisimple (since N ⊂M is also a submodule).
Proof. Fix an isomorphism

α : M ∼= S1 ⊕ S2 ⊕ · · · ⊕ Sn
to a direct sum of simple A-modules Si. Lemma 4.4 shows that there is a subset I ⊂
{1, . . . , n} such that N0 := α−1(⊕i∈I Si) is a complementary submodule to L. Write β for
the A-linear map

β : M →
⊕
i/∈I

Si

given by first applying α and then projecting to the components Si for i /∈ I. The kernel of
this projection map is ⊕i∈I Si (i.e. the things with component in Si equal to 0 for i /∈ I).
So the kernel of β is equal to N0. We deduce that the restriction of β to L,

β|L : L→
⊕
i/∈I

Si

is an isomorphism, since L ∩N0 = {0} and L has the same dimension as ⊕i/∈I Si. So L is
semisimple.

Alternative proof using quotient modules: Let L ⊂ M be a submodule. If N is a com-
plementary submodule to L then the natural projection map M → M/L restricts to an
A-linear isomorphism N ∼= M/L. Lemma 4.4 shows that there exists a semisimple comple-
mentary submodule N0 to L. So M/L is semisimple. So we have proved that any quotient
module of M is semisimple. But L is isomorphic to M/N0 (since L is complementary to
N0). So L is also semisimple. �

Definition 4.11. Let A be an algebra. A is a semisimple algebra if A is semisimple as an
A-module (see section 4.4: A is an A-module under left multiplication).
Example 4.8. (1) Let G be a finite group. Then CG is a semisimple algebra.

(2) Consider the matrix algebra Mn(C). Let V = Cn be the simple Mn(C)-module
given by column vectors of length n. Then

Mn(C) ∼=
n⊕
i=1

V
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where the isomorphism takes a matrix M to the columns of M .
(3) Suppose A and B are two semisimple algebras. Then A⊕B is a semisimple algebra.

Proposition 4.6. Let A be a finite dimensional, semisimple algebra. Let M be a finite
dimensional A-module. Then M is semisimple.
Proof. Let b1, . . . , bn be a basis for M . The map

p : A⊕n →M

(a1, . . . , an) 7→
n∑
i=1

ai · bi

is a surjective A-linear map. Note that A⊕n is a semisimple A-module, since it is a direct
sum of simple A-modules. Let N be a complementary submodule to ker p ⊂ A⊕n. Then
the restriction of p to N gives an isomorphism

p|N : N →M.

So M is isomorphic to a submodule of a semisimple module, and is therefore semisimple
(by Lemma 4.6).

Alternative proof using quotient modules: M is a quotient of the semisimple A-module
A⊕n so by the alternative proof of Lemma 4.6 M is a semisimple A-module. �

Theorem 4.2. Let A be a finite dimensional, semisimple algebra. Then there are finitely
many isomorphism classes of simple A-module. Let S1, . . . , Sr be a complete list of non-
isomorphic simple A-modules, and set di = dimSi. Then there is an isomorphism of
A-modules

A ∼=
r⊕
i=1

S⊕dii .

Proof. The proof is exatly the same as for Corollary 2.6 (which is the case A = CG). It’s
a good exercise to write out the proof for semisimple algebras! � Lecture 23
Example 4.9. Let A = Mn(C) and let V be the simple A-module given by column vectors
of length n. We have seen that A ∼= V ⊕n. Combing this with Theorem 4.2 we deduce
that every simple A-module is isomorphic to V . Moreover, if M is a finite-dimensional
A-module, then M ∼= V ⊕r where r = dimM

n
.

In fact, A-modules are basically the same as vector spaces (i.e. C-modules). If we start
from an A-module M , we can consider the vector space HomA(V,M).
M ∼= V ⊕r then HomA(V,M) ∼= HomA(V, V )⊕r = C⊕r, since A-linear maps from V to

V are multiplication by a scalar (by Schur’s lemma). This gives a way to go from an
A-module (of dimension rn) to a vector space of dimension r.

Conversely, if X is a vector space, then we can make the tensor product V ⊗X into an
A-module by defining

a · (v ⊗ x) = (a · v)⊗ x
(and extending linearly to all of V ⊗X). This takes a vector space of dimension r to an
A-module of dimension rn.
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This equivalence between vector spaces and A-modules is an example of a Morita equiv-
alence.

Next, we return to general finite-dimensional semisimple algebras, and we are going to
use Theorem 4.2 to pin down the structure of A as an algebra.

Let A be a finite-dimensional semisimple algebra, and let S1, . . . , Sr be a complete list
of non-isomorphic simple A-modules. We write

ρi : A→ HomC(Si, Si)

for the algebra homomorphism giving the action of A on Si. We get an algebra homomor-
phism

ρ : A→
r⊕
i=1

HomC(Si, Si)

a 7→ (ρi(a))ri=1

by taking the direct sum of the algebra homomorphisms ρi.

Theorem 4.3 (Artin–Wedderburn). The homomorphism

ρ : A→
r⊕
i=1

HomC(Si, Si)

is an isomorphism of algebras.

Proof. First we note that by Theorem 4.2

dimA =
r∑
i=1

(dimSi)2 = dim
(

r⊕
i=1

HomC(Si, Si)
)

so ρ is an algebra homomorphism between two algebras of the same (finite) dimension over
C. So to show ρ is an isomorphism, it suffices to check that is injective.

Suppose ρ(a) = 0. This means that ρi(a) = 0 for i = 1, . . . , r so multiplication by a gives
the zero map on every simple A-module. Since A itself is isomorphic (as an A-module) to
a direct sum of simple A-modules, this implies that multiplication by a gives the zero map
on A. In particular, we have a · 1A = 0. But a · 1A = a, so a = 0. We conclude that ρ is
injective, and therefore ρ is an isomorphism.

�

Corollary 4.1. Let G be a finite group. Then we have an isomorphism of algebras

CG ∼=
r⊕
i=1

Mdi(C)

where d1, . . . , dr are the dimensions of the irreducible characters of G.

Proof. This is an immediate consequence of Theorem 4.3. �
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Example 4.10. Let’s take G = S3 and apply the statement of the Theorem. We have 3
irreps of G, the trivial one-dimensional rep Vtriv, the one-dimensional rep given by the sign
homomorphism Vsign and an irreducible two-dimensional rep V . Let’s fix the generators s =
(123) and t = (23) of G. With respect to an appropriate basis, the matrix representation
of V is given by

s 7→
(
ω 0
0 ω−1

)
and

t 7→
(

0 1
1 0

)
where ω = e2πi/3. So the map ρ corresponds to the algebra homomorphism

CS3 → C⊕ C⊕M2(C)
determined by

s 7→ (1, 1,
(
ω 0
0 ω−1

)
)

and

t 7→ (1,−1,
(

0 1
1 0

)
).

Theorem 4.3 tells us that this algebra homomorphism is in fact an isomorphism.
Lecture 24

4.9. Some (non-examinable) results using algebraic integers. We’ll finish off the
course by giving a couple of nice (non-examinable) applications of results we can prove
using a tiny bit of algebraic number theory. The key definition is

Definition 4.12. Let α ∈ C. If α is a root of a monic polynomial
Xn + an−1X

n−1 + · · ·+ a1X + a0

with integer coefficients ai, then we say that α is an algebraic integer.

Fact 4.1. • If α ∈ Q is an algebraic integer, then α is an integer.
• If α, β are algebraic integers, then αβ and α + β are both algebraic integers.

Example 4.11. A root of unity is an algebraic integer. If G is a finite group, χ is a
character, and g ∈ G, then χ(g) is a sum of roots of unity, and is therefore an algebraic
integer.

Proposition 4.7. Let χ be an irreducible character of a finite group G. Let g ∈ G with
conjugacy class C(g). Then

|C(g)|χ(g)
χ(e)

is an algebraic integer.
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Proof. Let V ⊂ CG be a subrepresentation of CG with character χ. Let z = ∑
h∈C(g)[h] ∈

CG. By Proposition 4.5 we have

z · v = |C(g)|χ(g)
χ(e)v

for all v ∈ V . So |C(g)|χ(g)
χ(e) is an eigenvalue of the multiplication by z map on CG. This

map has a matrix (with respect to the standard basis of C G) with integer entries, because
multiplication by [h] has a matrix with integer entries for each h ∈ G.

So the characteristic polynomial of this matrix is monic with integer coefficients, and
|C(g)|χ(g)

χ(e) is a root of this polynomial; hence it is an algebraic integer. �

Corollary 4.2. Let V be an irrep of G. Then dim V divides |G|.

Proof. Let χ = χV . We want to show that |G|
χ(e) is an integer. By row orthogonlaity, we

have ∑
g∈G

χ(g)χ(g) = |G|

so ∑
g∈G

χ(g)
χ(e)χ(g) = |G|

χ(e) .

It suffices to show that the right hand side of this equation is an algebraic integer. We do
this by showing that the left hand side is an algebraic integer. But the left hand side is a
sum of things of the form

|C(g)|χ(g)
χ(e)χ(g) = |C(g)|χ(g)

χ(e)χ(g−1)

and by Proposition 4.7 each of these terms is a product of two algebraic integers, and hence
an algebraic integer. �

Finally we give an important application of representation theory to group theory.

Theorem 4.4. Let p be a prime number, and let d ≥ 1 be an integer. Suppose G is a finite
group with a conjugacy class of size pd. Then G is not simple.

Proof. Fix g ∈ C(g) with C(g) the conjugacy class of size pd. Let χ1, . . . , chir be the
irreducible characters of G, with χ1 the trivial character. Note that g 6= e (its conjugacy
class has size > 1). By column orthogonality for the g and e column of the character table,
we have

1 +
r∑
i=2

χi(e)χi(g) = 0.

Note that the χi(e) are integers, so the complex conjugation doesn’t do anything. Di-
viding by p and rearranging we have

r∑
i=2

χi(e)
p

χi(g) = −1
p
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and the right hand side is not an algebraic integer. We conclude that there is an i ≥ 2
with χi(e)

p
χi(g) not an algebraic integer (otherwise the sum would be an algebraic integer).

Fix this i, and let χ = χi. We have χ(g) 6= 0 and p - χ(e).
Since χ(e) and |C(g)| are coprime, Bezout’s lemma tells us that there are integers a, b

such that aχ(e) + b|C(g)| = 1. We deduce that

a|C(g)|χ(g)
χ(e) + bχ(g) = χ(g)

χ(e)

and therefore Proposition 4.7 implies that χ(g)
χ(e) is a non-zero (since χ(g) 6= 0) algebraic

integer.
Recall from Proposition 3.1 that |χ(g)

χ(e) | ≤ 1. Let V be an irrep with character χ. We
moreover recall that if |χ(g)

χ(e) | = 1 the ρV (g) = λ idV for some λ ∈ C×. In fact, if χ(g)
χ(e) is a non-

zero algebraic integer then we do have |χ(g)
χ(e) | = 1: all the conjugates (see en.wikipedia.

org/wiki/Conjugate_element_(field_theory)) of χ(g)
χ(e) have norm ≤ 1 (because they

are a sum of χ(e) roots of unity divided by χ(e)) and the product of the conjugates is an
integer.

So we conclude that ρV (g) = λ idV . We define H / G to be

H = {h ∈ G : ρV (h) ∈ C× idV }.

Then H is a normal subgroup of G, and since g ∈ H, H 6= {e}.
Now suppose G is simple. Then H = G. But V is a non-trivial irrep, so ρV is faithful.

But ρV is then an injective map from G to an Abelian group C× idV . So G is Abelian.
This contradicts the assumption that g has a conjugacy class with size > 1. We conclude
that G is not simple. �

Corollary 4.3 (Burnside’s theorem). Let p, q be prime numbers and let a, b ∈ Z≥0 be
integers ≥ 0 with a + b ≥ 2. Suppose G is a finite group with |G| = paqb. Then G is not
simple.

Proof. First suppose a = 0 (the same argument works if b = 0). Then |G| = qb with b ≥ 2.
It is a standard group theory fact that the centre Z(G) is non-trivial. For the proof of this
fact, consider the conjugacy classes in G: the orders of the conjugacy classes divide |G|
(they are orbits under the conjugation action) and we have at least one conjugacy class of
size 1 (the conjugacy class of e). Since the sum of the orders of the conjugacy classes is
divisible by q, we must have other conjugacy classes of size 1. This says that the centre of
G is non-trivial.

Now let H /G be the cyclic subgroup generated by an element of Z(G) of order q. This
is a non-trivial normal subgroup of G, so G is not simple.

Now we assume that a, b ≥ 1. By Sylow theory, there is a subgroup Q of G with |Q| = qb.
By the preceding remarks, we know that Z(Q) 6= {e}. We let g ∈ Z(Q) with g 6= e.

Consider the conjugacy class of g. By the orbit-stabiliser theorem, the size of this
conjugacy class is equal to |G|/|CentG(g)| where CentG(g) is the centralizer of g in G.

en.wikipedia.org/wiki/Conjugate_element_(field_theory)
en.wikipedia.org/wiki/Conjugate_element_(field_theory)
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Since g ∈ Z(Q), Q is contained in the centralizer CentG(g), so qb divides |CentG(g)|. We
conclude that |C(g)| = pr for some r ≥ 0.

If r = 0, then g ∈ Z(G). Proceeding as in the a = 0 case, we deduce that G is not
simple.

If r ≥ 1 then we can apply Theorem 4.4. �

The end.
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