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1. Induced representations

1.1. Definition and basic properties.

Definition 1.1. Let H be a subgroup of a finite group G. Let V be a representation of
H. We define a representation

IndGH(V )
of G with underlying vector space given by H-equivariant fuctions from G to V :

IndGH(V ) = {f : G→ V |f(hg) = ρV (h)f(g) for h ∈ H}.
The action of G is given by (g · f)(g′) = f(g′g).
Recall that we write H\G for the set of right cosets of H in G. In other words, we have

G =
d∐
i=1

Hgi

for a finite set {g1, . . . , gd} of coset representatives. We then write Ci = Hgi, and the
set of cosets H\G is equal to {C1, . . . , Cd}. We now fix the set of coset representatives
{g1, . . . , gd}.

Lemma 1.1. Let f : G → V ∈ IndGH(V ). Then f is determined by its values on the
elements g1, . . . , gd.
Proof. Let f ∈ IndGH(V ) and let g be an arbitrary element of G. There is a unique
i ∈ {1, . . . , d} such that g = hgi for some h ∈ H. We have f(g) = f(hgi) = ρV (h)f(gi). So
f is determined by the values f(g1), . . . , f(gd). �

Definition 1.2. For f : G → V a function, the support of f , denoted Supp(f) is the set
{g ∈ G : f(g) 6= 0}.

Remark 1.1. If f ∈ IndGH(V ) then f(hg) = ρV (h)f(g) for h ∈ H. So if g ∈ Supp(f) then
hg ∈ Supp(f) for all h ∈ H. We deduce that Supp(f) is a union of right cosets of H.

Definition 1.3. If C is a right coset of H in G we write VC for the subspace of IndGH(V )
comprising functions f such that Supp(f) = C, together with the zero function. Equiva-
lently, we can define VC to be the subspace of IndGH(V ) comprising functions f which are
zero outside C.
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Lemma 1.2. (1) The linear map⊕
C∈H\G

VC → IndGH(V )

(fC)C∈H\G 7→
∑

C∈H\G
fC

is an isomorphism of vector spaces.
(2) Let C be a right coset and fix a coset representative gC ∈ C. The linear map

evgC
: VC → V

f 7→ f(gC)
is an isomorphism of vector spaces.

(3) If g ∈ G then the map
ρIndG

H(V )(g) : IndGH(V )→ IndGH(V )
restricts to a map

ρIndG
H(V )(g)|VC

: VC → VCg−1

Moreover, if we fix coset representatives gC of C and gD of D = Cg−1 we have a
commutative diagram

VC

ρIndG
H

(V )(g)
//

evgC

��

VCg−1

evgD

��

V
ρV (gDgg

−1
C )

// V

Proof. (1) We give an inverse to this map. If f ∈ IndGH(V ) then we define fC to be
the function which is equal to f on the coset C, but equal to zero everywhere else.
Then fC ∈ VC and the map f 7→ (fC)C∈H\G gives the desired inverse. Note that
we have ∑C∈H\G fC = f .

(2) Again we write down an inverse map: if v ∈ V we define f ∈ VC by f(hgC) =
ρV (h)v.

(3) Suppose f ∈ VC . Then f vanishes outside C. Since
(
ρIndG

H(V )(g)f
)

(g′) = f(g′g),
the function ρIndG

H(V )(g)f vanishes when g′g /∈ C. In other words, it vanishes when
g′ /∈ Cg−1. This says that ρIndG

H(V )(g)f is an element of VCg−1 , as desired.
Now we need to check the diagram commutes. The first important thing to note

is that gDgg−1
C ∈ H, so the lower horizontal map actually makes sense. Now we

need to check that the composition evgD
◦ ρIndG

H(V )(g) is equal to ρV (gDgg−1
C ) ◦ evgC

.
Let’s start with f ∈ VC . We have

evgD
◦ ρIndG

H(V )(g)f = (ρIndG
H(V )(g)f)(gD) = f(gDg).

On the other hand,
ρV (gDgg−1

C ) ◦ evgC
f = ρV (gDgg−1

C )(f(gC)) = f(gDgg−1
C gC) = f(gDg),
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where the penultimate equality is a special case of the property f(hg) = ρV (h)f(g).
�

Remark 1.2. The above Lemma gives us a fairly explicit description of IndGH(V ). We can
think of it as a direct sum of copies of V , indexed by the set of cosets H\G, and with the
action of G given by the commutative diagram appearing in part (3) of the above.

Lemma 1.3. The dimension of IndGH(V ) is [G : H] dim(V ) where [G : H] = |G|/|H|.

Proof. Note that [G : H] is the number of right cosets for H in G. So this follows from
parts 1 and 2 of Lemma 1.2. �

Example 1.1. (1) Let H be any subgroup of G. Consider the induction IndGHCH
of the regular representation. We claim that this is isomorphic to the regular
representation of G. An isomorphism

α : CG→ IndGHCH
is given by letting α([g]) be the map from G to CH which is equal to zero outside
the coset Hg−1 and takes an element hg−1 to [h].

(2) Let H be any subgroup of G. Consider the trivial one-dimensional representation
Vtriv of H, and the induction IndGHVtriv. Now the elements of IndGHVtriv are functions
f : G → C such that f(hg) = f(g) for all h ∈ H, g ∈ G. In other words, they are
functions from the set of right cosets H\G to C. We claim that this is isomorphic
to the representation CΩ, where Ω is the set of left cosets G/H with action of G
given by left multiplication.

An isomorphism
α : CΩ→ IndGHVtriv

is given by letting α([gH]) be the map which takes the right coset Hg−1 to 1, and
takes every other coset to 0.

(3) Let G = D2n = 〈s, t : sn = t2 = e, tst = s−1〉 be a dihedral group of order 2n. We
let H ⊂ G be the (cyclic order n) subgroup generated by s. Let ζ ∈ C with ζn = 1
and let Vζ be the one-dimensional rep with of H with basis vector [b] on which s

acts as multiplication by ζ. Let’s work out what the representation IndGH(Vζ) is. It
has dimension two, with a basis given by f1, f2 where f1(si) = ζ ib, f1(sit) = 0, and
f2(si) = 0, f2(sit) = ζ ib. We can write down the matrices giving the action of s
and t with respect to this basis.

We have (sf1)(si) = f1(si+1) = ζf1(si) and (sf1)(sit) = f1(sits) = f1(si−1t) = 0
so sf1 = ζf1. We have (sf2)(si) = f2(si+1) = 0 and (sf2)(sit) = f2(sits) =
f2(si−1t) = ζ−1f2(sit) so sf2 = ζ−1f1. So we conclude that s acts with matrix(

ζ 0
0 ζ−1

)
.

Now for t: we have (tf1)(si) = f1(sit) = 0 and (tf1)(sit) = f1(sit2) = f1(si) = ζ ib
so tf1 = f2. On the other hand we have (tf2)(si) = f2(sit) = ζ ib and (tf2)(sit) =
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f2(sit2) = f2(si) = 0 so tf2 = f1. We conclude that s acts with matrix(
0 1
1 0

)
.

Compare with Problem Sheet 2, Exercise 6, where we wrote down these matrices
to describe some two-dimensional representations of G. Now you know a sensible
way to construct these representations ‘by pure thought’.

1.2. An alternative description of the induced representation.

Definition 1.4. Let H be a subgroup of a finite group G. There is a natural algebra
homomorphism CH → CG, and we can think of CG as a CH-module (an element of CH
acts on CG by multiplication on the left).

If V is a representation of H (and therefore a CH-module) we can then consider the
vector space of CH-linear maps HomCH(CG, V ).

Finally, we make HomCH(CG, V ) into a CG-module by defining a · x to be the element
of HomCH(CG, V ) given by

(a · x)(b) = x(ba)
for x ∈ HomCH(CG, V ) and a, b ∈ CG.

Lemma 1.4. The map

α : IndGH(V )→ HomCH(CG, V )

f 7→
(∑

λg[g] 7→
∑

λgf(g)
)

is an isomorphism of CG-modules.

Proof. First we’ll check that we’ve defined a CG-linear map. It suffices to check that
α([h]f) = [h]α(f) for every f ∈ IndGH(V ) and h ∈ G. The map α([h]f) takes ∑λg[g] to∑
λgf(gh). On the other hand [h]α(f) takes ∑λg[g] to α(f)(∑λg[g][h]) = ∑

λgf(gh). We
get the same result, so we have shown that α is G-linear.

To show α is an isomorphism, we’ll write down the inverse α−1. We define

α−1 : HomCH(CG, V )→ IndGH(V )
f 7→ (g 7→ f([g]))

�

1.3. Frobenius reciprocity. Recall that if V is a representation of G and H is a subgroup
of G, then we get a representation of H on the vector space V by restricting the action of
G. We write ResGHV for this representation of H.

Theorem 1.1 (Frobenius reciprocity). Let V be a representation of G and let W be a
representation of H. There is an isomorphism

HomG(V, IndGHW ) ∼= HomH(ResGHV,W ).
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Proof. We can write down an isomorphism explicitly. If f ∈ HomG(V, IndGHW ) we take it
to the H-linear map v 7→ (f(v))(e). Conversely, if f ∈ HomH(ResGHV,W ) we take it to the
G-linear map

V → IndGHW
v 7→ (g 7→ f(ρV (g)v))

�

Remark. Switching to CG-modules, the above proposition says that there is an isomor-
phism

HomCG(V,HomCH(CG,W )) ∼= HomCH(V,W ).

Corollary 1.1 (Frobenius reciprocity formula). Let V be a representation of G and let W
be a representation of H. Then we have

〈χIndG
HW

, χV 〉 = 〈χW , χResG
HV
〉.

Proof. Recall that if U, V are two representations of G, then 〈χU , χV 〉 = dimC HomG(V, U).
�

1.4. The character of an induced representation. Given H a subgroup of G and a
representation V of H, we want to work out the character χIndG

H(V ) of the induced repre-
sentation in terms of the character χV of V .

Recall that we’ve fixed a set of representatives g1, . . . , gd for the right cosets H\G =
{C1, . . . , Cd}.

Proposition 1.1. We have

χIndG
H(V )(g) =

∑
i:gigg

−1
i ∈H

χV (gigg−1
i ) = 1

|H|
∑

g′∈G:g′g(g′)−1∈H
χV (g′g(g′)−1).

Proof. We apply Lemma 1.2. We have IndGH(V ) = ⊕d
i=1 VCi

and g ∈ G gives maps
ρIndG

H(V )(g) : VC → VCg−1 .

To compute the trace χIndG
H(V )(g), we only need to consider cosets C with C = Cg−1. In

terms of representatives we consider the gi such that Hgi = Hgig
−1, or in other words,

such that gigg−1
i ∈ H. Assuming that gigg−1

i ∈ H, Part (3) of Lemma 1.2 tells us that the
map

ρIndG
H(V )(g) : VC → VC

has trace χV (gigg−1
i ). Summing over all the cosets C, we get the desired formula for

χIndG
H(V )(g).

To get the final equality, we just note that if we sum over all elements of G instead of
coset representatives we count the contribution of each coset |H| times, so dividing by |H|
gives the same result as summing over coset representatives. �
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1.5. Restriction of induced representations. Suppose we take a representation V of
H, with H a subgroup of a finite group G. We can consider the restriction ResGHIndGHV of
the induced representation. For simplicity we only consider the case when H is a normal
subgroup of G. See sections 7.3 and 7.4 of Serre ‘Linear representations of finite groups’
for the whole story, or google ‘Mackey theory’.

Definition 1.5. Suppose H /G is a normal subgroup and that V is a representation of H.
For g ∈ G define a representation V g of H with underlying vector space the same as V by

ρV g(h) = ρV (ghg−1)
for h ∈ H.

Lemma 1.5. Suppose H / G is a normal subgroup and that V is a representation of H.
(1) Let g, g′ ∈ G such that g, g′ belong to the same right coset C of H in G. Then there

is a H-linear isomorphism V g ∼= V g′.
(2) If V is an irreducible representation of H, then V g is irreducible for all g ∈ G.

Proof. (1) Since g, g′ ∈ C there is an h ∈ H such that g′ = hg. Now consider the map
ρV (h) : V g → V g′ . We claim that this map is H-linear. Indeed, we have
ρV (h)ρV (ghg−1) = ρV (hghg−1) = ρV (g′h(g′)−1h) = ρV (g′h(g′)−1)ρV (h).

This says that ρV (h) is an H-linear map from V g to V g′ . Since ρV (h) is an invertible
linear map, we conclude that we have the desired H-linear isomorphism.

(2) Suppose U ⊂ V g is an H-stable subspace. Then, by definition of V g we have that
for u ∈ U and h ∈ H, ρV (ghg−1)u ∈ U . Since gHg−1 = H, we conclude that
ρV (h)u ∈ U for all h ∈ H, so U is also an H-stable subspace of V . By irreducibility
of V , U is either 0 or all of V , so we deduce that V g is irreducible.

�

Lemma 1.6. Suppose H/G is a normal subgroup and that V is a representation of H. Let
g1, . . . , gd be representatives for the right cosets H\G = {C1, . . . , Cd}. There is an H-linear
isomorphism

ResGHIndGHV ∼=
d⊕
i=1

V gi .

Proof. To show that there is such an isomorphism we just need to show that the characters
of both sides are equal. Proposition 1.1 says that the character of the left hand side is

h 7→
∑

i:gihg
−1
i ∈H

χV (gihg−1
i ).

Since H is a normal subgroup of G the sum appearing here is just
d∑
i=1

χV (gihg−1
i ) =

d∑
i=1

χV gi (h).

�
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Proposition 1.2. Suppose H /G is a normal subgroup and that V is an irreducible repre-
sentation of H. Let g1, . . . , gd be representatives for the right cosets H\G = {C1, . . . , Cd}.
Then IndGHV is an irreducible representation of G if and only if V g is not isomorphic to V
for every g ∈ G−H.

Proof. We know that IndGHV is an irreducible representation of G if and only if
〈χIndG

HV
, χIndG

HV
〉 = 1.

By Corollary 1.1 and Lemma 1.6 we have

〈χIndG
HV
, χIndG

HV
〉 = 〈χV , χResG

H IndG
HV
〉 =

d∑
i=1
〈χV , χV gi 〉.

We may as well assume that g1 = e, so we have

〈χIndG
HV
, χIndG

HV
〉 = 1 +

d∑
i=2
〈χV , χV gi 〉.

So IndGHV is irreducible if and only if 〈χV , χV gi 〉 = 0 for all i ≥ 2. Since V and V gi are
irreducible, this holds if and only if V gi is not isomorphic to V for every i ≥ 2. By Lemma
1.5, this holds if and only if V g is not isomorphic to V for every g ∈ G−H. �

1.6. Some motivation: a theorem of Artin. This section is non-examinable! We’ve
seen that induction gives examples of representations of G, constructed out of reps of
subgroups H. This is interesting in its own right. Another reason to be interested in
induction is the following theorem of Artin:

Theorem 1.2. Let V be a representation of a finite group G. Then there exist cyclic
subgroups H1, H2, . . . Hn of G, representations Ui of Hi and rational numbers λi ∈ Q such
that

χV =
n∑
i=1

λiχIndG
Hi
Ui
.

See Chapter 9 of Serre ‘Linear representations of finite groups’ for the proof of this. This
tells us that using induction (and allowing linear combinations of characters with rational
coefficients) we can generate all the characters of a finite group from the representations
of cyclic subgroups.

Artin was actually motivated to prove this theorem by number theory. He had de-
fined L-functions (generalisations of the Riemann zeta function) for Galois extensions of
number fields L/K and representations ρ of Gal(L/K). More precisely, Artin L-functions
are functions in a complex variable s L(L/K, ρ, s) defined when the real part of s is suf-
ficiently large, and holomorphic in this region of the complex plane. See (for example)
en.wikipedia.org/wiki/Artin_L-function. Specialising to L = K = Q (and ρ the
trivial representation of the trivial group) gives the Riemann zeta function. The case when
the Galois group Gal(L/K) is Abelian was well understood (using class field theory), and
the representation theoretic result of Artin allowed him to establish some properties of his
more general L-functions in the case where Gal(L/K) is non-Abelian, by reducing to the

en.wikipedia.org/wiki/Artin_L-function
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Abelian case. For example, he could show that L(L/K, ρ, s) extends to a meromorphic
function over the whole complex plane.

If ρ is a non-trivial representation, it is expected that L(L/K, ρ, s) extends to a holomor-
phic function over the whole complex plane. This expectation is called the Artin conjecture,
and is one of the most important open problems in number theory.

See http://math.osu.edu/˜cogdell/artin-www.pdf for a discussion of Artin’s work,
and more recent developments.

http://math.osu.edu/~cogdell/artin-www.pdf
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