M3/4/5P12 PROBLEM SHEET ON MASTERY MATERIAL

Please send any corrections or queries to j.newton@imperial.ac.uk.
Exercise 1. Let G be a finite group, with $H \subset G$ a subgroup and let V be a representation of G. Suppose $W \subset \operatorname{Res}_{H}^{G} V$ is a subrepresentation of the restriction of V to a representation of H.
(a) Let $g \in G$, and consider the subspace $\rho_{V}(g) W \subset V$. Show that this subspace depends only on the left coset $g H$ of g.
(b) If $C \in G / H$ is a left coset, write W_{C} for the subspace $\rho_{V}(g) W \subset V$, where $g \in C$. Fix a representative g_{C} for each left $\operatorname{coset} C$ and let $f: G \rightarrow W$ be an element of $\operatorname{Ind}_{H}^{G} W$. Show that

$$
\rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right) \in W_{C}
$$

is independent of the choice of coset representative g_{C}.
(c) Suppose the subspaces $\left\{W_{C}: C \in G / H\right\}$ together sum to give V and, the sum is direct. In other words, we have

$$
V=\bigoplus_{C \in G / H} W_{C}
$$

Show that V is isomorphic to the induced representation $\operatorname{Ind}_{H}^{G} W$.
Hint: consider the map which takes $f \in \operatorname{Ind}_{H}^{G} W$ to $\sum_{C \in G / H} \rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right)$.
This exercise shows that our definition of the induced representation gives something satisfying the (alternative) definition given by Serre in Linear representations of finite groups.
Solution 1. (a) Since W is a subrepresentation of $\operatorname{Res}_{H}^{G} V$, it is H-stable. So we have $\rho_{V}(h) W=W$ for all $h \in H$. So we have $\rho_{V}(g h) W=\rho_{V}(g) W$ for all $h \in H$, and therefore the subspace $\rho_{V}(g) W$ of V only depends on the coset $g H$.
(b) We need to show that $\rho_{V}\left(g_{C} h\right) f\left(\left(g_{C} h\right)^{-1}\right)=\rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right)$ for all $h \in H$. Since f is in $\operatorname{Ind}_{H}^{G} W$ we have $f\left(\left(g_{C} h\right)^{-1}\right)=f\left(h^{-1} g_{C}^{-1}\right)=\rho_{V}(h)^{-1} f\left(g_{C}^{-1}\right)$. So we get that $\rho_{V}\left(g_{C} h\right) f\left(\left(g_{C} h\right)^{-1}\right)=\rho_{V}\left(g_{C}\right) \rho_{V}(h) \rho_{V}(h)^{-1} f\left(g_{C}^{-1}\right)=\rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right)$ as desired.
(c) As suggested by the hint, we consider the map

$$
\theta: \operatorname{Ind}_{H}^{G} W \rightarrow V
$$

taking f to $\sum_{C \in G / H} \rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1}\right)$. The previous part shows that this map doesn't depend on the choice of coset representatives g_{C}. We need to check that θ is a G-linear isomorphism. Since $\operatorname{dim} V=[G: H] \operatorname{dim} W=$ $\operatorname{dim} \operatorname{Ind}_{H}^{G} W$ it suffices to check that θ is G-linear and injective. For injectivity, suppose $\theta(f)=0$. This implies that $f\left(g_{C}^{-1}\right)=0$ for every left coset C, which implies that $f(g)=0$ for every $g \in G$, as we can write $g=h g_{C}^{-1}$ for some left coset C and some $h \in H$.

It remains to show G-linearity. Suppose $g \in G$. Then $g \cdot f$ is the function which takes g^{\prime} to $f\left(g^{\prime} g\right)$. So we have

$$
\theta(g \cdot f)=\sum_{C \in G / H} \rho_{V}\left(g_{C}\right) f\left(g_{C}^{-1} g\right)=\sum_{C \in G / H} \rho_{V}(g) \rho_{V}\left(g^{-1} g_{C}\right) f\left(\left(g^{-1} g_{C}\right)^{-1}\right)
$$

[^0]As C runs over G / H, the elements $g^{-1} g_{C}$ run over a complete set of coset representatives for G / H. We deduce that

$$
\theta(g \cdot f)=\sum_{C \in G / H} \rho_{V}(g) \rho_{V}\left(g^{-1} g_{C}\right) f\left(\left(g^{-1} g_{C}\right)^{-1}\right)=\rho_{V}(g) \theta(f),
$$

as desired.
Exercise 2. Let G be a finite group and suppose we have a subgroup $H \subset G$ and a subgroup $K \subset H$. Let W be a representation of K. Consider the representation

$$
I W=\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} W\right)
$$

(a) Show that if V is a representation of G, we have

$$
\left\langle\chi_{I W}, \chi_{V}\right\rangle=\left\langle\chi_{W}, \chi_{\operatorname{Res}_{K}^{G} V}\right\rangle
$$

(b) Show, using part a), that $I W$ is isomorphic to $\operatorname{Ind}_{K}^{G} W$. You can also try to show this directly, without using character theory.

Solution 2. (a) We apply Frobenius reciprocity twice. First we have

$$
\left\langle\chi_{I W}, \chi_{V}\right\rangle=\left\langle\chi_{\operatorname{Ind}_{K}^{H} W}, \chi_{\operatorname{Res}_{H}^{G} V}\right\rangle .
$$

Applying Frobenius reciprocity once more gives the desired answer.
(b) We also have

$$
\left\langle\chi_{\operatorname{Ind}_{K}^{G} W}, \chi_{V}\right\rangle=\left\langle\chi_{W}, \chi_{\operatorname{Res}_{K}^{G} V}\right\rangle
$$

so we deduce that

$$
\left\langle\chi_{\operatorname{Ind}_{K}^{G} W}, \chi_{V}\right\rangle=\left\langle\chi_{I W}, \chi_{V}\right\rangle
$$

for all reps V of G. This implies that $I W$ is isomorphic to $\operatorname{Ind}_{K}^{G} W$, since it must have the same decomposition into irreducibles (considering the inner product with χ_{V} where V is an irrep of G).

Exercise 3. Let $G=S_{5}$ and let $H=A_{4}$ be the subgroup of G given by even permutations of $\{1,2,3,4\}$ which fix 5 .

Let V be a three-dimensional irreducible representation of H (there's a unique such V up to isomorphism, see Question 3 on Sheet 4). Use Frobenius reciprocity to compute the decomposition of $\operatorname{Ind}_{H}^{G} V$ as a direct sum of irreducible representations of G (you can freely refer to the character table of S_{5} - this is computed in Exercise 2 in the 'extra exercises' for Sheet 4).

Solution 3. To compute the decomposition of $\operatorname{Ind}_{H}^{G} V$ we need to compute $\left\langle\chi_{\operatorname{Ind}_{H}^{G} V}, \chi_{W}\right\rangle$ for each irrep W of G. Frobenius reciprocity says that $\left\langle\chi_{\operatorname{Ind}_{H}^{G} V}, \chi_{W}\right\rangle=\left\langle\chi_{V}, \chi_{\operatorname{Res}_{H}^{G} W}\right\rangle$, so we need to compute these inner products (between characters of H). We have

$$
\left\langle\chi_{V}, \chi_{\operatorname{Res}_{H}^{G} W}\right\rangle=\frac{1}{12}\left(3 \chi_{W}(e)-3 \chi_{W}((12)(34))\right)
$$

So for example, if W is one of the irreps of S_{5} with dimension 5 , we get

$$
\left\langle\chi_{V}, \chi_{\operatorname{Res}_{H}^{G} W}\right\rangle=\frac{1}{12}(15-3)=1 .
$$

With the notation for the irreps of S_{5} coming from Exercise 2 in the 'extra exercises' for Sheet 4 (apologies for the clash of notation, but I hope it's clear what is meant), the final answer is that $\operatorname{Ind}_{H}^{G} V$ is isomorphic to the representation $V \oplus V^{\prime} \oplus\left(\wedge^{2} V\right)^{\oplus 2} \oplus W \oplus W^{\prime}$. You can check this has dimension $30=3 \cdot\left[S_{5}: A_{4}\right]$, as it should.

Exercise 4. Suppose H is a subgroup of a finite group G, and let V be an irreducible representation of H. Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of G and suppose that

$$
\chi_{\operatorname{Ind}_{H}^{G} V}=\sum_{i=1}^{r} d_{i} \chi_{i} .
$$

Show that $\sum_{i=1}^{r} d_{i}^{2} \leq[G: H]$.
Solution 4. We have

$$
\sum_{i=1}^{r} d_{i}^{2}=\left\langle\chi_{\operatorname{Ind}_{H}^{G} V}, \chi_{\operatorname{Ind}_{H}^{G} V}\right\rangle=\left\langle\chi_{V}, \chi_{\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V}\right\rangle
$$

Since V is an irrep, this is the number of times V appears in the decomposition of $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V$ into irreps of H. Since the dimension of this representation is equal to $[G: H] \operatorname{dim}(V)$, we have V appearing $\leq[G: H]$ times in this decomposition (otherwise the dimension would be too big), which gives the desired inequality.

Exercise 5. Suppose H is a subgroup of a finite group G, and let V be a representation of H. Let $g \in G$ with conjugacy class $C(g)$. Suppose that $C(g) \cap H=$ $D_{1} \cup D_{2} \cup \cdots \cup D_{t}$, where the D_{i} are conjugacy classes in H. Note that we can evaluate the character χ_{V} of V on each conjugacy class D_{i}, by defining $\chi_{V}\left(D_{i}\right)=\chi_{V}(h)$ for $h \in D_{i}$.
(a) Show that the character χ of $\operatorname{Ind}_{H}^{G} V$ is given by

$$
\chi(g)=\frac{|G|}{|H|} \sum_{i=1}^{t} \frac{\left|D_{i}\right|}{|C(g)|} \chi_{V}\left(D_{i}\right)
$$

(b) If V is the trivial one-dimensional representation, show that the character χ of $\operatorname{Ind}_{H}^{G} V$ is given by

$$
\chi(g)=\frac{|G||C(g) \cap H|}{|H||C(g)|}
$$

Solution 5. (a) Recall from the notes that the character of $\operatorname{Ind}_{H}^{G} V$ is given by

$$
\chi(g)=\frac{1}{|H|} \sum_{g^{\prime} \in G: g^{\prime} g\left(g^{\prime}\right)^{-1} \in H} \chi_{V}\left(g^{\prime} g\left(g^{\prime}\right)^{-1}\right) .
$$

Let's fix a conjugacy class D of H which is contained in $C(g)$, and count the number of g^{\prime} such that $g^{\prime} g\left(g^{\prime}\right)^{-1} \in D$. Let Σ_{D} denote the set of these g^{\prime}. We have

$$
\chi(g)=\frac{1}{|H|} \sum_{i=1}^{t}\left|\Sigma_{D_{i}}\right| \chi_{V}\left(D_{i}\right)
$$

If we fix $d \in D$ and consider the g^{\prime} such that $g^{\prime} g\left(g^{\prime}\right)^{-1}=d$, then the number of such g^{\prime} is equal to the size of the centralizer $Z_{G}(g)$ of g in G (the number is non-zero because d is conjugate to g). Indeed, if we have g_{1}, g_{2} with $g_{1} g g_{1}^{-1}=g_{2} g g_{2}^{-1}=d$ then we have $g_{2}^{-1} g_{1} \in Z_{G}(g)$ and so $g_{1}=g_{2} z$ for some $z \in Z_{G}(g)$. The size of $Z_{G}(g)$ is $|G| /|C(g)|$ (by the orbit-stabilizer theorem). Adding the contributions for all d, we see that $\left|\Sigma_{D}\right|=|G||D| /|C(g)|$.
(b) In this case we have $\chi_{V}\left(D_{i}\right)=1$ for all i. So we get

$$
\chi(g)=\frac{|G|}{|H||C(g)|} \sum_{i=1}^{t}\left|D_{i}\right|=\frac{|G||C(g) \cap H|}{|H||C(g)|}
$$

[^0]: Date: Tuesday $12^{\text {th }}$ April, 2016.

