M3/4/5P12 PROBLEM SHEET 5

Please send any corrections or queries to |j.newton@imperial.ac.uk. The first
exercise is left over from the chapter on character theory.

Exercise 1. Let G, H be two finite groups, let V be a representation of G and let
W be a representation of H. Define a natural action of the product group G x H
on the vector space V ® W by

pvew (g, h)(v @ w) = pv(g9)v ® pw (h)w.

This defines a representation of G x H.

(a)
(b)
()

Find the character of V @ W as a representation of G x H, in terms of the
characters yy of V and xw of W.

Suppose V is an irrep of G and W is an irrep of H. Show that V ® W is
an irrep of G x H.

Supposes G has r distinct irreducible characters and H has s distinct ir-
reducible characters. Show that G x H has at least rs distinct irreducible
characters. By computing dimensions, show that G x H has exactly rs dis-
tinct irreducible characters and describe them in terms of the irreducible
characters of G and of H.

Solution 1. (a) The character of V@ W as a representation of G x H is given

by

(g, h) = xv(g)xw(h).
To see this, we proceed as in lectures when we worked out the character of
V @ W when V and W are both representations of G.

If we fix bases A and B for V, W then the matrix for py (g9) ® pw (h) with
respect to the basis A ® B is given by M ® N, where M = [py(g)]a and
N = [pw(h)]y — see Lemma 2.4 in the notes for the explicit description of
the entries of this matrix. The trace of this matrix is equal to Tr(M)Tr(N)
— the proof of this is the same as the proof of Proposition 3.2 (2) in the
notes. So we get that xvew (g, h) = xv(g9)xw (h).

We are going to use character theory to check that V' ® W is irreducible.
We need to show that

xvew,xvew) = 1.
By definition we have
1 —
(Xvew, xvew) = m Z xvew (9, h)xvew (g, h).
(9,h)EGXH

Applying part a), and noting that |G x H| = |G||H|, we get

<XV®W7XV®W>=|—(1;@ S @ (@ ()

(9,h)EGXH
_ |—é| > xvigxv(g) ﬁ (Z XW(h)XW(h)> _1.1-1
9€C heH

The final equality holds by irreducibility of V' and W.
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(c) Lets denote the r irreducible characters of G by xi,..., X, and the s irre-
ducible characters of H by 71,...,ns. Denote the dimensions by dy,...,d,
and ey,...,es. By considering the tensor product representations, we get
rs irreps of G x H with characters given by x;n; for 1 <i<r,1<j <s.

Let’s show that these characters of G x H are all distinct. By a very
similar calculation to what we did in the last part, we get

(ximgs xem) = (Xi» xw){n,m) =0

unless ¢ = k and j = [. So we have produced rs distinct irreducible char-
acters of G x H.

Finally, the dimension of the rep with character x;n; is equal to d;e;. So
the sum of the squares of the dimensions gives ), ; d7ef = (32, d?) (32, €7) =
|G||H| = |G x H|. So we know that we have found all of the irreducible
characters.

The rest of the exercises are on algebras and modules.
Exercise 2. Find an isomorphism of algebras between C[C3] and C@® C @ C.

Solution 2. Let’s try to directly write down an isomorphism
f:Cl[Cs] = CapCaC

We let C3 = {e, g,9%}. Weneed f([e]) = (1,1,1), f([g]) = (M1, X2, A3) and f([¢?]) =
(A2,73,A3), where A1, A2, A3 are cube roots of unity. For f to be an isomorphism
we need (1,1,1), (A1, A2, A3), (A2, A3, A3) to be a basis for C®3, since [e], [g], [¢?] are
a basis for C[C5]. Conversely, any linear map f with these properties will be an
algebra isomorphism. So we just need to choose A1, Ao, As.

Suppose A; = Ag. Then (1,1,1), (A1, A2, A3), (A3, A3, A3) will all lie in the two-
dimensional subspace (x,z,2) C C%3. So we need A1, A2, A3 to be three distinct
cube roots of unity. This will then give a basis (1,1,1), (A1, A2, A3), (A}, A3, \2)
for C®3. One way to prove this is a basis is to use column orthogonality for the
character table of C3: the matrix

1A A2
1 Ay A2
1 Ay A2

is the character table of Cs, and its rows are linearly independent by row orthogo-
nality, so its columns are also linearly independent.

We may as well choose \; = 1,y = €2™/3 \g = e?™/3. So we get an algebra
isomorphism f defined by

f(le]) = (1,1, 1), f([g]) = (L, w,0?), F([¢°]) = (1,w* w)
where w = €27/3,
Alternatively, you can use the Artin-Wedderburn theorem to write down the

isomorphism.

Exercise 3. Let A and B be algebras. Show that the projection mapp: A®B — A

defined by p(a,b) = a is an algebra homomorphism, but that the inclusion map
i: A — A® B defined by i(a) = (a,0) is not.

Solution 3. The key point to remember is that algebra homomorphisms have to
send the unit to the unit. We have p(14,15) = 14, and we also have p(ajaz, b1b2) =
ayag = plai,by)p(as,bs), so p is an algebra homomorphism. But the inclusion i
sends 14 to (14,0) which is not the unit in A @ B.
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Exercise 4. Let A and B be algebras. Suppose M is an A-module and N is an
A-module. The vector space M @ N is naturally an A & B-module, with action of
A ® B given by

(a)

(b)
(c)
(d)

(a,b) - (m,n) = (a-m,b-n).

Let X be an A & B-module. Show that multiplication by e4 := (14,0)
defines an A ® B-linear projection map

eA:X—>X.

Write eg X for the image of multiplication by e4. Show that for z € e4 X
we have (a,b) -z = (a,0) -z for all a € A,b € B.

Show that there is an A-module M and a B-module N such that X is
isomorphic to M @& N as an A @ B-module.

Describe the simple modules for A @ B in terms of the simple modules for
A and the simple modules for B.

Solution 4. (a) First we check that the map

ea: X =X

is A® B linear. If (a,b) € A® B we have ea(a,b) = (a,0) = (a,b)ea,
SO e4 is in the centre of A & B. In particular, multiplication by e, is
an A @ B linear map. Now we check that e4 is a projection: we have
eaoea(a,b) =ea(a,0) = (a,0) =ea(a,b), so it is indeed a projection.

If z is in the image of e4 then & = eqy for some y € A. So (a,b)x =
(a,b)eay = (a,0)y = (a,0)eay = (a,0)x.

Define ep to be multiplication by (0,15). We claim that the image of ep
is equal to the kernel of e4. Indeed, we have eqep = (0,0), so the image
of ep is contained in the kernel of e4. Conversely, if ez = 0, we have
x = (1a,1p)x = eax + epx = epx, 80 x is in the image of ep. Since ey
is an A @ B-linear projection, we have an isomorphism of A @& B-modules
X =eaX @ker(esq) = eaX ®epX (by Lemma 2.1 in the lecture notes).
We let M = e, X with action of A given by a -« = (a,0) - . Similarly, we
let N = epX with action of B given by b-x = (0,b) - x. Then we have an
isomorphism of A @ B-modules X &2 M & N.

Suppose X is a simple A & B module. e4 X is a submodule of X, so it is
either equal to X or {0}. If e4X = 0 then X = epX. So we have either
X =egX or X =epX.

So X is isomorphic to either a simple A-module M, or a simple B-
module N, where we think of them as A @ B modules with action given by
(a,b)x = (a,0)x or (a,b)x = (0,b)x respectively. Note that if M or N was
not simple, then X would not be simple, so this gives the simplicity of M
or N.

Exercise 5. Show that the matrix algebra M,,(C) is isomorphic to its own opposite

algebra.

Solution 5. The transpose map gives an isomorphism M, (C) — M,,(C)°P, since

(MN)!

= NtM*.

Exercise 6. (a) What is the centre of M, (C)?

(b)

Hint: M,,(C) has a basis given by matrices E;; with a 1 in the (i, j) entry
and 0 everywhere else. Work out what it means for a matriz to commute
with EZ]

If A and B are algebras, show that Z(A® B) = Z(A) & Z(B).
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(c) Let ny,...,n, be positive integers. What is the centre of the algebra

é M, (C)?

Solution 6. (a) Let’s follow the hint. Let M € M, (C). Then E;; M is the
matrix whose ith row is the jth row of M, and the other entries are zero.
On the other hand, M E;; is the matrix whose jth column is the ith column
of M.
Suppose E;;M = ME;;. Then comparing the (7,j) entries of these
matrices we get M;i = M;j. The other entries in the matrices are all zero.
We conclude that if E;; M = M E;; for all ¢, j then M must be equal to AI,
for A € C (where I, is the n x n identity matrix). So the centre of M, (C)
is just given by the scalar matrices AI,.

(b) Suppose a € Z(A) and b € Z(B). Then it’s easy to check that (a,b) €
Z(A @ B), so we have Z(A) ® Z(B) C Z(A® B). Conversely, if (a,b) €
Z(A® B) we have (a,b)(x,0) = (z,0)(a,b) for all x € A which implies that
ax = xa for all x € A. So a € Z(A). Similarly, we deduce that b € Z(B).
So we get that Z(A® B) = Z(A) ® Z(B).

(c) By applying parts (a) and (b) we deduce that the centre of @;_, M,,(C)
is given by @;_, CI,,, = C%".

Exercise 7. Let A be an algebra. Show that the map f — f(14) gives an isomor-
phism of algebras between Hom4 (A, A) and A°P.

Solution 7. First we show that this map is an algebra homomorphism. The
identity map gets sent to 14, and we have fog(la) = f(g(1a)) =g(1a)f(1a).
Next we show that the map is injective. If f(14) =0, then f(a) =a- f(14) =0
foralla € Aso f=0.
Finally, we show that the map is surjective. If z € A° then we consider the
map f: A — A given by f(a) = a-x. This is an A-linear map, and f(14) = z.

Exercise 8. Let A = C[z]/(2?) — recall that this has as a basis {1,z}, with 1 a
unit and 22 = 0. Show that A itself is not a semisimple A-module.

Solution 8. Consider the submodule M = Cx C A. This is a submodule because
l-x2 =z and -2 = 0, so M is A-stable. We claim that M does not have a
complementary submodule in A. Suppose N C A is a submodule with M + N = A.
In order for M and N to span A, we must have an element A\14+px € N with A € C*
(i.e. A #0) and p € C. Since N is a submodule, we have A™'z(A\l + pz) =z € N
which implies that x € MNN. We conclude that M does not have a complementary
submodule in A.



