M3/4/5P12 PROBLEM SHEET 5

Please send any corrections or queries to j.newton@imperial.ac.uk. The first exercise is left over from the chapter on character theory.

Exercise 1. Let G, H be two finite groups, let V be a representation of G and let W be a representation of H. Define a natural action of the product group $G \times H$ on the vector space $V \otimes W$ by

$$
\rho_{V \otimes W}(g, h)(v \otimes w)=\rho_{V}(g) v \otimes \rho_{W}(h) w .
$$

This defines a representation of $G \times H$.
(a) Find the character of $V \otimes W$ as a representation of $G \times H$, in terms of the characters χ_{V} of V and χ_{W} of W.
(b) Suppose V is an irrep of G and W is an irrep of H. Show that $V \otimes W$ is an irrep of $G \times H$.
(c) Supposes G has r distinct irreducible characters and H has s distinct irreducible characters. Show that $G \times H$ has at least rs distinct irreducible characters. By computing dimensions, show that $G \times H$ has exactly $r s$ distinct irreducible characters and describe them in terms of the irreducible characters of G and of H.

Solution 1. (a) The character of $V \otimes W$ as a representation of $G \times H$ is given by

$$
(g, h) \mapsto \chi_{V}(g) \chi_{W}(h) .
$$

To see this, we proceed as in lectures when we worked out the character of $V \otimes W$ when V and W are both representations of G.

If we fix bases A and B for V, W then the matrix for $\rho_{V}(g) \otimes \rho_{W}(h)$ with respect to the basis $A \otimes B$ is given by $M \otimes N$, where $M=\left[\rho_{V}(g)\right]_{A}$ and $N=\left[\rho_{W}(h)\right]_{V}$ - see Lemma 2.4 in the notes for the explicit description of the entries of this matrix. The trace of this matrix is equal to $\operatorname{Tr}(M) \operatorname{Tr}(N)$ - the proof of this is the same as the proof of Proposition 3.2 (2) in the notes. So we get that $\chi_{V \otimes W}(g, h)=\chi_{V}(g) \chi_{W}(h)$.
(b) We are going to use character theory to check that $V \otimes W$ is irreducible. We need to show that

$$
\left\langle\chi_{V \otimes W}, \chi_{V \otimes W}\right\rangle=1 .
$$

By definition we have

$$
\left\langle\chi_{V \otimes W}, \chi_{V \otimes W}\right\rangle=\frac{1}{|G \times H|} \sum_{(g, h) \in G \times H} \chi_{V \otimes W}(g, h) \overline{\chi_{V \otimes W}(g, h)} .
$$

Applying part a), and noting that $|G \times H|=|G||H|$, we get

$$
\begin{aligned}
\left\langle\chi_{V \otimes W}, \chi_{V \otimes W}\right\rangle & =\frac{1}{|G|} \frac{1}{|H|} \sum_{(g, h) \in G \times H} \chi_{V}(g) \chi_{W}(h) \overline{\chi_{V}(g) \chi_{W}(h)} \\
& =\frac{1}{|G|}\left(\sum_{g \in G} \chi_{V}(g) \overline{\chi_{V}(g)}\right) \frac{1}{|H|}\left(\sum_{h \in H} \chi_{W}(h) \overline{\chi_{W}(h)}\right)=1 \cdot 1=1 .
\end{aligned}
$$

The final equality holds by irreducibility of V and W.
Date: Thursday $24^{\text {th }}$ March, 2016.
(c) Lets denote the r irreducible characters of G by $\chi_{1}, \ldots, \chi_{r}$ and the s irreducible characters of H by $\eta_{1}, \ldots, \eta_{s}$. Denote the dimensions by d_{1}, \ldots, d_{r} and e_{1}, \ldots, e_{s}. By considering the tensor product representations, we get $r s$ irreps of $G \times H$ with characters given by $\chi_{i} \eta_{j}$ for $1 \leq i \leq r, 1 \leq j \leq s$.

Let's show that these characters of $G \times H$ are all distinct. By a very similar calculation to what we did in the last part, we get

$$
\left\langle\chi_{i} \eta_{j}, \chi_{k} \eta_{l}\right\rangle=\left\langle\chi_{i}, \chi_{k}\right\rangle\left\langle\eta_{j}, \eta_{l}\right\rangle=0
$$

unless $i=k$ and $j=l$. So we have produced $r s$ distinct irreducible characters of $G \times H$.

Finally, the dimension of the rep with character $\chi_{i} \eta_{j}$ is equal to $d_{i} e_{j}$. So the sum of the squares of the dimensions gives $\sum_{i, j} d_{i}^{2} e_{j}^{2}=\left(\sum_{i} d_{i}^{2}\right)\left(\sum_{j} e_{j}^{2}\right)=$ $|G||H|=|G \times H|$. So we know that we have found all of the irreducible characters.

The rest of the exercises are on algebras and modules.
Exercise 2. Find an isomorphism of algebras between $\mathbb{C}\left[C_{3}\right]$ and $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$.
Solution 2. Let's try to directly write down an isomorphism

$$
f: \mathbb{C}\left[C_{3}\right] \rightarrow \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
$$

We let $C_{3}=\left\{e, g, g^{2}\right\}$. We need $f([e])=(1,1,1), f([g])=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and $f\left(\left[g^{2}\right]\right)=$ $\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)$, where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are cube roots of unity. For f to be an isomorphism we need $(1,1,1),\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right),\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)$ to be a basis for $\mathbb{C}^{\oplus 3}$, since $[e],[g],\left[g^{2}\right]$ are a basis for $\mathbb{C}\left[C_{3}\right]$. Conversely, any linear map f with these properties will be an algebra isomorphism. So we just need to choose $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Suppose $\lambda_{1}=\lambda_{2}$. Then $(1,1,1),\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right),\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)$ will all lie in the twodimensional subspace $(x, x, z) \subset \mathbb{C}^{\oplus 3}$. So we need $\lambda_{1}, \lambda_{2}, \lambda_{3}$ to be three distinct cube roots of unity. This will then give a basis $(1,1,1),\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right),\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)$ for $\mathbb{C}^{\oplus 3}$. One way to prove this is a basis is to use column orthogonality for the character table of C_{3} : the matrix

$$
\left(\begin{array}{ccc}
1 & \lambda_{1} & \lambda_{1}^{2} \\
1 & \lambda_{2} & \lambda_{2}^{2} \\
1 & \lambda_{3} & \lambda_{3}^{2}
\end{array}\right)
$$

is the character table of C_{3}, and its rows are linearly independent by row orthogonality, so its columns are also linearly independent.

We may as well choose $\lambda_{1}=1, \lambda_{2}=e^{2 \pi i / 3}, \lambda_{3}=e^{4 \pi i / 3}$. So we get an algebra isomorphism f defined by

$$
f([e])=(1,1,1), f([g])=\left(1, \omega, \omega^{2}\right), f\left(\left[g^{2}\right]\right)=\left(1, \omega^{2}, \omega\right)
$$

where $\omega=e^{2 \pi i / 3}$.
Alternatively, you can use the Artin-Wedderburn theorem to write down the isomorphism.

Exercise 3. Let A and B be algebras. Show that the projection map $p: A \oplus B \rightarrow A$ defined by $p(a, b)=a$ is an algebra homomorphism, but that the inclusion map $i: A \rightarrow A \oplus B$ defined by $i(a)=(a, 0)$ is not.

Solution 3. The key point to remember is that algebra homomorphisms have to send the unit to the unit. We have $p\left(1_{A}, 1_{B}\right)=1_{A}$, and we also have $p\left(a_{1} a_{2}, b_{1} b_{2}\right)=$ $a_{1} a_{2}=p\left(a_{1}, b_{1}\right) p\left(a_{2}, b_{2}\right)$, so p is an algebra homomorphism. But the inclusion i sends 1_{A} to $\left(1_{A}, 0\right)$ which is not the unit in $A \oplus B$.

Exercise 4. Let A and B be algebras. Suppose M is an A-module and N is an A-module. The vector space $M \oplus N$ is naturally an $A \oplus B$-module, with action of $A \oplus B$ given by

$$
(a, b) \cdot(m, n)=(a \cdot m, b \cdot n)
$$

(a) Let X be an $A \oplus B$-module. Show that multiplication by $e_{A}:=\left(1_{A}, 0\right)$ defines an $A \oplus B$-linear projection map

$$
e_{A}: X \rightarrow X
$$

(b) Write $e_{A} X$ for the image of multiplication by e_{A}. Show that for $x \in e_{A} X$ we have $(a, b) \cdot x=(a, 0) \cdot x$ for all $a \in A, b \in B$.
(c) Show that there is an A-module M and a B-module N such that X is isomorphic to $M \oplus N$ as an $A \oplus B$-module.
(d) Describe the simple modules for $A \oplus B$ in terms of the simple modules for A and the simple modules for B.

Solution 4. (a) First we check that the map

$$
e_{A}: X \rightarrow X
$$

is $A \oplus B$ linear. If $(a, b) \in A \oplus B$ we have $e_{A}(a, b)=(a, 0)=(a, b) e_{A}$, so e_{A} is in the centre of $A \oplus B$. In particular, multiplication by e_{A} is an $A \oplus B$ linear map. Now we check that e_{A} is a projection: we have $e_{A} \circ e_{A}(a, b)=e_{A}(a, 0)=(a, 0)=e_{A}(a, b)$, so it is indeed a projection.
(b) If x is in the image of e_{A} then $x=e_{A} y$ for some $y \in A$. So $(a, b) x=$ $(a, b) e_{A} y=(a, 0) y=(a, 0) e_{A} y=(a, 0) x$.
(c) Define e_{B} to be multiplication by $\left(0,1_{B}\right)$. We claim that the image of e_{B} is equal to the kernel of e_{A}. Indeed, we have $e_{A} e_{B}=(0,0)$, so the image of e_{B} is contained in the kernel of e_{A}. Conversely, if $e_{A} x=0$, we have $x=\left(1_{A}, 1_{B}\right) x=e_{A} x+e_{B} x=e_{B} x$, so x is in the image of e_{B}. Since e_{A} is an $A \oplus B$-linear projection, we have an isomorphism of $A \oplus B$-modules $X=e_{A} X \oplus \operatorname{ker}\left(e_{A}\right)=e_{A} X \oplus e_{B} X$ (by Lemma 2.1 in the lecture notes). We let $M=e_{A} X$ with action of A given by $a \cdot x=(a, 0) \cdot x$. Similarly, we let $N=e_{B} X$ with action of B given by $b \cdot x=(0, b) \cdot x$. Then we have an isomorphism of $A \oplus B$-modules $X \cong M \oplus N$.
(d) Suppose X is a simple $A \oplus B$ module. $e_{A} X$ is a submodule of X, so it is either equal to X or $\{0\}$. If $e_{A} X=0$ then $X=e_{B} X$. So we have either $X=e_{A} X$ or $X=e_{B} X$.

So X is isomorphic to either a simple A-module M, or a simple B module N, where we think of them as $A \oplus B$ modules with action given by $(a, b) x=(a, 0) x$ or $(a, b) x=(0, b) x$ respectively. Note that if M or N was not simple, then X would not be simple, so this gives the simplicity of M or N.

Exercise 5. Show that the matrix algebra $M_{n}(\mathbb{C})$ is isomorphic to its own opposite algebra.

Solution 5. The transpose map gives an isomorphism $M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})^{o p}$, since $(M N)^{t}=N^{t} M^{t}$.

Exercise 6. (a) What is the centre of $M_{n}(\mathbb{C})$?
Hint: $M_{n}(\mathbb{C})$ has a basis given by matrices $E_{i j}$ with a 1 in the (i, j) entry and 0 everywhere else. Work out what it means for a matrix to commute with $E_{i j}$.
(b) If A and B are algebras, show that $Z(A \oplus B)=Z(A) \oplus Z(B)$.
(c) Let n_{1}, \ldots, n_{r} be positive integers. What is the centre of the algebra

$$
\bigoplus_{i=1}^{r} M_{n_{i}}(\mathbb{C}) ?
$$

Solution 6. (a) Let's follow the hint. Let $M \in M_{n}(\mathbb{C})$. Then $E_{i j} M$ is the matrix whose i th row is the j th row of M, and the other entries are zero. On the other hand, $M E_{i j}$ is the matrix whose j th column is the i th column of M.

Suppose $E_{i j} M=M E_{i j}$. Then comparing the (i, j) entries of these matrices we get $M_{i} i=M_{j} j$. The other entries in the matrices are all zero. We conclude that if $E_{i j} M=M E_{i j}$ for all i, j then M must be equal to λI_{n} for $\lambda \in \mathbb{C}$ (where I_{n} is the $n \times n$ identity matrix). So the centre of $M_{n}(\mathbb{C})$ is just given by the scalar matrices λI_{n}.
(b) Suppose $a \in Z(A)$ and $b \in Z(B)$. Then it's easy to check that $(a, b) \in$ $Z(A \oplus B)$, so we have $Z(A) \oplus Z(B) \subset Z(A \oplus B)$. Conversely, if $(a, b) \in$ $Z(A \oplus B)$ we have $(a, b)(x, 0)=(x, 0)(a, b)$ for all $x \in A$ which implies that $a x=x a$ for all $x \in A$. So $a \in Z(A)$. Similarly, we deduce that $b \in Z(B)$. So we get that $Z(A \oplus B)=Z(A) \oplus Z(B)$.
(c) By applying parts (a) and (b) we deduce that the centre of $\bigoplus_{i=1}^{r} M_{n_{i}}(\mathbb{C})$ is given by $\bigoplus_{i=1}^{r} \mathbb{C} I_{n_{i}} \cong \mathbb{C}^{\oplus r}$.

Exercise 7. Let A be an algebra. Show that the map $f \mapsto f\left(1_{A}\right)$ gives an isomorphism of algebras between $\operatorname{Hom}_{A}(A, A)$ and $A^{o p}$.

Solution 7. First we show that this map is an algebra homomorphism. The identity map gets sent to 1_{A}, and we have $f \circ g\left(1_{A}\right)=f\left(g\left(1_{A}\right)\right)=g\left(1_{A}\right) f\left(1_{A}\right)$.

Next we show that the map is injective. If $f\left(1_{A}\right)=0$, then $f(a)=a \cdot f\left(1_{A}\right)=0$ for all $a \in A$ so $f=0$.

Finally, we show that the map is surjective. If $x \in A^{o p}$ then we consider the $\operatorname{map} f: A \rightarrow A$ given by $f(a)=a \cdot x$. This is an A-linear map, and $f\left(1_{A}\right)=x$.

Exercise 8. Let $A=\mathbb{C}[x] /\left(x^{2}\right)$ - recall that this has as a basis $\{1, x\}$, with 1 a unit and $x^{2}=0$. Show that A itself is not a semisimple A-module.
Solution 8. Consider the submodule $M=\mathbb{C} x \subset A$. This is a submodule because $1 \cdot x=x$ and $x \cdot x=0$, so M is A-stable. We claim that M does not have a complementary submodule in A. Suppose $N \subset A$ is a submodule with $M+N=A$. In order for M and N to span A, we must have an element $\lambda 1+\mu x \in N$ with $\lambda \in \mathbb{C}^{\times}$ (i.e. $\lambda \neq 0$) and $\mu \in \mathbb{C}$. Since N is a submodule, we have $\lambda^{-1} x(\lambda 1+\mu x)=x \in N$ which implies that $x \in M \cap N$. We conclude that M does not have a complementary submodule in A.

