M3/4/5P12 PROBLEM SHEET 4

Please send any corrections or queries to j.newton@imperial.ac.uk.

Exercise 1. Let G be a finite group, and $g \in G$ an element of order 2. Let V be a representation of G. Show that $\chi_V(g)$ is an integer and that

$$\chi_V(g) \equiv \dim V \pmod{2}$$

Hint: recall that $\chi_V(g)$ *is a sum of eigenvalues of* $\rho_V(g)$ *.*

Solution 1. Since g is an element of order 2, we have $\rho_V(g)^2 = \operatorname{id}_V$. So the eigenvalues of $\rho_V(g)$ are equal to 1 or -1. Therefore $\chi_V(g)$ (which is the sum of these eigenvalues) is a sum of dim V integers equal to 1 or -1. Since $-1 \equiv 1 \pmod{2}$ we get that $\chi_V(g)$ is an integer which is $\equiv \dim(V) \pmod{2}$.

Exercise 2. Let $\chi : G \to \mathbb{C}$ be a function. Define ker χ by

$$\ker \chi = \{g \in G : \chi(g) = \chi(e)\}.$$

Now suppose V is a representation of G, with $\rho_V : G \to \operatorname{GL}(V)$ the homomorphism giving the action of G on V, and χ_V the character of V.

Show that $\ker \chi_V = \ker \rho_V$.

Solution 2. Corollary 3.1 in the lecture notes says that $\rho_V(g) = \mathrm{id}_V$ if and only if $\chi_V(g) = \dim(V)$. Since $\dim(V) = \chi_V(e)$, this says that the kernel of ρ_V is equal to the kernel of χ_V .

Exercise 3. In this exercise we are going to work out the character table of $A_4 \subset S_4$, the group of even permutations of $\{1, 2, 3, 4\}$. There are 4 conjugacy classes in A_4 , with representatives e, (123), (132), (12)(34) and sizes 1, 4, 4, 3 respectively.

(1) Show that A_4 has an irreducible representation U of dimension 3 with character given by

$$\chi_U(e) = 3, \chi_U(123) = \chi_U(132) = 0, \chi_U((12)(34)) = -1.$$

Hint: restrict a three-dimensional irrep of S_4 *to the subgroup* A_4

(2) Show that A_4 has three isomorphism classes of irreps of dimension 1, one isomorphism class of irreps of dimension 3 and these are all the irreps.

You've now shown that the character table of A_4 looks like:

	e	(123)	(132)	(12)(34)
χ_{triv}	1	1	1	1
χ_U	3	0	0	-1
χ_3	1	?	?	?
χ_4	1	?	?	?

- (3) Show that $\chi_3((12)(34)) = \chi_4((12)(34)) = 1$. Hint: use the fact that $\langle \chi, \chi' \rangle = 0$ if $\chi \neq \chi'$ are distinct irreducible characters.
- (4) Fill in the rest of the character table. *Hint: if* χ *is the character of a one-dimensional rep then* $\chi(123)^3 = \chi(132)^3 = 1$. We also know that $\langle \chi_3, \chi_{triv} \rangle = \langle \chi_4, \chi_{triv} \rangle = 0$.

Date: Sunday 6th March, 2016.

M3/4/5P12 PROBLEM SHEET 4

- (5) (More advanced question) Show that the representations with characters χ_3 and χ_4 are obtained by inflating representations of a quotient of A_4 which is isomorphic to the cyclic group C_3 .
- Solution 3. (1) We know that S_4 has a three-dimensional irreducible representation, and we wrote down its character in lectures: it's given by $\chi(g) =$ (the number of fixed points of the permutation g)-1. Restricting this rep of S_4 to A_4 gives a rep of A_4 , and the character is given by restricting the character of the rep of S_4 to A_4 .
 - (2) A_4 has size 12, and we just showed there's an irrep of dimension 3. The formula $12 = \sum_{i=1}^{r} d_i^2$ tells us that there must be 3 one-dimensional irreps and these give all the isomorphism classes of irreps.
 - (3) Since $\langle \chi_3, \chi_U \rangle = \langle \chi_4, \chi_U \rangle = 0$, we get that $\chi_3(e) \cdot 3 + 3 \cdot \chi_3((12)(34)) \cdot (-1) =$ 0 and similarly for χ_4 , which implies that $\chi_3((12)(34)) = \chi_4((12)(34)) = 1$.
 - (4) (123) and (132) have order 3, so the one-dimensional characters χ_3, χ_4 give cube roots of unity on (123) and (132). Since $(132) = (123)^{-1}$ we also get that $\chi(132) = \overline{\chi(123)}$. We conclude that the character table looks like

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/	$\lambda$ ( -)		
	e	(123)	(132)	(12)(34)
$\chi_{triv}$	1	1	1	1
$\chi_U$	3	0	0	-1
$\chi_3$	1	a	$\overline{a}$	1
$\chi_4$	1	b	$\overline{b}$	1
-	· -	-	-	-

where a, b are third roots of unity. Since  $\chi_3 \neq \chi_4$  we have  $a \neq b$  and we also have  $a \neq 1, b \neq 1$ , since the characters are not trivial. So we can, without loss of generality, assume that  $a = e^{2\pi i/3}$  and  $b = e^{4\pi i/3}$ . So we finally get

	e	(123)	(132)	(12)(34)
$\chi_{triv}$	1	1	1	1
$\chi_U$	3	0	0	-1
$\chi_3$	1	$\omega$	$\omega^{-1}$	1
$\chi_4$	1	$\omega^{-1}$	$\omega$	1
where a	$\omega =$	$e^{2\pi i/3}$ .		

(5) We can read of the kernel of the representations with characters  $\chi_3$  and  $\chi_4$  from the kernel of the characters (see exercise 2). We have ker  $\chi_3 =$  $\ker \chi_4 = \{e, (12)(34), (13)(24), (14)(23)\} = H$ , the normal subgroup of order 4. The quotient group  $A_4/H$  is isomorphic to the cyclic group of order 3 (because this is the only group of order 3, up to isomorphism!). So these representations are inflated from this quotient group (and they are inflated from the two non-trivial characters...).

Exercise 4. (1) Let U be the three-dimensional irrep of  $A_4$  found in the previous exercise. Find the decomposition of  $U \otimes U$  into irreducibles.

(2) Let V be the two-dimensional irrep of  $S_4$  found in lectures. Find the decomposition into irreducibles of the restriction of V to a representation of  $A_4$ .

Solution 4. (1) The character  $\chi_{U\otimes U}$  is given by

e (123) (132) (12)(34) 1

0 0  $\chi_U \cdot \chi_U \mid 9$ 

Now we need to compute  $\langle \chi_U \cdot \chi_U, \chi_i \rangle$  for each irreducible character  $\chi_i$ . We have  $\langle \chi_U \cdot \chi_U, \chi_{triv} \rangle = \langle \chi_U \cdot \chi_U, \chi_3 \rangle = \langle \chi_U \cdot \chi_U, \chi_4 \rangle = \frac{1}{12}(9+3) = 1$ and  $\langle \chi_U \cdot \chi_U, \chi_U \rangle = \frac{1}{12}(27-3) = 2$ , so we get

$$U \otimes U \cong U^{\oplus 2} \oplus V_{triv} \oplus V_3 \oplus V_4.$$

 $\mathbf{2}$ 

(2) Let's recall the character of V (restricted to 
$$A_4$$
):  
 $\begin{pmatrix} e & (123) & (132) & (12)(34) \\ \chi_V & 2 & -1 & -1 & 2 \\ \text{so we have } \chi_V = \chi_3 + \chi_4, \text{ and } V \cong V_3 \oplus V_4. \end{cases}$ 

**Exercise 5.** Let G be a finite group such that every irrep of G is one-dimensional. Show that G is Abelian. *Hint: how many conjugacy classes does G have?* 

**Solution 5.** The number of irreducible characters equals the number of conjugacy classes (actually for this question it's enough to know that the number of irreducible characters is  $\leq$  the number of conjugacy classes). Since every irrep has dimension 1, the formula  $|G| = \sum_{i=1}^{r} d_i^2 = \sum_{i=1}^{r} 1$  tells us that the number of irreducible characters is equal to |G|. So there (at least) |G| conjugacy classes in G. This is only possible if every conjugacy class has size one. In other words, we have  $hgh^{-1} = g$  for all  $g, h \in G$ , so hg = gh and G is Abelian.

**Exercise 6.** Let G be a finite group, with irreducible characters  $\chi_1, \chi_2, \ldots, \chi_r$ . Fix an element  $g \in G$ . Show that g is in the centre of G (i.e. gh = hg for all  $h \in G$ ) if and only if

$$\sum_{i=1}^{r} \chi_i(g) \overline{\chi_i(g)} = |G|.$$

Solution 6. Recall the column orthogonality relation:

$$\sum_{i=1}^{r} \chi_i(g) \overline{\chi_i(g)} = \frac{|G|}{|C(g)|}.$$

So we have

$$\sum_{i=1}^{r} \chi_i(g) \overline{\chi_i(g)} = |G|$$

if and only if |C(g)| = 1, which happens if and only if  $hgh^{-1} = g$  for all  $h \in G$ , i.e. if g is in the centre of G.

**Exercise 7.** (1) Write down the character table of  $S_3$ .

- (2) Consider the class function  $\phi : S_3 \to \mathbb{C}$  defined by  $\phi(e) = 4, \phi(12) = 0, \phi(123) = -5$ . Write  $\phi$  as a linear combination of irreducible characters of  $S_3$ .
- (3) Is  $\phi$  the character of a representation of  $S_3$ ?

Solution 7. (1) Here is the character table:  $\begin{array}{c|c}
e & (12) & (123) \\
\chi_{triv} & 1 & 1 & 1 \\
\chi_{sign} & 1 & -1 & 1
\end{array}$ 

 $\begin{array}{c|c} \chi_{Sign} \\ \chi_{V} \\ \end{array} \begin{vmatrix} 1 \\ 2 \\ 0 \\ -1 \\ 1 \\ \end{array}$ 

(2) We have  $\langle \phi, \chi_{triv} \rangle = \frac{1}{6}(4+2\cdot(-5)) = -1, \ \langle \phi, \chi_{sign} \rangle = \frac{1}{6}(4+2\cdot(-5)) = -1, \ \langle \phi, \chi_V \rangle = \frac{1}{6}(8+2\cdot(-5)\cdot(-1)) = 3, \text{ so}$ 

$$\phi = 3\chi_V - \chi_{triv} - \chi_{sign}.$$

(3) Since the irreducible characters are linearly independent in the vector space of class functions, there is a unique way to write  $\phi$  as a linear combination of irreducible characters. Some of the coefficients are negative, but a character of a representation has all its coefficients non-negative (they are dimensions of vector spaces). So  $\phi$  is not a character of a rep.