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Please send any corrections or queries to |j.newton@imperial.ac.ukl

Exercise 1. (1) Let V be a finite dimensional vector space. Consider the map
a:V — (V)
defined by letting a(v) be the linear map
a(v) : V¥ = C

given by a(v)(d) = d(v), for § € V*. Show that this map is an isomorphism
of vector spaces.
(2) If V is a representation of G, show that « is a G-linear isomorphism.

Solution 1. (1) Tt’s not hard to check that « is a linear map. Since V and
(V*)* have the same dimension, it suffices to show that « is injective. If
a(v) = 0 then 6(v) = 0 for all 6 € V*. This implies that v = 0: if v # 0
then we can find a basis v = vy, va, ... v, for V and consider §,, € V* given
by 0,(v;) =1if i =1 and 6,(v;) =01if i > 1.
(2) We need to check that py««(g) o @ = ao py(g). We have a(py(g)v) € V**
given by

a(pv(9)v)d = d(pv(9)v) = (pv+(971)d)(v) = alv)(pv-(g971)d)
On the other hand py«(g)a(v) is given by the map

§ = a(v)(pv-(97")3)

so we have the desired equality.

Exercise 2. Let G be a finite group and consider the regular representation CG.
Show that the dual (CG)* is isomorphic to CG as a representation of G.

Solution 2. Since CG = @, WP ImW where the sum is over distinct isomor-
phism classes of irreps, the dual (CG)* is isomorphic to

@(W*)@dimw _ @(W*)@dim(W*)'

w w

Since W* is irreducible and (W*)* =2 W the map W — W* is just a permutation
(of order 2) of the set of isomorphism classes of irreducible representations, and so

we have
@(W*)GB dim(W™) ~ @ we dim W.
w w
As a consequence, we have (CG)* = CG.
Alternatively, you can check directly that if djg] is the dual basis to the usual
basis {[g] : ¢ € G} then the map

lg] = dig)

is a G-linear isomorphism between CG and (CG)*.

Yet another alternative is to consider the matrix representation: the matrices
M given by pca(g) with respect to the usual basis are permutation matrices: every
row and column contains a single 1 with zeros everywhere else, and you can check
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that M M? is the identity matrix, so M = M ~* and the dual matrix representation
is the same as the original matrix representation.

The next two exercises explain a way to think about tensor products of vector
spaces without fixing bases. They are not essential for the course.

Exercise 3. Let V, W and X be complex vector spaces. A map
[ VxW-—>X

is called bilinear if it is linear in each variable separately. That is, f(avi +bvg, w) =
af(vi,w) 4+ bf (va, w) and f(v, aw; + bwse) = af(v,w1) + bf (v, ws) for a,b € C.
(1) Show that the map 7 : V x W — V ® W which takes (v,w) to v ® w is
a bilinear map. Note that we have implicitly fized bases of V,W to define
Vew.
(2) Show that for every bilinear map f : V x W — X there is a unique linear
map h: V ® W — X such that f = hom.
(3) This part is trickier Suppose ' : V. x W — U is a bilinear map, and for
every bilinear map f : V x W — X there is a unique linear map h: U — X
such that f = hon’. Show that there is a unique isomorphism ¢ : U — V@W
such that i o7’ = 7.
Remarks: Part (2) of the exercise says that tensor products are a way to turn
bilinear maps into linear maps.

We can also use this exercise to give an alternative (basis-independent) definition
of the tensor product. We say that a vector space U, together with a bilinear map
m: V. xW — U ‘s a tensor product’ of V and W if for every bilinear map
f:V xW — X there is a unique linear map h: V ® W — X such that f = hom.
Part (2) says that a tensor product of V and W exists (it’s the tensor product
V ® W we have already defined with a chosen basis of V' and W).

Part (3) says that a tensor product of V and W is unique up to unique isomor-
phism, so to all intents and purposes any two tensor products of V and W are the
same mathematical object.

Solution 3. As usual we fix bases A = {a1,...,an} and B = {by,...,b,} for V
and W.

(1) Tl just write out the proof of linearity in the first variable. We have
m(avy +bvg, w) = (avy+bv)@w. If we write v1 = Y, A\ja; and vo = ), pia;
then we have

avy + buy = Z(a)\i + bus)a;

and then it’s straightforward to check that
(av1 + bvg) @ w = Z(a)\i + bui)(a; @ w) = a(vy @ w) + b(ve @ w).

(2) First we check uniqueness: if f = hoxw and f = h’ o7 then we have
fv,w) =h(v@w) =h (vw). In particular, h and A’ are equal on a basis
for V@ W, so h = h;.

Next we check existence: we define h by h(a; ® b;) = f(a;,b;). We
now need to check that f = h ow. In other words, we need to check
that h(v ® w) = f(v,w) for all v € V;w € W. Writing v = ). \ja; and
w =}, p1;b; we have by definition that v®@w =}, ; Aipj(a; ®b;). By the
definition of h we have

h(v@w) = Nip; f(ai, bj).
i
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By bilinearity of f this is also equal to f(v,w), so we are done.

We set X = V®W and f = w. Then there is a unique linear map
h:U — V ®W such that 7 = hon’. We now need to check that h is
an isomorphism. We apply part (2) to the bilinear map #’. This tells us
that there is a unique linear map ' : V@ W — U such that 7’ = b/ o 7.
If we consider the map L = h' o h we get a linear map L : U — U such
that L o7’ = 7/. The map idy also satisfies this, so by our uniqueness
assumption we have L = idy. Applying the same argument to hoh’ we get
that h and A’ are inverse to each other, so h is an isomorphism.

Exercise 4. Let V, W be two vectors spaces, with bases A and B. Let C[V x W]
be the (infinite dimensional) complex vector space with basis given by symbols
{v*xw:
to v @ w.

v € V,w € W}. Define a linear map C[V x W] — V @ W by taking v * w

Let E C C[V x W] be the subspace spanned by the elements

(avy + bug) x w — a(vy * w) — blve * w), v * (awy + bws) — a(v *x wy) — b(v * wa)

with a,b € C, v;,v € V and w;,w € W.
Note that a map of sets f: V x W — X gives a linear map
F:ClVxW]—X

defined by F(vxw) = f(v,w). Show that f is bilinear if and only if F/(u) = 0

for all u € F.

Show that the map (v, w) — v x w defines a bilinear map from V x W to

the quotient vector space C[V x W|/E.

Using Exercise 3, show that there is a unique isomorphism
i:C[VxW]/E—=VeW

satisfying i(v*w + F) = v @ w.

Solution 4. (1) The definition of bilinearity unwinds to the statement that

F(u)=0forueE.

Let X = C[VxW]/E and let f : VxW — X be the map which takes (v, w)
to vxw+E. The map F is then the quotient map C[V x W] — C[V xW]/E.
Since this map is zero on E, applying part (1) we conclude that f is bilinear.
We apply part (3) of Exercise (3), with U = C[V x W]/E.

Exercise 5. (1) Let V and W be representations of G and suppose W has

dimension one. Show that V®W is irreducible if and only if V' is irreducible.
Let V and W be representations of G. Show that V' ® W is isomorphic as
a representation of G to W ® V.

Solution 5. (1) Suppose that V is reducible, and U C V is a proper subspace.

Then we can think of U @ W as a subspace of V@ W: let {a1,...,a;} be a
basis of U and extend to a basis {ay, ..., an} for V. Let b be a basis vector
for W. Then the vectors a; ® b for 1 < i < [ span a subrepresentation of
V ® W which is isomorphic to U ® W. So V ® W is also reducible.

Conversely if V ® W is reducible, it has a subrepresentation U’. Let
x1,...7; be a basis for U’. Since every element of V' @ W is of the form
v ® b with v € V we can write z; = v; ® b. Now it is straightforward to
check that the v; span a proper subrepresentation of V.

Alternatively we can just apply the first half of our answer again, since
(VeaW)eW*x=V.
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(2) The map which takes a; ® b; to b; ® a; defines a G-linear isomorphism
between V@ W and W @ V.
Exercise 6. (1) Let V be a representation of G and consider the map f :

VeV —=>V®V given by f(v; ® vg) = ve @ v1. Show that f is a G-linear
map.

Define SV to be the subspace of z € V ® V such that f(z) = x. Define
A%V to be the subspace of * € V ® V such that f(z) = —x. Show that
52V and A2V are subrepresentations of V@V and V@V = 52V ¢ A?V.
Show that (1/2)(f+idy ) is a projection with image S?V and (1/2)(f —idy )
is a projection with image A2V .

Show that if A = {a1,...,a,} is a basis of V, then {a; ®a; —a; ®a; : i < j}
is a basis of A2V. What are the dimensions of S?V and A2V in terms of
dim(V) = n? Can you find a basis for S?V?

Suppose g € G and Aq,..., A\, are the eigenvalues (with multiplicity) of
pv(g). Show that the eigenvalues of pa2y (g) are {A\A; 14 < j}.

Show that the characters x 2y and x g2y are given by

)= Xv(9)* — xv(g®) )= (9 +xv(g?)
2 2 '

Xa2v (g Xs2v (g

Solution 6. (1) It’s not hard to check that f is a linear map. We have

flovev(g)vi@ve) = f(pv(g)vi®@pyv (9)va) = pv(9)v2@pv (9)v1 = pvev(9)f(vi®va)

(2)

so f is G-linear.

Note that fo f =idygy. So f is diagonalisable with eigenvalues 1 and —1.
Since S?V = ker(f —idygy) and A2V = ker(f +idygy) are the kernels of
G-linear maps, they are subrepresentations. Since they also give the two
eigenspaces of f we have

VeV xSV aa?V.

Since (1/2)(f + idy) is zero on A2V and the identity on S2V/, it is a pro-
jection with image S?V. The same argument holds for (1/2)(f —idy).
Applying (1/2)(f — idy) to the basis vectors a; ® a;j, we see that A2V
is spanned by vectors a; ® a; — a; ® a;. So it is spanned by the vectors
{a; ® a; —a; ® a; : i < j}. These vectors are linearly independent since
2icj Nijlai ®aj —aj ®a;) = 0 implies that each A; ; is equal to zero (it is
a sum of distinct basis vectors).

We conclude that the dimension of A%V is (1/2)n(n—1). Since dim(V ®
V) = n? we also get that dim S?V = (1/2)n(n + 1). A basis for S2V is
given by {a; ® a; +a; ®a; 1 i < j}.

Letting A be a basis of eigenvectors for py (g), we get that {a;®a; —a;®aq; :
i < j} is a basis for A2V and the eigenvalue of p2y/(g) on a; ®a; = a; @ a;
is A\;A;, which gives the desired (multi)set of eigenvalues.

We have xv(g) = A1 + -+ + A, and

i=1 i#£]
So
xv(9)® = xv(g®) =Y Nidj = 2xa2v (9)
i#)
which gives the desired formular for y.2y. So get xg2y, we use the fact
that

Xs2v + XA2v = Xvev = XVXV-
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Exercise 7. Let G be a group acting on a finite set 2. Recall that we have defined
a representation CQ of G. Show that the character xcq satisfies: xcq(g) is equal
to the number of fixed points for g in €.

Solution 7. Think about the matrix for pca(g) with respect to the basis {[w] :
w € Q}. The diagonal entry of this matrix corresponding to the basis element [w] is
equal to 1 if gw = w and equal to 0 otherwise. So the trace is equal to the number
of w with gw = w, or in other words the number of fixed points of g.

Exercise 8. (1) Let G be a finite group. Show that if G is simple (i.e. G is
non-trivial and the only normal subgroups of G are {e} and G) then a
representation of G is either trivial or faithful.

(2) Suppose every non-trivial irreducible representation of a finite group G is
faithful. Show that G is a simple group. Hint: if G is not simple then there
is a normal subgroup N of G such that G/N is simple.

Solution 8. (1) If a representation V is not faithful then the kernel of py :
G — GL(V) is a normal subgroup of G which is not equal to {e}. Since G
is simple, this subgroup must be equal to G. So V is trivial.

(2) Suppose G is not simple. Then there is a normal subgroup N of G with
G/N simple. There is a non-trivial irreducible representation V' of G/N
(since G/N is non-trivial). By restriction along the map G — G/N we get
a non-trivial representation of G on the vector space V: it is irreducible
since if U C V is a G-stable subspace it is also a G/N stable subspace. So
by our assumption V is a faithful representation of G. But N acts trivially
on V', which is a contradiction.



