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Please send any corrections or queries to j.newton@imperial.ac.uk.

Exercise 1. (1) Let V be a finite dimensional vector space. Consider the map

α : V → (V ∗)∗

defined by letting α(v) be the linear map

α(v) : V ∗ → C
given by α(v)(δ) = δ(v), for δ ∈ V ∗. Show that this map is an isomorphism
of vector spaces.

(2) If V is a representation of G, show that α is a G-linear isomorphism.

Solution 1. (1) It’s not hard to check that α is a linear map. Since V and
(V ∗)∗ have the same dimension, it suffices to show that α is injective. If
α(v) = 0 then δ(v) = 0 for all δ ∈ V ∗. This implies that v = 0: if v 6= 0
then we can find a basis v = v1, v2, . . . vn for V and consider δv ∈ V ∗ given
by δv(vi) = 1 if i = 1 and δv(vi) = 0 if i > 1.

(2) We need to check that ρV ∗∗(g) ◦ α = α ◦ ρV (g). We have α(ρV (g)v) ∈ V ∗∗
given by

α(ρV (g)v)δ = δ(ρV (g)v) = (ρV ∗(g−1)δ)(v) = α(v)(ρV ∗(g−1)δ)

On the other hand ρV ∗∗(g)α(v) is given by the map

δ 7→ α(v)(ρV ∗(g−1)δ)

so we have the desired equality.

Exercise 2. Let G be a finite group and consider the regular representation CG.
Show that the dual (CG)∗ is isomorphic to CG as a representation of G.

Solution 2. Since CG ∼=
⊕

W W⊕ dimW where the sum is over distinct isomor-
phism classes of irreps, the dual (CG)∗ is isomorphic to⊕

W

(W ∗)⊕ dimW =
⊕
W

(W ∗)⊕ dim(W∗).

Since W ∗ is irreducible and (W ∗)∗ ∼= W the map W 7→ W ∗ is just a permutation
(of order 2) of the set of isomorphism classes of irreducible representations, and so
we have ⊕

W

(W ∗)⊕ dim(W∗) ∼=
⊕
W

W⊕ dimW .

As a consequence, we have (CG)∗ ∼= CG.
Alternatively, you can check directly that if δ[g] is the dual basis to the usual

basis {[g] : g ∈ G} then the map

[g] 7→ δ[g]

is a G-linear isomorphism between CG and (CG)∗.
Yet another alternative is to consider the matrix representation: the matrices

M given by ρCG(g) with respect to the usual basis are permutation matrices: every
row and column contains a single 1 with zeros everywhere else, and you can check
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that MM t is the identity matrix, so M = M−t and the dual matrix representation
is the same as the original matrix representation.

The next two exercises explain a way to think about tensor products of vector
spaces without fixing bases. They are not essential for the course.

Exercise 3. Let V , W and X be complex vector spaces. A map

f : V ×W → X

is called bilinear if it is linear in each variable separately. That is, f(av1 +bv2, w) =
af(v1, w) + bf(v2, w) and f(v, aw1 + bw2) = af(v, w1) + bf(v, w2) for a, b ∈ C.

(1) Show that the map π : V ×W → V ⊗W which takes (v, w) to v ⊗ w is
a bilinear map. Note that we have implicitly fixed bases of V,W to define
V ⊗W .

(2) Show that for every bilinear map f : V ×W → X there is a unique linear
map h : V ⊗W → X such that f = h ◦ π.

(3) This part is trickier Suppose π′ : V ×W → U is a bilinear map, and for
every bilinear map f : V ×W → X there is a unique linear map h : U → X
such that f = h◦π′. Show that there is a unique isomorphism i : U → V⊗W
such that i ◦ π′ = π.

Remarks: Part (2) of the exercise says that tensor products are a way to turn
bilinear maps into linear maps.

We can also use this exercise to give an alternative (basis-independent) definition
of the tensor product. We say that a vector space U , together with a bilinear map
π : V × W → U ‘is a tensor product’ of V and W if for every bilinear map
f : V ×W → X there is a unique linear map h : V ⊗W → X such that f = h ◦ π.
Part (2) says that a tensor product of V and W exists (it’s the tensor product
V ⊗W we have already defined with a chosen basis of V and W ).

Part (3) says that a tensor product of V and W is unique up to unique isomor-
phism, so to all intents and purposes any two tensor products of V and W are the
same mathematical object.

Solution 3. As usual we fix bases A = {a1, . . . , am} and B = {b1, . . . , bn} for V
and W .

(1) I’ll just write out the proof of linearity in the first variable. We have
π(av1+bv2, w) = (av1+bv2)⊗w. If we write v1 =

∑
i λiai and v2 =

∑
i µiai

then we have

av1 + bv2 =
∑
i

(aλi + bµi)ai

and then it’s straightforward to check that

(av1 + bv2)⊗ w =
∑
i

(aλi + bµi)(ai ⊗ w) = a(v1 ⊗ w) + b(v2 ⊗ w).

(2) First we check uniqueness: if f = h ◦ π and f = h′ ◦ π then we have
f(v, w) = h(v⊗w) = h′(v⊗w). In particular, h and h′ are equal on a basis
for V ⊗W , so h = h;.

Next we check existence: we define h by h(ai ⊗ bj) = f(ai, bj). We
now need to check that f = h ◦ π. In other words, we need to check
that h(v ⊗ w) = f(v, w) for all v ∈ V,w ∈ W . Writing v =

∑
i λiai and

w =
∑

j µjbj we have by definition that v⊗w =
∑

i,j λiµj(ai⊗ bj). By the
definition of h we have

h(v ⊗ w) =
∑
i,j

λiµjf(ai, bj).
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By bilinearity of f this is also equal to f(v, w), so we are done.
(3) We set X = V ⊗ W and f = π. Then there is a unique linear map

h : U → V ⊗W such that π = h ◦ π′. We now need to check that h is
an isomorphism. We apply part (2) to the bilinear map π′. This tells us
that there is a unique linear map h′ : V ⊗W → U such that π′ = h′ ◦ π.
If we consider the map L = h′ ◦ h we get a linear map L : U → U such
that L ◦ π′ = π′. The map idU also satisfies this, so by our uniqueness
assumption we have L = idU . Applying the same argument to h◦h′ we get
that h and h′ are inverse to each other, so h is an isomorphism.

Exercise 4. Let V , W be two vectors spaces, with bases A and B. Let C[V ×W ]
be the (infinite dimensional) complex vector space with basis given by symbols
{v ∗ w : v ∈ V,w ∈ W}. Define a linear map C[V ×W ]→ V ⊗W by taking v ∗ w
to v ⊗ w.

(1) Let E ⊂ C[V ×W ] be the subspace spanned by the elements

(av1 + bv2) ∗ w − a(v1 ∗ w)− b(v2 ∗ w), v ∗ (aw1 + bw2)− a(v ∗ w1)− b(v ∗ w2)

with a, b ∈ C, vi, v ∈ V and wi, w ∈W .
Note that a map of sets f : V ×W → X gives a linear map

F : C[V ×W ]→ X

defined by F (v∗w) = f(v, w). Show that f is bilinear if and only if F (u) = 0
for all u ∈ E.

(2) Show that the map (v, w) 7→ v ∗ w defines a bilinear map from V ×W to
the quotient vector space C[V ×W ]/E.

(3) Using Exercise 3, show that there is a unique isomorphism

i : C[V ×W ]/E → V ⊗W
satisfying i(v ∗ w + E) = v ⊗ w.

Solution 4. (1) The definition of bilinearity unwinds to the statement that
F (u) = 0 for u ∈ E.

(2) Let X = C[V ×W ]/E and let f : V ×W → X be the map which takes (v, w)
to v∗w+E. The map F is then the quotient map C[V ×W ]→ C[V ×W ]/E.
Since this map is zero on E, applying part (1) we conclude that f is bilinear.

(3) We apply part (3) of Exercise (3), with U = C[V ×W ]/E.

Exercise 5. (1) Let V and W be representations of G and suppose W has
dimension one. Show that V ⊗W is irreducible if and only if V is irreducible.

(2) Let V and W be representations of G. Show that V ⊗W is isomorphic as
a representation of G to W ⊗ V .

Solution 5. (1) Suppose that V is reducible, and U ⊂ V is a proper subspace.
Then we can think of U ⊗W as a subspace of V ⊗W : let {a1, . . . , al} be a
basis of U and extend to a basis {a1, . . . , am} for V . Let b be a basis vector
for W . Then the vectors ai ⊗ b for 1 ≤ i ≤ l span a subrepresentation of
V ⊗W which is isomorphic to U ⊗W . So V ⊗W is also reducible.

Conversely if V ⊗ W is reducible, it has a subrepresentation U ′. Let
x1, . . . xl be a basis for U ′. Since every element of V ⊗W is of the form
v ⊗ b with v ∈ V we can write xi = vi ⊗ b. Now it is straightforward to
check that the vi span a proper subrepresentation of V .

Alternatively we can just apply the first half of our answer again, since
(V ⊗W )⊗W ∗ ∼= V .
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(2) The map which takes ai ⊗ bj to bj ⊗ ai defines a G-linear isomorphism
between V ⊗W and W ⊗ V .

Exercise 6. (1) Let V be a representation of G and consider the map f :
V ⊗ V → V ⊗ V given by f(v1 ⊗ v2) = v2 ⊗ v1. Show that f is a G-linear
map.

(2) Define S2V to be the subspace of x ∈ V ⊗ V such that f(x) = x. Define
∧2V to be the subspace of x ∈ V ⊗ V such that f(x) = −x. Show that
S2V and ∧2V are subrepresentations of V ⊗ V and V ⊗ V ∼= S2V ⊕ ∧2V .

(3) Show that (1/2)(f+idV ) is a projection with image S2V and (1/2)(f−idV )
is a projection with image ∧2V .

(4) Show that if A = {a1, . . . , an} is a basis of V , then {ai⊗aj−aj⊗ai : i < j}
is a basis of ∧2V . What are the dimensions of S2V and ∧2V in terms of
dim(V ) = n? Can you find a basis for S2V ?

(5) Suppose g ∈ G and λ1, . . . , λn are the eigenvalues (with multiplicity) of
ρV (g). Show that the eigenvalues of ρ∧2V (g) are {λiλj : i < j}.

(6) Show that the characters χ∧2V and χS2V are given by

χ∧2V (g) =
χV (g)2 − χV (g2)

2
χS2V (g) =

χV (g)2 + χV (g2)

2
.

Solution 6. (1) It’s not hard to check that f is a linear map. We have

f(ρV⊗V (g)v1⊗v2) = f(ρV (g)v1⊗ρV (g)v2) = ρV (g)v2⊗ρV (g)v1 = ρV⊗V (g)f(v1⊗v2)

so f is G-linear.
(2) Note that f ◦f = idV⊗V . So f is diagonalisable with eigenvalues 1 and −1.

Since S2V = ker(f − idV⊗V ) and ∧2V = ker(f + idV⊗V ) are the kernels of
G-linear maps, they are subrepresentations. Since they also give the two
eigenspaces of f we have

V ⊗ V ∼= S2V ⊕ ∧2V.

(3) Since (1/2)(f + idV ) is zero on ∧2V and the identity on S2V , it is a pro-
jection with image S2V . The same argument holds for (1/2)(f − idV ).

(4) Applying (1/2)(f − idV ) to the basis vectors ai ⊗ aj , we see that ∧2V
is spanned by vectors ai ⊗ aj − aj ⊗ ai. So it is spanned by the vectors
{ai ⊗ aj − aj ⊗ ai : i < j}. These vectors are linearly independent since∑

i<j λi,j(ai⊗ aj − aj ⊗ ai) = 0 implies that each λi,j is equal to zero (it is

a sum of distinct basis vectors).
We conclude that the dimension of ∧2V is (1/2)n(n−1). Since dim(V ⊗

V ) = n2 we also get that dimS2V = (1/2)n(n + 1). A basis for S2V is
given by {ai ⊗ aj + aj ⊗ ai : i ≤ j}.

(5) Letting A be a basis of eigenvectors for ρV (g), we get that {ai⊗aj−aj⊗ai :
i < j} is a basis for ∧2V and the eigenvalue of ρ∧2V (g) on ai⊗aj = aj ⊗ai
is λiλj , which gives the desired (multi)set of eigenvalues.

(6) We have χV (g) = λ1 + · · ·+ λn and

χV (g)2 = (λ1 + · · ·+ λn)2 =

n∑
i=1

λ2
i +

∑
i 6=j

λiλj .

So
χV (g)2 − χV (g2) =

∑
i 6=j

λiλj = 2χ∧2V (g)

which gives the desired formular for χ∧2V . So get χS2V we use the fact
that

χS2V + χ∧2V = χV⊗V = χV χV .
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Exercise 7. Let G be a group acting on a finite set Ω. Recall that we have defined
a representation CΩ of G. Show that the character χCΩ satisfies: χCΩ(g) is equal
to the number of fixed points for g in Ω.

Solution 7. Think about the matrix for ρCΩ(g) with respect to the basis {[ω] :
ω ∈ Ω}. The diagonal entry of this matrix corresponding to the basis element [ω] is
equal to 1 if gω = ω and equal to 0 otherwise. So the trace is equal to the number
of ω with gω = ω, or in other words the number of fixed points of g.

Exercise 8. (1) Let G be a finite group. Show that if G is simple (i.e. G is
non-trivial and the only normal subgroups of G are {e} and G) then a
representation of G is either trivial or faithful.

(2) Suppose every non-trivial irreducible representation of a finite group G is
faithful. Show that G is a simple group. Hint: if G is not simple then there
is a normal subgroup N of G such that G/N is simple.

Solution 8. (1) If a representation V is not faithful then the kernel of ρV :
G→ GL(V ) is a normal subgroup of G which is not equal to {e}. Since G
is simple, this subgroup must be equal to G. So V is trivial.

(2) Suppose G is not simple. Then there is a normal subgroup N of G with
G/N simple. There is a non-trivial irreducible representation V of G/N
(since G/N is non-trivial). By restriction along the map G→ G/N we get
a non-trivial representation of G on the vector space V : it is irreducible
since if U ⊂ V is a G-stable subspace it is also a G/N stable subspace. So
by our assumption V is a faithful representation of G. But N acts trivially
on V , which is a contradiction.


