M3/4/5P12 PROBLEM SHEET 3

Please send any corrections or queries to j.newton@imperial.ac.uk
Exercise 1. (1) Let V be a finite dimensional vector space. Consider the map

$$
\alpha: V \rightarrow\left(V^{*}\right)^{*}
$$

defined by letting $\alpha(v)$ be the linear map

$$
\alpha(v): V^{*} \rightarrow \mathbb{C}
$$

given by $\alpha(v)(\delta)=\delta(v)$, for $\delta \in V^{*}$. Show that this map is an isomorphism of vector spaces.
(2) If V is a representation of G, show that α is a G-linear isomorphism.

Solution 1. (1) It's not hard to check that α is a linear map. Since V and $\left(V^{*}\right)^{*}$ have the same dimension, it suffices to show that α is injective. If $\alpha(v)=0$ then $\delta(v)=0$ for all $\delta \in V^{*}$. This implies that $v=0$: if $v \neq 0$ then we can find a basis $v=v_{1}, v_{2}, \ldots v_{n}$ for V and consider $\delta_{v} \in V^{*}$ given by $\delta_{v}\left(v_{i}\right)=1$ if $i=1$ and $\delta_{v}\left(v_{i}\right)=0$ if $i>1$.
(2) We need to check that $\rho_{V^{* *}}(g) \circ \alpha=\alpha \circ \rho_{V}(g)$. We have $\alpha\left(\rho_{V}(g) v\right) \in V^{* *}$ given by

$$
\alpha\left(\rho_{V}(g) v\right) \delta=\delta\left(\rho_{V}(g) v\right)=\left(\rho_{V^{*}}\left(g^{-1}\right) \delta\right)(v)=\alpha(v)\left(\rho_{V^{*}}\left(g^{-1}\right) \delta\right)
$$

On the other hand $\rho_{V^{* *}}(g) \alpha(v)$ is given by the map

$$
\delta \mapsto \alpha(v)\left(\rho_{V^{*}}\left(g^{-1}\right) \delta\right)
$$

so we have the desired equality.

Exercise 2. Let G be a finite group and consider the regular representation $\mathbb{C} G$. Show that the dual $(\mathbb{C} G)^{*}$ is isomorphic to $\mathbb{C} G$ as a representation of G.
Solution 2. Since $\mathbb{C} G \cong \bigoplus_{W} W^{\oplus \operatorname{dim} W}$ where the sum is over distinct isomorphism classes of irreps, the dual $(\mathbb{C} G)^{*}$ is isomorphic to

$$
\bigoplus_{W}\left(W^{*}\right)^{\oplus \operatorname{dim} W}=\bigoplus_{W}\left(W^{*}\right)^{\oplus \operatorname{dim}\left(W^{*}\right)}
$$

Since W^{*} is irreducible and $\left(W^{*}\right)^{*} \cong W$ the map $W \mapsto W^{*}$ is just a permutation (of order 2) of the set of isomorphism classes of irreducible representations, and so we have

$$
\bigoplus_{W}\left(W^{*}\right)^{\oplus \operatorname{dim}\left(W^{*}\right)} \cong \bigoplus_{W} W^{\oplus \operatorname{dim} W} .
$$

As a consequence, we have $(\mathbb{C} G)^{*} \cong \mathbb{C} G$.
Alternatively, you can check directly that if $\delta_{[g]}$ is the dual basis to the usual basis $\{[g]: g \in G\}$ then the map

$$
[g] \mapsto \delta_{[g]}
$$

is a G-linear isomorphism between $\mathbb{C} G$ and $(\mathbb{C} G)^{*}$.
Yet another alternative is to consider the matrix representation: the matrices M given by $\rho_{\mathbb{C} G}(g)$ with respect to the usual basis are permutation matrices: every row and column contains a single 1 with zeros everywhere else, and you can check
that $M M^{t}$ is the identity matrix, so $M=M^{-t}$ and the dual matrix representation is the same as the original matrix representation.

The next two exercises explain a way to think about tensor products of vector spaces without fixing bases. They are not essential for the course.
Exercise 3. Let V, W and X be complex vector spaces. A map

$$
f: V \times W \rightarrow X
$$

is called bilinear if it is linear in each variable separately. That is, $f\left(a v_{1}+b v_{2}, w\right)=$ $a f\left(v_{1}, w\right)+b f\left(v_{2}, w\right)$ and $f\left(v, a w_{1}+b w_{2}\right)=a f\left(v, w_{1}\right)+b f\left(v, w_{2}\right)$ for $a, b \in \mathbb{C}$.
(1) Show that the map $\pi: V \times W \rightarrow V \otimes W$ which takes (v, w) to $v \otimes w$ is a bilinear map. Note that we have implicitly fixed bases of V, W to define $V \otimes W$.
(2) Show that for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: V \otimes W \rightarrow X$ such that $f=h \circ \pi$.
(3) This part is trickier Suppose $\pi^{\prime}: V \times W \rightarrow U$ is a bilinear map, and for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: U \rightarrow X$ such that $f=h \circ \pi^{\prime}$. Show that there is a unique isomorphism $i: U \rightarrow V \otimes W$ such that $i \circ \pi^{\prime}=\pi$.
Remarks: Part (2) of the exercise says that tensor products are a way to turn bilinear maps into linear maps.

We can also use this exercise to give an alternative (basis-independent) definition of the tensor product. We say that a vector space U, together with a bilinear map $\pi: V \times W \rightarrow U$ 'is a tensor product' of V and W if for every bilinear map $f: V \times W \rightarrow X$ there is a unique linear map $h: V \otimes W \rightarrow X$ such that $f=h \circ \pi$. Part (2) says that a tensor product of V and W exists (it's the tensor product $V \otimes W$ we have already defined with a chosen basis of V and $W)$.

Part (3) says that a tensor product of V and W is unique up to unique isomorphism, so to all intents and purposes any two tensor products of V and W are the same mathematical object.
Solution 3. As usual we fix bases $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for V and W.
(1) I'll just write out the proof of linearity in the first variable. We have $\pi\left(a v_{1}+b v_{2}, w\right)=\left(a v_{1}+b v_{2}\right) \otimes w$. If we write $v_{1}=\sum_{i} \lambda_{i} a_{i}$ and $v_{2}=\sum_{i} \mu_{i} a_{i}$ then we have

$$
a v_{1}+b v_{2}=\sum_{i}\left(a \lambda_{i}+b \mu_{i}\right) a_{i}
$$

and then it's straightforward to check that
$\left(a v_{1}+b v_{2}\right) \otimes w=\sum_{i}\left(a \lambda_{i}+b \mu_{i}\right)\left(a_{i} \otimes w\right)=a\left(v_{1} \otimes w\right)+b\left(v_{2} \otimes w\right)$.
(2) First we check uniqueness: if $f=h \circ \pi$ and $f=h^{\prime} \circ \pi$ then we have $f(v, w)=h(v \otimes w)=h^{\prime}(v \otimes w)$. In particular, h and h^{\prime} are equal on a basis for $V \otimes W$, so $h=h$;.

Next we check existence: we define h by $h\left(a_{i} \otimes b_{j}\right)=f\left(a_{i}, b_{j}\right)$. We now need to check that $f=h \circ \pi$. In other words, we need to check that $h(v \otimes w)=f(v, w)$ for all $v \in V, w \in W$. Writing $v=\sum_{i} \lambda_{i} a_{i}$ and $w=\sum_{j} \mu_{j} b_{j}$ we have by definition that $v \otimes w=\sum_{i, j} \lambda_{i} \mu_{j}\left(a_{i} \otimes b_{j}\right)$. By the definition of h we have

$$
h(v \otimes w)=\sum_{i, j} \lambda_{i} \mu_{j} f\left(a_{i}, b_{j}\right) .
$$

By bilinearity of f this is also equal to $f(v, w)$, so we are done.
(3) We set $X=V \otimes W$ and $f=\pi$. Then there is a unique linear map $h: U \rightarrow V \otimes W$ such that $\pi=h \circ \pi^{\prime}$. We now need to check that h is an isomorphism. We apply part (2) to the bilinear map π^{\prime}. This tells us that there is a unique linear map $h^{\prime}: V \otimes W \rightarrow U$ such that $\pi^{\prime}=h^{\prime} \circ \pi$. If we consider the map $L=h^{\prime} \circ h$ we get a linear map $L: U \rightarrow U$ such that $L \circ \pi^{\prime}=\pi^{\prime}$. The map id_{U} also satisfies this, so by our uniqueness assumption we have $L=\mathrm{id}_{U}$. Applying the same argument to $h \circ h^{\prime}$ we get that h and h^{\prime} are inverse to each other, so h is an isomorphism.

Exercise 4. Let V, W be two vectors spaces, with bases A and B. Let $\mathbb{C}[V \times W]$ be the (infinite dimensional) complex vector space with basis given by symbols $\{v * w: v \in V, w \in W\}$. Define a linear map $\mathbb{C}[V \times W] \rightarrow V \otimes W$ by taking $v * w$ to $v \otimes w$.
(1) Let $E \subset \mathbb{C}[V \times W]$ be the subspace spanned by the elements

$$
\left(a v_{1}+b v_{2}\right) * w-a\left(v_{1} * w\right)-b\left(v_{2} * w\right), \quad v *\left(a w_{1}+b w_{2}\right)-a\left(v * w_{1}\right)-b\left(v * w_{2}\right)
$$

with $a, b \in \mathbb{C}, v_{i}, v \in V$ and $w_{i}, w \in W$.
Note that a map of sets $f: V \times W \rightarrow X$ gives a linear map

$$
F: \mathbb{C}[V \times W] \rightarrow X
$$

defined by $F(v * w)=f(v, w)$. Show that f is bilinear if and only if $F(u)=0$ for all $u \in E$.
(2) Show that the map $(v, w) \mapsto v * w$ defines a bilinear map from $V \times W$ to the quotient vector space $\mathbb{C}[V \times W] / E$.
(3) Using Exercise 3, show that there is a unique isomorphism

$$
i: \mathbb{C}[V \times W] / E \rightarrow V \otimes W
$$

satisfying $i(v * w+E)=v \otimes w$.
Solution 4. (1) The definition of bilinearity unwinds to the statement that $F(u)=0$ for $u \in E$.
(2) Let $X=\mathbb{C}[V \times W] / E$ and let $f: V \times W \rightarrow X$ be the map which takes (v, w) to $v * w+E$. The map F is then the quotient map $\mathbb{C}[V \times W] \rightarrow \mathbb{C}[V \times W] / E$. Since this map is zero on E, applying part (1) we conclude that f is bilinear.
(3) We apply part (3) of Exercise (3), with $U=\mathbb{C}[V \times W] / E$.

Exercise 5. (1) Let V and W be representations of G and suppose W has dimension one. Show that $V \otimes W$ is irreducible if and only if V is irreducible.
(2) Let V and W be representations of G. Show that $V \otimes W$ is isomorphic as a representation of G to $W \otimes V$.

Solution 5. (1) Suppose that V is reducible, and $U \subset V$ is a proper subspace. Then we can think of $U \otimes W$ as a subspace of $V \otimes W$: let $\left\{a_{1}, \ldots, a_{l}\right\}$ be a basis of U and extend to a basis $\left\{a_{1}, \ldots, a_{m}\right\}$ for V. Let b be a basis vector for W. Then the vectors $a_{i} \otimes b$ for $1 \leq i \leq l$ span a subrepresentation of $V \otimes W$ which is isomorphic to $U \otimes W$. So $V \otimes W$ is also reducible.

Conversely if $V \otimes W$ is reducible, it has a subrepresentation U^{\prime}. Let $x_{1}, \ldots x_{l}$ be a basis for U^{\prime}. Since every element of $V \otimes W$ is of the form $v \otimes b$ with $v \in V$ we can write $x_{i}=v_{i} \otimes b$. Now it is straightforward to check that the v_{i} span a proper subrepresentation of V.

Alternatively we can just apply the first half of our answer again, since $(V \otimes W) \otimes W^{*} \cong V$.
(2) The map which takes $a_{i} \otimes b_{j}$ to $b_{j} \otimes a_{i}$ defines a G-linear isomorphism between $V \otimes W$ and $W \otimes V$.

Exercise 6. (1) Let V be a representation of G and consider the map f : $V \otimes V \rightarrow V \otimes V$ given by $f\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$. Show that f is a G-linear map.
(2) Define $S^{2} V$ to be the subspace of $x \in V \otimes V$ such that $f(x)=x$. Define $\wedge^{2} V$ to be the subspace of $x \in V \otimes V$ such that $f(x)=-x$. Show that $S^{2} V$ and $\wedge^{2} V$ are subrepresentations of $V \otimes V$ and $V \otimes V \cong S^{2} V \oplus \wedge^{2} V$.
(3) Show that $(1 / 2)\left(f+\mathrm{id}_{V}\right)$ is a projection with image $S^{2} V$ and $(1 / 2)\left(f-\mathrm{id}_{V}\right)$ is a projection with image $\wedge^{2} V$.
(4) Show that if $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis of V, then $\left\{a_{i} \otimes a_{j}-a_{j} \otimes a_{i}: i<j\right\}$ is a basis of $\wedge^{2} V$. What are the dimensions of $S^{2} V$ and $\wedge^{2} V$ in terms of $\operatorname{dim}(V)=n$? Can you find a basis for $S^{2} V$?
(5) Suppose $g \in G$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues (with multiplicity) of $\rho_{V}(g)$. Show that the eigenvalues of $\rho_{\wedge^{2} V}(g)$ are $\left\{\lambda_{i} \lambda_{j}: i<j\right\}$.
(6) Show that the characters $\chi_{\wedge^{2} V}$ and $\chi_{S^{2} V}$ are given by

$$
\chi_{\wedge^{2} V}(g)=\frac{\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)}{2} \quad \chi_{S^{2} V}(g)=\frac{\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)}{2}
$$

Solution 6. (1) It's not hard to check that f is a linear map. We have
$f\left(\rho_{V \otimes V}(g) v_{1} \otimes v_{2}\right)=f\left(\rho_{V}(g) v_{1} \otimes \rho_{V}(g) v_{2}\right)=\rho_{V}(g) v_{2} \otimes \rho_{V}(g) v_{1}=\rho_{V \otimes V}(g) f\left(v_{1} \otimes v_{2}\right)$ so f is G-linear.
(2) Note that $f \circ f=\operatorname{id}_{V \otimes V}$. So f is diagonalisable with eigenvalues 1 and -1 . Since $S^{2} V=\operatorname{ker}\left(f-\mathrm{id}_{V \otimes V}\right)$ and $\wedge^{2} V=\operatorname{ker}\left(f+\mathrm{id}_{V \otimes V}\right)$ are the kernels of G-linear maps, they are subrepresentations. Since they also give the two eigenspaces of f we have

$$
V \otimes V \cong S^{2} V \oplus \wedge^{2} V
$$

(3) Since $(1 / 2)\left(f+\operatorname{id}_{V}\right)$ is zero on $\wedge^{2} V$ and the identity on $S^{2} V$, it is a projection with image $S^{2} V$. The same argument holds for $(1 / 2)\left(f-\mathrm{id}_{V}\right)$.
(4) Applying $(1 / 2)\left(f-\mathrm{id}_{V}\right)$ to the basis vectors $a_{i} \otimes a_{j}$, we see that $\wedge^{2} V$ is spanned by vectors $a_{i} \otimes a_{j}-a_{j} \otimes a_{i}$. So it is spanned by the vectors $\left\{a_{i} \otimes a_{j}-a_{j} \otimes a_{i}: i<j\right\}$. These vectors are linearly independent since $\sum_{i<j} \lambda_{i, j}\left(a_{i} \otimes a_{j}-a_{j} \otimes a_{i}\right)=0$ implies that each $\lambda_{i, j}$ is equal to zero (it is a sum of distinct basis vectors).

We conclude that the dimension of $\wedge^{2} V$ is $(1 / 2) n(n-1)$. Since $\operatorname{dim}(V \otimes$ $V)=n^{2}$ we also get that $\operatorname{dim} S^{2} V=(1 / 2) n(n+1)$. A basis for $S^{2} V$ is given by $\left\{a_{i} \otimes a_{j}+a_{j} \otimes a_{i}: i \leq j\right\}$.
(5) Letting A be a basis of eigenvectors for $\rho_{V}(g)$, we get that $\left\{a_{i} \otimes a_{j}-a_{j} \otimes a_{i}\right.$: $i<j\}$ is a basis for $\wedge^{2} V$ and the eigenvalue of $\rho_{\wedge^{2} V}(g)$ on $a_{i} \otimes a_{j}=a_{j} \otimes a_{i}$ is $\lambda_{i} \lambda_{j}$, which gives the desired (multi)set of eigenvalues.
(6) We have $\chi_{V}(g)=\lambda_{1}+\cdots+\lambda_{n}$ and

$$
\chi_{V}(g)^{2}=\left(\lambda_{1}+\cdots+\lambda_{n}\right)^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}+\sum_{i \neq j} \lambda_{i} \lambda_{j} .
$$

So

$$
\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)=\sum_{i \neq j} \lambda_{i} \lambda_{j}=2 \chi_{\wedge^{2} V}(g)
$$

which gives the desired formular for $\chi_{\wedge^{2} V}$. So get $\chi_{S^{2} V}$ we use the fact that

$$
\chi_{S^{2} V}+\chi_{\wedge^{2} V}=\chi_{V \otimes V}=\chi_{V} \chi_{V} .
$$

Exercise 7. Let G be a group acting on a finite set Ω. Recall that we have defined a representation $\mathbb{C} \Omega$ of G. Show that the character $\chi_{\mathbb{C} \Omega}$ satisfies: $\chi_{\mathbb{C} \Omega}(g)$ is equal to the number of fixed points for g in Ω.
Solution 7. Think about the matrix for $\rho_{\mathbb{C} \Omega}(g)$ with respect to the basis $\{[\omega]$: $\omega \in \Omega\}$. The diagonal entry of this matrix corresponding to the basis element [ω] is equal to 1 if $g \omega=\omega$ and equal to 0 otherwise. So the trace is equal to the number of ω with $g \omega=\omega$, or in other words the number of fixed points of g.

Exercise 8. (1) Let G be a finite group. Show that if G is simple (i.e. G is non-trivial and the only normal subgroups of G are $\{e\}$ and G) then a representation of G is either trivial or faithful.
(2) Suppose every non-trivial irreducible representation of a finite group G is faithful. Show that G is a simple group. Hint: if G is not simple then there is a normal subgroup N of G such that G / N is simple.

Solution 8. (1) If a representation V is not faithful then the kernel of ρ_{V} : $G \rightarrow \mathrm{GL}(V)$ is a normal subgroup of G which is not equal to $\{e\}$. Since G is simple, this subgroup must be equal to G. So V is trivial.
(2) Suppose G is not simple. Then there is a normal subgroup N of G with G / N simple. There is a non-trivial irreducible representation V of G / N (since G / N is non-trivial). By restriction along the map $G \rightarrow G / N$ we get a non-trivial representation of G on the vector space V : it is irreducible since if $U \subset V$ is a G-stable subspace it is also a G / N stable subspace. So by our assumption V is a faithful representation of G. But N acts trivially on V, which is a contradiction.

