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Please send any corrections or queries to j.newton@imperial.ac.uk.

Exercise 1. Let V, ρV and W,ρW be representations of a group G with dimension
m and n respectively. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be bases for V
and W .

Let A⊕B be the basis for V ⊕W given by (a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn).
Describe the matrix representation

(ρV ⊕ ρW )A⊕B : G→ GLm+n(C)

in terms of the matrix representations (ρV )A and (ρW )B .

Solution 1. The matrix

[ρV (g)⊕ ρW (g)]A⊕B

is block diagonal, with the first m × m block given by [ρV (g)]A and the second,
n×n block given by [ρW (g)]B . So the matrix representation (ρV ⊕ρW )A⊕B is given
by these block diagonal matrices.

Another way of saying this is that taking a pair

(M,N) ∈ GLm(C)×GLn(C)

to the block diagonal matrix with first block M and second block N gives a homo-
morphism

I : GLm(C)×GLn(C)→ GLm+n(C).

The matrix representations r = (ρV )A and s = (ρW )B give a homomorphism

r × s : G→ GLm(C)×GLn(C)

and the composition I ◦ (r × s) : G → GLm+n(C) is the matrix representation
(ρV ⊕ ρW )A⊕B .

Exercise 2. Let V andW be representations of a groupG. Recall that HomC(V,W )
denotes the complex vector space of linear maps from V to W .

(1) Let g ∈ G act on HomC(V,W ) by taking a linear map f : V → W to the
linear map

g · f : v 7→ ρW (g)f(ρV (g−1)v).

Show that this defines a representation of G on HomC(V,W ). What is the
dimension of this representation, in terms of the dimensions of V and W?

(2) Show that the invariants HomC(V,W )G in this representation of G are the
G-linear maps HomG(V,W ).

Solution 2. (1) First we check that we have defined a representation. One
way of writing the definition is that it takes f to the composition of maps

ρW (g) ◦ f ◦ ρV (g−1).

So it takes a linear combination λf1 + µf2 to

ρW (g) ◦ (λf1 + µf2) ◦ ρV (g−1) = λρW (g) ◦ f1 ◦ ρV (g−1) + µρW (g) ◦ f2 ◦ ρV (g−1).
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So the map ρHomC(V,W )(g) which sends f to ρW (g) ◦ f ◦ ρV (g−1) gives
a linear map from HomC(V,W ) to HomC(V,W ). We can also see that
ρHomC(V,W )(e) is the identity.

Now we need to check that

ρHomC(V,W )(gh) = ρHomC(V,W )(g) ◦ ρHomC(V,W )(h)

for g, h ∈ G. Note that this also shows that the linear map ρHomC(V,W )(g) is

invertible, since an inverse is given by ρHomC(V,W )(g
−1). For f ∈ HomC(V,W )

We have

ρHomC(V,W )(g) ◦ ρHomC(V,W )(h)f = ρHomC(V,W )(g)
(
ρW (h) ◦ f ◦ ρV (h−1)

)
= ρW (g)ρW (h) ◦ f ◦ ρV (h−1)ρV (g−1)

= ρW (gh) ◦ f ◦ ρV (h−1g−1) = ρW (gh) ◦ f ◦ ρV ((gh)−1)

= ρHomC(V,W )(gh)f

so we have indeed defined a representation.
The dimension of HomC(V,W ) is equal to dim(V ) · dim(W ). One way

to show this is to observe that, fixing a basis A for V (with dimension m)
and a basis B for W (with dimension n), the map

f 7→ [f ]A,B

gives an isomorphism of complex vector space

HomC(V,W ) ∼= Mn×m(C)

between HomC(V,W ) and n ×m matrices. Mn×m(C) has dimension mn:
a basis is given by the matrices with 1 in one entry and zeroes everywhere
else.

(2) We need to show that f ∈ HomC(V,W ) is G-linear if and only if

ρHomC(V,W )(g)f = f

for all g in G.
We have

ρHomC(V,W )(g)f = ρW (g) ◦ f ◦ ρV (g−1)

so composing with the invertible map ρV (g) on both sides we see that

ρHomC(V,W )(g)f = f

if and only if
ρW (g) ◦ f = f ◦ ρV (g).

This holds for all g if and only if f is G-linear (by definition), so we have
shown that f is G-linear if and only if

ρHomC(V,W )(g)f = f

for all g in G, as desired.

Exercise 3. Recall that we proved in lectures that if U is a subrepresentation of
a representation V of a finite group, then there exists a complementary subrepre-
sentation W ⊂ V with V ∼= U ⊕W (Maschke’s theorem).

Prove by induction that if V is a representation of a finite group G, then V is
isomorphic to a direct sum

V1 ⊕ V2 ⊕ · · · ⊕ Vd
with each Vi an irreducible representation of G. A proof is written in the typed
lecture notes if you get stuck!.
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Solution 3. We induct on the dimension of V . It is obvious that a one-dimensional
representation is irreducible. Now let V have dimension n and suppose that ev-
ery representation of dimension < n is isomorphic to a direct sum of irreducible
representations. If V is irreducible we are done. Otherwise, we let {0} 6= U ( V
be a proper subrepresentation. Maschke’s theorem implies that V ∼= U ⊕W for
some subrepresentation W of V , and both U and W have dimension strictly less
than n. By the inductive hypothesis, U and W are isomorphic to direct sums
of irreducible representations. Therefore V is also isomorphic to a direct sum of
irreducible representations.

Exercise 4. (1) Let G be a group and

χ : G→ GL1(C) = C×

a group homomorphism (i.e. a one-dimensional matrix representation). Show
that if g, h ∈ G then χ(g) = χ(hgh−1).

(2) We let G = Sn. Let 2 ≤ j ≤ n be an integer. Show that there is an element
h ∈ Sn such that h(12)h−1 = (1j). Show moreover that if g ∈ Sn is any
transposition (i.e. g = (jk) for j 6= k) then there exists an h ∈ G such that
h(12)h−1 = g.

(3) Show that there are only two one-dimensional representations of Sn (up
to isomorphism), given by the trivial map Sn → {1} and the sign homo-
morphism Sn → {±1}. Recall that every element of Sn is a product of
transpositions.

Solution 4. (1) We have χ(hgh−1) = χ(h)χ(g)χ(h−1). Since χ is a homomor-
phism, we have χ(h)−1, and we get χ(hgh−1) = χ(h)χ(g)χ(h)−1. Since C×
is commutative, we can rearrange this to get χ(hgh−1) = χ(g).

(2) If j = 2 we can just let h = e. So suppose 3 ≤ j ≤ n. Then we set h = (2j).
Now h(12)h−1 = (2j)(12)(2j) which is a permutation which swaps 1 and j
and fixes everything else. So we have h(12)h−1 = (1j).

For the ‘moreover’ statement we just apply the same trick one more time.
We can assume that j 6= 1 (otherwise we can just swap j and k). So first we
find h1 such that h1(12)h−11 = (1j). Now if k = 1 we are done. Otherwise,
we let h2 = (1k) and consider h2h1(12)(h2h1)−1 = (1k)(1j)(1k) = (jk).

(3) Up to isomorphism, a one-dimensional representation V is determined by
the homomorphism χ : Sn → C× satsifying ρV (g)v = χ(g)v for g ∈ G and
v ∈ V . So we need to show that the trivial map and the sign homomorphism
are the only two homomorphisms χ : Sn → C×. Fix such a homomorphism
χ. From part (2), we know that every transposition is conjugate to (12).
Applying part (1) we deduce that χ(jk) = χ(12) for every j 6= k. Since
(12) has order 2 we have χ(12) = 1 or −1. If χ(12) = 1 then χ(jk) = 1 for
all j 6= k. Since every element of Sn is a product of transpositions, we have
χ(g) = 1 for all g ∈ Sn. So χ is trivial. Alternatively, we have χ(12) = −1,
so χ(jk) = −1 for all j 6= k, and χ is the sign homomorphism.

Exercise 5. (1) Let G be a finite group. Write Z(G) for the centre of the
group:

Z(G) = {z ∈ G : zg = gz∀g ∈ G}.
Note that Z(G) is a subgroup of G. Let V be an irreducible representation
of G. Show that for each z ∈ Z(G) there exists λz ∈ C such that

ρV (z)v = λzv
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for all v ∈ V .
(2) Suppose V is a faithful irreducible representation of G. Show that Z(G) is

a cyclic group. Hint: A finite subgroup of C× is cyclic.

Solution 5. (1) If z ∈ Z(G) then ρV (z) is a G-linear map from V to V .
Schur’s lemma implies that ρV (z) is multiplication by a scalar λz (since V
is irreducible).

(2) The map z 7→ λz gives a homomorphism Z(G)→ C×. Since V is faithful we
know that λz = 1 if and only if z = e. So this is an injective homomorphism.
Therefore Z(G) is isomorphic to a finite subgroup of C× (namely, the image
of the homomorphism z 7→ λz). Now the hint implies that Z(G) is cyclic.

By the way, here is a quick proof of the hint: let H be a finite subgroup
of C×. Then for every h ∈ H we have h|H| = 1. So the elements of H give
|H| roots of the degree |H| polynomial z|H| − 1. But this polynomial has
exactly |H| roots, the complex numbers e2πij/|H|. This means that H is
the cyclic group of |H|th roots of unity.

Exercise 6. (1) Let D2n be the dihedral group of order 2n, generated by a
rotation s of order n and a reflection t of order 2. Recall that we have
tst = s−1. Let ζ ∈ C be an nth root of unity and let Vζ be the representation
of D2n on the vector space C2 (with the standard basis) given by

ρVζ
(s) =

(
ζ 0
0 ζ−1

)
ρVζ

(t) =

(
0 1
1 0

)
.

Verify that this defines a representation of D2n on V .
Show that if ζ 6= ±1 then this representation is irreducible.

(2) What are the one-dimensional matrix representations of D2n?
(3) Show that if n is even, there are (n+6)/2 isomorphism classes of irreducible

representations of D2n: 4 of dimension one and (n− 2)/2 of dimension 2.
(4) Show that if n is odd, there are (n+3)/2 isomorphism classes of irreducible

representations of D2n: 2 of dimension one and (n− 1)/2 of dimension 2.

Solution 6. (1) To verify that we have defined a representation, we need to
check the relation TST = S−1 holds for the matrices

S =

(
ζ 0
0 ζ−1

)
T =

(
0 1
1 0

)
.

We have

S−1 =

(
ζ−1 0
0 ζ

)
and also

TST =

(
ζ−1 0
0 ζ

)
so we have indeed defined a representation.

Suppose ζ 6= ±1, so ζ 6= ζ−1 and the matrix S has distinct eigenvalues.
If Vζ is reducible, then the matrices S, T have a simultaneous non-zero
eigenvector. But the eigenspaces for S are C · (0, 1) and C · (1, 0), and these
do not contain any non-zero eigenvectors for T . So there is no simultaneous
non-zero eigenvector and Vζ is irreducible.

(2) A one dimensional matrix representation is a homomorphism

χ : D2n → C×.
Applying Question 4 part (1) we see that χ(s) = χ(s)−1. So we have
χ(s) = 1 or −1 and χ(t) = 1 or −1. If n is odd then χ(s)n = 1, and this
forces χ(s) = 1. So we have two cases:
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• If n is odd, then there are two one dimensional matrix reps, given by
the trivial map χ : D2n → {1} and the homomorphism χ : D2n →
{±1} defined by χ(s) = 1, χ(t) = −1.
• If n is even, there are four one dimensional matrix reps, given by the

homomorphisms χ defined by χ(s) = ±1, χ(t) = ±1, where we can
take any of the four combinations of signs.

(3) Suppose n is even. Then we have written down four one dimensional
representations of D2n. These four representations are irreducible (since
they are one dimensional) and non-isomorphic (since they have distinct
matrix representations, and equivalent one dimensional matrix reps are
equal). As ζ runs over the set Σ = {e2πi/n, e4πi/n, . . . , e2(n/2−1)πi/n} we
get n/2 − 1 = (n − 2)/2 irreducible two dimensional representations Vζ .
They are all non-isomorphic, because the eigenvalues of ρVζ

(s) are {ζ, ζ−1}
and these sets of eigenvalues are all distinct as ζ ranges over Σ (if two rep-
resentations are isomorphic, the action of g ∈ G necessarily has the same
eigenvalues on both representations).

So we have written down 4 isomorphism classes of one dimensional reps
and (n−2)/2 isomorphism classes of two dimensional irreps. Recall that we
have an equality 2n =

∑r
i=1 d

2
i where the di are the dimensions of the irreps

of D2n. Since 4 + (n − 2)/2 × 4 = 2n we have found all the isomorphism
classes of irreps.

(4) The case with n odd is very similar. Now there are only two one dimensional
reps of D2n. As ζ runs over the set Σ = {e2πi/n, e4πi/n, . . . , e(n−1)πi/n} we
get (n − 1)/2 non-isomorphic two dimensional irreps Vζ . Adding up the
squares of the dimensions, we have 2+(n−1)/2×4 = 2n, so we have found
all the isomorphism classes.


