M3/4/5P12 PROBLEM SHEET 2

Please send any corrections or queries to j.newton@imperial.ac.uk.
Exercise 1. Let V, ρ_{V} and W, ρ_{W} be representations of a group G with dimension m and n respectively. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be bases for V and W.

Let $A \oplus B$ be the basis for $V \oplus W$ given by $\left(a_{1}, 0\right), \ldots,\left(a_{m}, 0\right),\left(0, b_{1}\right), \ldots,\left(0, b_{n}\right)$. Describe the matrix representation

$$
\left(\rho_{V} \oplus \rho_{W}\right)_{A \oplus B}: G \rightarrow \mathrm{GL}_{m+n}(\mathbb{C})
$$

in terms of the matrix representations $\left(\rho_{V}\right)_{A}$ and $\left(\rho_{W}\right)_{B}$.
Solution 1. The matrix

$$
\left[\rho_{V}(g) \oplus \rho_{W}(g)\right]_{A \oplus B}
$$

is block diagonal, with the first $m \times m$ block given by $\left[\rho_{V}(g)\right]_{A}$ and the second, $n \times n$ block given by $\left[\rho_{W}(g)\right]_{B}$. So the matrix representation $\left(\rho_{V} \oplus \rho_{W}\right)_{A \oplus B}$ is given by these block diagonal matrices.

Another way of saying this is that taking a pair

$$
(M, N) \in \mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})
$$

to the block diagonal matrix with first block M and second block N gives a homomorphism

$$
I: \mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{m+n}(\mathbb{C})
$$

The matrix representations $r=\left(\rho_{V}\right)_{A}$ and $s=\left(\rho_{W}\right)_{B}$ give a homomorphism

$$
r \times s: G \rightarrow \mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})
$$

and the composition $I \circ(r \times s): G \rightarrow \mathrm{GL}_{m+n}(\mathbb{C})$ is the matrix representation $\left(\rho_{V} \oplus \rho_{W}\right)_{A \oplus B}$.

Exercise 2. Let V and W be representations of a group G. Recall that $\operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the complex vector space of linear maps from V to W.
(1) Let $g \in G$ act on $\operatorname{Hom}_{\mathbb{C}}(V, W)$ by taking a linear map $f: V \rightarrow W$ to the linear map

$$
g \cdot f: v \mapsto \rho_{W}(g) f\left(\rho_{V}\left(g^{-1}\right) v\right)
$$

Show that this defines a representation of G on $\operatorname{Hom}_{\mathbb{C}}(V, W)$. What is the dimension of this representation, in terms of the dimensions of V and W ?
(2) Show that the invariants $\operatorname{Hom}_{\mathbb{C}}(V, W)^{G}$ in this representation of G are the G-linear maps $\operatorname{Hom}_{G}(V, W)$.
Solution 2. (1) First we check that we have defined a representation. One way of writing the definition is that it takes f to the composition of maps

$$
\rho_{W}(g) \circ f \circ \rho_{V}\left(g^{-1}\right)
$$

So it takes a linear combination $\lambda f_{1}+\mu f_{2}$ to
$\rho_{W}(g) \circ\left(\lambda f_{1}+\mu f_{2}\right) \circ \rho_{V}\left(g^{-1}\right)=\lambda \rho_{W}(g) \circ f_{1} \circ \rho_{V}\left(g^{-1}\right)+\mu \rho_{W}(g) \circ f_{2} \circ \rho_{V}\left(g^{-1}\right)$.
Date: Tuesday $9^{\text {th }}$ February, 2016.

So the map $\rho_{\operatorname{Hom}_{\mathrm{C}}(V, W)}(g)$ which sends f to $\rho_{W}(g) \circ f \circ \rho_{V}\left(g^{-1}\right)$ gives a linear map from $\operatorname{Hom}_{\mathbb{C}}(V, W)$ to $\operatorname{Hom}_{\mathbb{C}}(V, W)$. We can also see that $\rho_{\text {Hom }_{\mathbb{C}}(V, W)}(e)$ is the identity.

Now we need to check that

$$
\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g h)=\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g) \circ \rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(h)
$$

for $g, h \in G$. Note that this also shows that the linear map $\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g)$ is invertible, since an inverse is given by $\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}\left(g^{-1}\right)$. For $f \in \operatorname{Hom}_{\mathbb{C}}(V, W)$ We have

$$
\begin{aligned}
\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g) \circ \rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(h) f & =\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g)\left(\rho_{W}(h) \circ f \circ \rho_{V}\left(h^{-1}\right)\right) \\
& =\rho_{W}(g) \rho_{W}(h) \circ f \circ \rho_{V}\left(h^{-1}\right) \rho_{V}\left(g^{-1}\right) \\
& =\rho_{W}(g h) \circ f \circ \rho_{V}\left(h^{-1} g^{-1}\right)=\rho_{W}(g h) \circ f \circ \rho_{V}\left((g h)^{-1}\right) \\
& =\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g h) f
\end{aligned}
$$

so we have indeed defined a representation.
The dimension of $\operatorname{Hom}_{\mathbb{C}}(V, W)$ is equal to $\operatorname{dim}(V) \cdot \operatorname{dim}(W)$. One way to show this is to observe that, fixing a basis A for V (with dimension m) and a basis B for W (with dimension n), the map

$$
f \mapsto[f]_{A, B}
$$

gives an isomorphism of complex vector space

$$
\operatorname{Hom}_{\mathbb{C}}(V, W) \cong M_{n \times m}(\mathbb{C})
$$

between $\operatorname{Hom}_{\mathbb{C}}(V, W)$ and $n \times m$ matrices. $M_{n \times m}(\mathbb{C})$ has dimension $m n$: a basis is given by the matrices with 1 in one entry and zeroes everywhere else.
(2) We need to show that $f \in \operatorname{Hom}_{\mathbb{C}}(V, W)$ is G-linear if and only if

$$
\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g) f=f
$$

for all g in G.
We have

$$
\rho_{\text {Hom }_{C}(V, W)}(g) f=\rho_{W}(g) \circ f \circ \rho_{V}\left(g^{-1}\right)
$$

so composing with the invertible map $\rho_{V}(g)$ on both sides we see that

$$
\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g) f=f
$$

if and only if

$$
\rho_{W}(g) \circ f=f \circ \rho_{V}(g)
$$

This holds for all g if and only if f is G-linear (by definition), so we have shown that f is G-linear if and only if

$$
\rho_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g) f=f
$$

for all g in G, as desired.

Exercise 3. Recall that we proved in lectures that if U is a subrepresentation of a representation V of a finite group, then there exists a complementary subrepresentation $W \subset V$ with $V \cong U \oplus W$ (Maschke's theorem).

Prove by induction that if V is a representation of a finite group G, then V is isomorphic to a direct sum

$$
V_{1} \oplus V_{2} \oplus \cdots \oplus V_{d}
$$

with each V_{i} an irreducible representation of G. A proof is written in the typed lecture notes if you get stuck!.

Solution 3. We induct on the dimension of V. It is obvious that a one-dimensional representation is irreducible. Now let V have dimension n and suppose that every representation of dimension $<n$ is isomorphic to a direct sum of irreducible representations. If V is irreducible we are done. Otherwise, we let $\{0\} \neq U \subsetneq V$ be a proper subrepresentation. Maschke's theorem implies that $V \cong U \oplus W$ for some subrepresentation W of V, and both U and W have dimension strictly less than n. By the inductive hypothesis, U and W are isomorphic to direct sums of irreducible representations. Therefore V is also isomorphic to a direct sum of irreducible representations.

Exercise 4. (1) Let G be a group and

$$
\chi: G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}
$$

a group homomorphism (i.e. a one-dimensional matrix representation). Show that if $g, h \in G$ then $\chi(g)=\chi\left(h g h^{-1}\right)$.
(2) We let $G=S_{n}$. Let $2 \leq j \leq n$ be an integer. Show that there is an element $h \in S_{n}$ such that $h(12) h^{-1}=(1 j)$. Show moreover that if $g \in S_{n}$ is any transposition (i.e. $g=(j k)$ for $j \neq k)$ then there exists an $h \in G$ such that $h(12) h^{-1}=g$.
(3) Show that there are only two one-dimensional representations of S_{n} (up to isomorphism), given by the trivial map $S_{n} \rightarrow\{1\}$ and the sign homomorphism $S_{n} \rightarrow\{ \pm 1\}$. Recall that every element of S_{n} is a product of transpositions.

Solution 4. (1) We have $\chi\left(h g h^{-1}\right)=\chi(h) \chi(g) \chi\left(h^{-1}\right)$. Since χ is a homomorphism, we have $\chi(h)^{-1}$, and we get $\chi\left(h g h^{-1}\right)=\chi(h) \chi(g) \chi(h)^{-1}$. Since \mathbb{C}^{\times} is commutative, we can rearrange this to get $\chi\left(h g h^{-1}\right)=\chi(g)$.
(2) If $j=2$ we can just let $h=e$. So suppose $3 \leq j \leq n$. Then we set $h=(2 j)$. Now $h(12) h^{-1}=(2 j)(12)(2 j)$ which is a permutation which swaps 1 and j and fixes everything else. So we have $h(12) h^{-1}=(1 j)$.

For the 'moreover' statement we just apply the same trick one more time. We can assume that $j \neq 1$ (otherwise we can just swap j and k). So first we find h_{1} such that $h_{1}(12) h_{1}^{-1}=(1 j)$. Now if $k=1$ we are done. Otherwise, we let $h_{2}=(1 k)$ and consider $h_{2} h_{1}(12)\left(h_{2} h_{1}\right)^{-1}=(1 k)(1 j)(1 k)=(j k)$.
(3) Up to isomorphism, a one-dimensional representation V is determined by the homomorphism $\chi: S_{n} \rightarrow \mathbb{C}^{\times}$satsifying $\rho_{V}(g) v=\chi(g) v$ for $g \in G$ and $v \in V$. So we need to show that the trivial map and the sign homomorphism are the only two homomorphisms $\chi: S_{n} \rightarrow \mathbb{C}^{\times}$. Fix such a homomorphism χ. From part (2), we know that every transposition is conjugate to (12). Applying part (1) we deduce that $\chi(j k)=\chi(12)$ for every $j \neq k$. Since (12) has order 2 we have $\chi(12)=1$ or -1 . If $\chi(12)=1$ then $\chi(j k)=1$ for all $j \neq k$. Since every element of S_{n} is a product of transpositions, we have $\chi(g)=1$ for all $g \in S_{n}$. So χ is trivial. Alternatively, we have $\chi(12)=-1$, so $\chi(j k)=-1$ for all $j \neq k$, and χ is the sign homomorphism.

Exercise 5. (1) Let G be a finite group. Write $Z(G)$ for the centre of the group:

$$
Z(G)=\{z \in G: z g=g z \forall g \in G\}
$$

Note that $Z(G)$ is a subgroup of G. Let V be an irreducible representation of G. Show that for each $z \in Z(G)$ there exists $\lambda_{z} \in \mathbb{C}$ such that

$$
\rho_{V}(z) v=\lambda_{z} v
$$

for all $v \in V$.
(2) Suppose V is a faithful irreducible representation of G. Show that $Z(G)$ is a cyclic group. Hint: A finite subgroup of \mathbb{C}^{\times}is cyclic.
Solution 5. (1) If $z \in Z(G)$ then $\rho_{V}(z)$ is a G-linear map from V to V. Schur's lemma implies that $\rho_{V}(z)$ is multiplication by a scalar λ_{z} (since V is irreducible).
(2) The $\operatorname{map} z \mapsto \lambda_{z}$ gives a homomorphism $Z(G) \rightarrow \mathbb{C}^{\times}$. Since V is faithful we know that $\lambda_{z}=1$ if and only if $z=e$. So this is an injective homomorphism. Therefore $Z(G)$ is isomorphic to a finite subgroup of \mathbb{C}^{\times}(namely, the image of the homomorphism $z \mapsto \lambda_{z}$). Now the hint implies that $Z(G)$ is cyclic.

By the way, here is a quick proof of the hint: let H be a finite subgroup of \mathbb{C}^{\times}. Then for every $h \in H$ we have $h^{|H|}=1$. So the elements of H give $|H|$ roots of the degree $|H|$ polynomial $z^{|H|}-1$. But this polynomial has exactly $|H|$ roots, the complex numbers $e^{2 \pi i j /|H|}$. This means that H is the cyclic group of $|H|$ th roots of unity.

Exercise 6. (1) Let $D_{2 n}$ be the dihedral group of order $2 n$, generated by a rotation s of order n and a reflection t of order 2. Recall that we have $t s t=s^{-1}$. Let $\zeta \in \mathbb{C}$ be an nth root of unity and let V_{ζ} be the representation of $D_{2 n}$ on the vector space \mathbb{C}^{2} (with the standard basis) given by

$$
\rho_{V_{\zeta}}(s)=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) \quad \rho_{V_{\zeta}}(t)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Verify that this defines a representation of $D_{2 n}$ on V.
Show that if $\zeta \neq \pm 1$ then this representation is irreducible.
(2) What are the one-dimensional matrix representations of $D_{2 n}$?
(3) Show that if n is even, there are $(n+6) / 2$ isomorphism classes of irreducible representations of $D_{2 n}$: 4 of dimension one and $(n-2) / 2$ of dimension 2.
(4) Show that if n is odd, there are $(n+3) / 2$ isomorphism classes of irreducible representations of $D_{2 n}$: 2 of dimension one and $(n-1) / 2$ of dimension 2.
Solution 6. (1) To verify that we have defined a representation, we need to check the relation $T S T=S^{-1}$ holds for the matrices

$$
S=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) \quad T=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have

$$
S^{-1}=\left(\begin{array}{cc}
\zeta^{-1} & 0 \\
0 & \zeta
\end{array}\right)
$$

and also

$$
T S T=\left(\begin{array}{cc}
\zeta^{-1} & 0 \\
0 & \zeta
\end{array}\right)
$$

so we have indeed defined a representation.
Suppose $\zeta \neq \pm 1$, so $\zeta \neq \zeta^{-1}$ and the matrix S has distinct eigenvalues. If V_{ζ} is reducible, then the matrices S, T have a simultaneous non-zero eigenvector. But the eigenspaces for S are $\mathbb{C} \cdot(0,1)$ and $\mathbb{C} \cdot(1,0)$, and these do not contain any non-zero eigenvectors for T. So there is no simultaneous non-zero eigenvector and V_{ζ} is irreducible.
(2) A one dimensional matrix representation is a homomorphism

$$
\chi: D_{2 n} \rightarrow \mathbb{C}^{\times}
$$

Applying Question 4 part (1) we see that $\chi(s)=\chi(s)^{-1}$. So we have $\chi(s)=1$ or -1 and $\chi(t)=1$ or -1 . If n is odd then $\chi(s)^{n}=1$, and this forces $\chi(s)=1$. So we have two cases:

- If n is odd, then there are two one dimensional matrix reps, given by the trivial map $\chi: D_{2 n} \rightarrow\{1\}$ and the homomorphism $\chi: D_{2 n} \rightarrow$ $\{ \pm 1\}$ defined by $\chi(s)=1, \chi(t)=-1$.
- If n is even, there are four one dimensional matrix reps, given by the homomorphisms χ defined by $\chi(s)= \pm 1, \chi(t)= \pm 1$, where we can take any of the four combinations of signs.
(3) Suppose n is even. Then we have written down four one dimensional representations of $D_{2 n}$. These four representations are irreducible (since they are one dimensional) and non-isomorphic (since they have distinct matrix representations, and equivalent one dimensional matrix reps are equal). As ζ runs over the set $\Sigma=\left\{e^{2 \pi i / n}, e^{4 \pi i / n}, \ldots, e^{2(n / 2-1) \pi i / n}\right\}$ we get $n / 2-1=(n-2) / 2$ irreducible two dimensional representations V_{ζ}. They are all non-isomorphic, because the eigenvalues of $\rho_{V_{\zeta}}(s)$ are $\left\{\zeta, \zeta^{-1}\right\}$ and these sets of eigenvalues are all distinct as ζ ranges over Σ (if two representations are isomorphic, the action of $g \in G$ necessarily has the same eigenvalues on both representations).

So we have written down 4 isomorphism classes of one dimensional reps and $(n-2) / 2$ isomorphism classes of two dimensional irreps. Recall that we have an equality $2 n=\sum_{i=1}^{r} d_{i}^{2}$ where the d_{i} are the dimensions of the irreps of $D_{2 n}$. Since $4+(n-2) / 2 \times 4=2 n$ we have found all the isomorphism classes of irreps.
(4) The case with n odd is very similar. Now there are only two one dimensional reps of $D_{2 n}$. As ζ runs over the set $\Sigma=\left\{e^{2 \pi i / n}, e^{4 \pi i / n}, \ldots, e^{(n-1) \pi i / n}\right\}$ we get $(n-1) / 2$ non-isomorphic two dimensional irreps V_{ζ}. Adding up the squares of the dimensions, we have $2+(n-1) / 2 \times 4=2 n$, so we have found all the isomorphism classes.

