M3/4/5P12 PROBLEM SHEET 2

Please send any corrections or queries to |j.newton@imperial.ac.uk.

Exercise 1. Let V, pyy and W, pyy be representations of a group G with dimension
m and n respectively. Let A = {a1,...,an} and B = {b1,...,b,} be bases for V
and W.

Let A® B be the basis for V@& W given by (a1,0),..., (am,0), (0,b1),...,(0,b,).
Describe the matrix representation

(ov @ pw)aes : G — GL;yy0(C)

in terms of the matrix representations (pv )4 and (pw)5.

Solution 1. The matrix
lov(9) ® pw(9)]aes
is block diagonal, with the first m x m block given by [py(g)]a and the second,
n xn block given by [pw (g)] 5. So the matrix representation (py @ pw)aes is given
by these block diagonal matrices.
Another way of saying this is that taking a pair

(M,N) € GL,,,(C) x GL,(C)
to the block diagonal matrix with first block M and second block N gives a homo-
morphism
I:GL,,(C) x GL,(C) — GL, 41 (C).
The matrix representations r = (py )4 and s = (pw)p give a homomorphism
rxs:G— GL,(C) x GL,(C)

and the composition I o (r x s) : G = GLyy4,(C) is the matrix representation
(pv & pw) aeB-

Exercise 2. Let V and W be representations of a group G. Recall that Homg¢(V, W)
denotes the complex vector space of linear maps from V to W.

(1) Let g € G act on Home(V, W) by taking a linear map f : V — W to the
linear map
g-frve pw(a)fpv(g™ o).
Show that this defines a representation of G on Homg¢(V, W). What is the
dimension of this representation, in terms of the dimensions of V and W?
(2) Show that the invariants Home(V, W)% in this representation of G are the
G-linear maps Homg (V, W).

Solution 2. (1) First we check that we have defined a representation. One
way of writing the definition is that it takes f to the composition of maps

pw(g)o fopv(g™).

So it takes a linear combination Af; + ufs to

pw(g) o (Af1+ pf2) o pv(g™") = Apw(g) o fropv(g™) + mpw(g) o fao pv(g™).
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So the map prom.(v,w)(g) which sends f to pw(g) o f o pv(g™1t) gives
a linear map from Homge(V, W) to Home(V,W). We can also see that

PHome(v,w) (€) is the identity.
Now we need to check that
PHome (VW) (9h) = Pome(v,w)(9) © PHome(v,w) (h)
for g, h € G. Note that this also shows that the linear map pom(v,w)(9) is

invertible, since an inverse is given by prome(v,w) (g~ "). For f € Home(V, W)
We have

)ofopy(ht))
= pw(g)pw(h) o fopy(h™Hpv(g™")

= pw(gh)o fopv(h™'g™") = pwlgh) o fopv((gh)~

= PHomc (V,W) (gh) f

so we have indeed defined a representation.

The dimension of Home(V, W) is equal to dim(V) - dim(WW). One way
to show this is to observe that, fixing a basis A for V' (with dimension m)
and a basis B for W (with dimension n), the map

f=flas
gives an isomorphism of complex vector space
Home (V, W) & M, xm(C)

between Homg¢(V, W) and n x m matrices. M« (C) has dimension mn:
a basis is given by the matrices with 1 in one entry and zeroes everywhere
else.
We need to show that f € Homg(V, W) is G-linear if and only if
PHomc (V,W) (g)f = f
for all g in G.
We have
Prome(v,w) (9)f = pw(g) o fopv(g™)
so composing with the invertible map py (g) on both sides we see that

PHome (V,W) 9f=1f
if and only if
w(g)of=fopv(g)
This holds for all g if and only if f is G-linear (by definition), so we have
shown that f is G-linear if and only if
PHomc(V,W) @f=f
for all g in G, as desired.

Exercise 3. Recall that we proved in lectures that if U is a subrepresentation of
a representation V' of a finite group, then there exists a complementary subrepre-
sentation W C V with V = U @& W (Maschke’s theorem).

Prove by induction that if V' is a representation of a finite group G, then V is
isomorphic to a direct sum

VieVe® - Vy

with each V; an irreducible representation of G. A proof is written in the typed
lecture notes if you get stuck!.

Y
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Solution 3. We induct on the dimension of V. It is obvious that a one-dimensional
representation is irreducible. Now let V have dimension n and suppose that ev-
ery representation of dimension < n is isomorphic to a direct sum of irreducible
representations. If V' is irreducible we are done. Otherwise, we let {0} # U C V
be a proper subrepresentation. Maschke’s theorem implies that V = U & W for
some subrepresentation W of V| and both U and W have dimension strictly less
than n. By the inductive hypothesis, U and W are isomorphic to direct sums
of irreducible representations. Therefore V is also isomorphic to a direct sum of
irreducible representations.

Exercise 4. (1) Let G be a group and

x: G — GL;(C) =C*

a group homomorphism (i.e. a one-dimensional matrix representation). Show
that if g, h € G then x(g) = x(hgh™1).

Welet G = S,,. Let 2 < j < n be an integer. Show that there is an element

h € S, such that h(12)h=! = (1j). Show moreover that if g € S,, is any

transposition (i.e. g = (jk) for j # k) then there exists an h € G such that

h(12)h=t = g.

Show that there are only two one-dimensional representations of S,, (up

to isomorphism), given by the trivial map S,, — {1} and the sign homo-

morphism S,, — {£1}. Recall that every element of S, is a product of
transpositions.

Solution 4. (1) We have x(hgh™) = x(h)x(g)x(h™!). Since x is a homomor-

(2)

phism, we have x(h)~!, and we get x(hgh™') = x(h)x(g)x(h)~*. Since C*
is commutative, we can rearrange this to get x(hgh™t) = x(9).

If j = 2 we can just let h = e. So suppose 3 < j < n. Then we set h = (27).
Now h(12)h~! = (25)(12)(25) which is a permutation which swaps 1 and j
and fixes everything else. So we have h(12)h~! = (15).

For the ‘moreover’ statement we just apply the same trick one more time.
We can assume that j # 1 (otherwise we can just swap j and k). So first we
find hy such that hy(12)h;" = (15). Now if k = 1 we are done. Otherwise,
we let ho = (1k) and consider hahy(12)(hohi) ™t = (1k)(15)(1k) = (jk).
Up to isomorphism, a one-dimensional representation V' is determined by
the homomorphism x : S, = C* satsifying py (g)v = x(g)v for g € G and
v € V. So we need to show that the trivial map and the sign homomorphism
are the only two homomorphisms y : S, — C*. Fix such a homomorphism
X. From part (2), we know that every transposition is conjugate to (12).
Applying part (1) we deduce that x(jk) = x(12) for every j # k. Since
(12) has order 2 we have x(12) = 1 or —1. If x(12) = 1 then x(jk) = 1 for
all j # k. Since every element of S;, is a product of transpositions, we have
x(g) =1 for all g € S,,. So x is trivial. Alternatively, we have x(12) = —1,
so x(jk) = —1 for all j # k, and x is the sign homomorphism.

Exercise 5. (1) Let G be a finite group. Write Z(G) for the centre of the

group:
Z(G)={2€G:zg9=g2Vg € G}.

Note that Z(G) is a subgroup of G. Let V be an irreducible representation
of G. Show that for each z € Z(G) there exists A\, € C such that

pv(z)v =N
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for all v e V.
(2) Suppose V is a faithful irreducible representation of G. Show that Z(G) is
a cyclic group. Hint: A finite subgroup of C* is cyclic.

Solution 5. (1) If z € Z(G) then py(z) is a G-linear map from V to V.
Schur’s lemma implies that py (z) is multiplication by a scalar A\, (since V
is irreducible).

(2) The map z — A, gives a homomorphism Z(G) — C*. Since V is faithful we
know that A, = 1 if and only if 2 = e. So this is an injective homomorphism.
Therefore Z(G) is isomorphic to a finite subgroup of C* (namely, the image
of the homomorphism z — A,). Now the hint implies that Z(G) is cyclic.

By the way, here is a quick proof of the hint: let H be a finite subgroup
of C*. Then for every h € H we have hlffl = 1. So the elements of H give
|H| roots of the degree |H| polynomial 2/l — 1. But this polynomial has
exactly |H| roots, the complex numbers e2™%/I| This means that H is
the cyclic group of |H|[th roots of unity.

Exercise 6. (1) Let Dy, be the dihedral group of order 2n, generated by a
rotation s of order n and a reflection t of order 2. Recall that we have
tst = s~1. Let ¢ € C be an nth root of unity and let V; be the representation
of Ds,, on the vector space C? (with the standard basis) given by

= (5 %) )= (3 o)-

Verify that this defines a representation of Ds, on V.
Show that if ¢ # 41 then this representation is irreducible.
(2) What are the one-dimensional matrix representations of Da,?
(3) Show that if n is even, there are (n—+6)/2 isomorphism classes of irreducible
representations of Da,: 4 of dimension one and (n — 2)/2 of dimension 2.
(4) Show that if n is odd, there are (n+3)/2 isomorphism classes of irreducible
representations of Da,: 2 of dimension one and (n — 1)/2 of dimension 2.

Solution 6. (1) To verify that we have defined a representation, we need to
check the relation 7ST = S~ holds for the matrices

O N ]

We have (_1 0
=% o)

_ (¢t o
)

so we have indeed defined a representation.
Suppose ¢ # £1, so ¢ # ¢! and the matrix S has distinct eigenvalues.
If V¢ is reducible, then the matrices S,T have a simultaneous non-zero
eigenvector. But the eigenspaces for S are C-(0,1) and C-(1,0), and these
do not contain any non-zero eigenvectors for T'. So there is no simultaneous
non-zero eigenvector and V¢ is irreducible.
(2) A one dimensional matrix representation is a homomorphism

X - Do, — Cc*.
Applying Question 4 part (1) we see that x(s) = x(s)~!. So we have

x(s) =1or —1 and x(t) =1 or —1. If n is odd then x(s)” = 1, and this
forces x(s) = 1. So we have two cases:

and also
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e If n is odd, then there are two one dimensional matrix reps, given by
the trivial map x : Da, — {1} and the homomorphism x : Da, —
{£1} defined by x(s) =1, x(t) = —1.

e If n is even, there are four one dimensional matrix reps, given by the
homomorphisms x defined by x(s) = £1, x(t) = £1, where we can
take any of the four combinations of signs.

Suppose n is even. Then we have written down four one dimensional
representations of Da,. These four representations are irreducible (since
they are one dimensional) and non-isomorphic (since they have distinct
matrix representations, and equivalent one dimensional matrix reps are
equal). As ¢ runs over the set ¥ = {27/ eimi/n 2(n/2=1)mi/ny e
get n/2 — 1 = (n — 2)/2 irreducible two dimensional representations V.
They are all non-isomorphic, because the eigenvalues of py, (s) are {¢,(™'}
and these sets of eigenvalues are all distinct as ¢ ranges over X (if two rep-
resentations are isomorphic, the action of g € G necessarily has the same
eigenvalues on both representations).

So we have written down 4 isomorphism classes of one dimensional reps

and (n—2)/2 isomorphism classes of two dimensional irreps. Recall that we
have an equality 2n = Y _;_, d? where the d; are the dimensions of the irreps
of Dsy,. Since 4 + (n — 2)/2 x 4 = 2n we have found all the isomorphism
classes of irreps.
The case with n odd is very similar. Now there are only two one dimensional
reps of Dy,. As ¢ runs over the set ¥ = {e27/n e4mi/n en=Dmi/nY o
get (n — 1)/2 non-isomorphic two dimensional irreps Vy. Adding up the
squares of the dimensions, we have 2+ (n—1)/2 x 4 = 2n, so we have found
all the isomorphism classes.



