

http://www.iwoca.org—Problems section.

Can Lempel-Ziv and Burrows-Wheeler compression be asymptotically compared?

Nicola Prezza University of Pisa, Italy nicola.prezza@gmail.com

presented at IWOCA 2016 18-8-2016

1 Lempel-Ziv factorization

The Lempel-Ziv factorization [10] (LZ77) of a \$-terminated string $T \in \Sigma^n$ (\$ symbol not appearing elsewhere in T) is obtained by factoring T in z phrases, each phrase being the shortest factor that does not appear before in the text. For example,

LZ77(babbabbabbabbabba) = b|a|bb|aba|bbabb|a\$|

In the above example, the number z of LZ77 phrases is z = 6.

2 Burrows-Wheeler Transform

The Burrows-Wheeler transform [1] (BWT) of a \$-terminated string $T \in \Sigma^n$ (\$ character not appearing elsewhere in T and lexicographically smaller than all other alphabet characters) is a permutation of T obtained by sorting all circular permutations of T in a matrix of size $|T| \times |T|$ (having T's circular permutations as rows) and by taking the last column of this matrix. Figure 1 depicts this matrix for the string babbabbabbabbabbabs; taking the last column, we obtain:

BWT(T) is a reversible permutation and can be efficiently compressed with run-length encoding, i.e. by replacing it with the shortest list of pairs $\langle c_i, \ell_i \rangle_{i=1,...,r}$, $c_i \in \Sigma$, $\ell_i \in \mathbb{N}$ such that $BWT(T) = c_1^{\ell_1} c_2^{\ell_2} \dots c_r^{\ell_r}$. In the above example, this list is $\langle a, 1 \rangle$, $\langle b, 8 \rangle$, $\langle \$, 1 \rangle$, $\langle a, 4 \rangle$ (with r = 4). Figure 1: Burrows-Wheeler matrix for the string babbabbabbabbas

3 The problem

Lempel-Ziv- and (run-length encoded) BWT- based compressors output compressed representations of T taking, respectively, $\mathcal{O}(z)$ and $\mathcal{O}(r)$ words of space. Both z and r are important measures of repetitiveness of T—being closely related to its number of self-repetitions—and can be (up to) exponentially smaller than |T|. A very interesting open problem—first addressed in [9]—is how the two measures relate to each other.

Let $\Sigma = \{s_1, \ldots, s_{\sigma}\}$ be the alphabet. Both z and r are at least σ and can be $\Theta(\sigma)$, e.g. in the text $(s_1s_2\ldots s_{\sigma})^e$, e > 0. However, the rate r/z can be $\Theta(\log_{\sigma} n)$: this happens, for example, in de Bruijn sequences¹ of order k > 1.

Conversely, also the rate z/r can be $\Theta(\log n)$. This is the case, e.g., of Fibonacci words, which are defined recursively as follows: $f_1 = a$, $f_2 = b$, $f_n = f_{n-1}f_{n-2}$. The string babbababbabbas in the above examples is f_7 (terminated by \$). Fibonacci words are a particular case of standard words; such words produce a total clustering of the alphabet letters in the BWT [7] (i.e. two runs), and represent therefore one of the cases where the BWT can be compressed to just $\mathcal{O}(\log n)$ bits. On the other hand, the LZ77 factorization of f_n corresponds to the factorization of f_n into singular words \hat{f}_i , where each \hat{f}_i is obtained by complementing the first letter in the left rotation of the Fibonacci word f_i (see [2] for more details). Since $|f_i|$ is exponential in i, it follows that the Lempel-Ziv factorization of f_n has $\Theta(\log |f_n|)$ factors.

To the best of our knowledge, no examples where the above rates asymptotically exceed $\Theta(\log n)$ are known. It seems therefore natural to conjecture that the ratios r/z and z/r are always $\mathcal{O}(\log n)$.

¹To see this, consider the BWT row-partition induced by length-(k-1) strings in the first k-1 columns of the matrix. Each $x \in \Sigma^{k-1}$ appears exactly σ times in the de Bruijn sequence and all such occurrences are preceded by different characters. It follows that each of the above BWT partitions contains at least $\sigma - 1$ runs, so the BWT has at least $(\sigma - 1)\sigma^{k-1} \in \Theta(\sigma^k) = \Theta(n)$ runs. The number of LZ77 phrases of any text is, on the other hand, always $\mathcal{O}(n/\log_{\sigma} n)$.

3.1 Recent Developments

Recently, one direction of the problem has been solved. In [5], the authors showed that $z \in \mathcal{O}(r \log^2(n/r))$ using the recent notion of *string attractor*. This bound has been improved to the optimal $z \in \mathcal{O}(r \log(n/r))$ in [3] using grammars based on locally-consistent parsing. This upperbound is tight since, as observed in the previous section, Fibonacci words satisfy $z/r \in \Theta(\log n)$.

As far as the other direction is concerned, Pape-Lange showed in [8] that $r \in O(z^2 \log n)$. Kempa and Kociumaka [4] improved this bound to $r \in O\left(z \log z \max(1, \log \frac{n}{z \log z})\right)$. In the same paper, they actually prove $r \in O\left(\delta \log \delta \max(1, \log \frac{n}{\delta \log \delta})\right)$, where $\delta \leq z$ is a stronger measure of repetitiveness recently studied in [6], and prove the bound to be tight for all values of n and δ . While this essentially solves the present conjecture as a function of δ , the tightness of the bound as a function of z is still open:

Question 1 Is the bound $r \in O\left(z \log z \max(1, \log \frac{n}{z \log z})\right)$ tight?

Pape-Lange speculates in [8] that r may be upper-bounded by a polynomial in z.

References

- Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm. 1994.
- [2] Gabriele Fici. Factorizations of the fibonacci infinite word. Journal of Integer Sequences, 18(2):3, 2015.
- [3] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. On the approximation ratio of lempel-ziv parsing. In *Latin American Symposium on Theoretical Informatics*, pages 490–503. Springer, 2018.
- [4] Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Theeler transform conjecture. Proceedings of IEEE 61st Annual Foundations of Computer Science, 2020.
- [5] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: String attractors. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 827–840, New York, NY, USA, 2018. ACM.
- [6] T. Kociumaka, G. Navarro, and N. Prezza. Towards a definitive measure of repetitiveness. In Proc. 14th Latin American Symposium on Theoretical Informatics (LATIN), 2020. To appear.
- [7] Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Burrows-wheeler transform and sturmian words. *Information Processing Letters*, 86(5):241–246, 2003.
- [8] Julian Pape-Lange. On extensions of maximal repeats in compressed strings. Proceedings of the 31st Annual Symposium on Combinatorial Pattern Matching, 2020.
- [9] Jouni Sirén et al. Compressed full-text indexes for highly repetitive collections. PhD thesis, 2012.

[10] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. *IEEE Transactions on information theory*, 23(3):337–343, 1977.