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1 Lempel-Ziv factorization

The Lempel-Ziv factorization [10] (LZ77) of a $-terminated string T ∈ Σn ($ symbol not appearing
elsewhere in T ) is obtained by factoring T in z phrases, each phrase being the shortest factor that
does not appear before in the text. For example,

LZ77(babbababbabba$) = b|a|bb|aba|bbabb|a$|

In the above example, the number z of LZ77 phrases is z = 6.

2 Burrows-Wheeler Transform

The Burrows-Wheeler transform [1] (BWT) of a $-terminated string T ∈ Σn ($ character not
appearing elsewhere in T and lexicographically smaller than all other alphabet characters) is a
permutation of T obtained by sorting all circular permutations of T in a matrix of size |T | × |T |
(having T ’s circular permutations as rows) and by taking the last column of this matrix. Figure 1
depicts this matrix for the string babbababbabba$; taking the last column, we obtain:

BWT (babbababbabba$) = abbbbbbbb$aaaa

BWT (T ) is a reversible permutation and can be efficiently compressed with run-length encod-
ing, i.e. by replacing it with the shortest list of pairs 〈ci, `i〉i=1,...,r, ci ∈ Σ, `i ∈ N such that

BWT (T ) = c`11 c
`2
2 . . . c`rr . In the above example, this list is 〈a, 1〉, 〈b, 8〉, 〈$, 1〉, 〈a, 4〉 (with r = 4).
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Figure 1: Burrows-Wheeler matrix for the string babbababbabba$

3 The problem

Lempel-Ziv- and (run-length encoded) BWT- based compressors output compressed representations
of T taking, respectively, O(z) and O(r) words of space. Both z and r are important measures
of repetitiveness of T—being closely related to its number of self-repetitions—and can be (up to)
exponentially smaller than |T |. A very interesting open problem—first addressed in [9]—is how the
two measures relate to each other.

Let Σ = {s1, . . . , sσ} be the alphabet. Both z and r are at least σ and can be Θ(σ), e.g. in the
text (s1s2 . . . sσ)e, e > 0. However, the rate r/z can be Θ(logσ n): this happens, for example, in de
Bruijn sequences1 of order k > 1 .

Conversely, also the rate z/r can be Θ(log n). This is the case, e.g., of Fibonacci words, which
are defined recursively as follows: f1 = a, f2 = b, fn = fn−1fn−2. The string babbababbabba$ in the
above examples is f7 (terminated by $). Fibonacci words are a particular case of standard words;
such words produce a total clustering of the alphabet letters in the BWT [7] (i.e. two runs), and
represent therefore one of the cases where the BWT can be compressed to just O(log n) bits. On the
other hand, the LZ77 factorization of fn corresponds to the factorization of fn into singular words
f̂i, where each f̂i is obtained by complementing the first letter in the left rotation of the Fibonacci
word fi (see [2] for more details). Since |fi| is exponential in i, it follows that the Lempel-Ziv
factorization of fn has Θ(log |fn|) factors.

To the best of our knowledge, no examples where the above rates asymptotically exceed Θ(log n)
are known. It seems therefore natural to conjecture that the ratios r/z and z/r are always O(log n).

1To see this, consider the BWT row-partition induced by length-(k − 1) strings in the first k − 1 columns of the
matrix. Each x ∈ Σk−1 appears exactly σ times in the de Bruijn sequence and all such occurrences are preceded by
different characters. It follows that each of the above BWT partitions contains at least σ − 1 runs, so the BWT has
at least (σ − 1)σk−1 ∈ Θ(σk) = Θ(n) runs. The number of LZ77 phrases of any text is, on the other hand, always
O(n/ logσ n).
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3.1 Recent Developments

Recently, one direction of the problem has been solved. In [5], the authors showed that z ∈
O(r log2(n/r)) using the recent notion of string attractor. This bound has been improved to the
optimal z ∈ O(r log(n/r)) in [3] using grammars based on locally-consistent parsing. This upper-
bound is tight since, as observed in the previous section, Fibonacci words satisfy z/r ∈ Θ(log n).

As far as the other direction is concerned, Pape-Lange showed in [8] that r ∈ O(z2 log n).

Kempa and Kociumaka [4] improved this bound to r ∈ O
(
z log zmax(1, log n

z log z )
)

. In the same

paper, they actually prove r ∈ O
(
δ log δmax(1, log n

δ log δ )
)

, where δ ≤ z is a stronger measure of

repetitiveness recently studied in [6], and prove the bound to be tight for all values of n and δ.
While this essentially solves the present conjecture as a function of δ, the tightness of the bound
as a function of z is still open:

Question 1 Is the bound r ∈ O
(
z log zmax(1, log n

z log z )
)
tight?

Pape-Lange speculates in [8] that r may be upper-bounded by a polynomial in z.
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