The complexity of covering a ladder using cycles

Florent Foucaud
Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France.
CNRS, LaBRI, UMR5800, F-33400 Talence, France.
florent.foucaud@gmail.com
December 19, 2012

The ladder graph of length n, L_n, is the cartesian product $P_2 \square P_n$. We note that L_n contains $\binom{n}{2}$ distinct cycles. We define the following decision problem:

Ladder Cycle Cover
INSTANCE: An integer n, an integer $m \leq \binom{n}{2}$, an integer $k \leq m$, and a set C of m cycles of the ladder graph L_n.
QUESTION: Is there a set $C' \subseteq C$ of k cycles such that the union of all cycles of C' covers L_n, i.e. $\bigcup_{C_i \in C'} E(C_i) = E(L_n)$?

Open problem 1 What is the complexity of the decision problem Ladder Cycle Cover? What if we restrict it to instances having $|C| = n$?

This problem, together with further discussions, is also mentioned in my PhD dissertation [2, Section 8.1]. Let us make a few observations.

Observation 1 Of course, the answer to the question can be “YES” only if C itself is a valid solution, i.e. $\bigcup_{C_i \in C} E(C_i) = E(L_n)$. This can be checked easily beforehand.

Observation 2 Since each cycle covers exactly two “step edges” of L_n (the ones coming from the P_2 fiber), we need at least $\frac{n}{2}$ cycles in the solution.

Observation 3 (1) If we were asking only to cover the edges of L_n coming from the P_n fiber, the problem would correspond to Dominating Set in some interval graph, which is solvable in linear time [2].

(2) If we were asking only to cover the edges of L_n coming from the P_2 fiber (“step edges”), the problem would correspond to Edge Cover in a graph, which is solvable in polynomial time by a maximum matching approach [3] (cited in [3, Problem GT1]).
Note that we can equivalently state Ladder Cycle Cover as follows:

Interval And Endpoints Cover

INSTANCE: An integer n, an integer $m \leq \binom{n}{2}$, an integer $k \leq m$, and a set $\mathcal{C} = \{s_1, t_1\}, \ldots, \{s_m, t_m\}$ of m pairs from the set $\{1, \ldots, n\}$.

QUESTION: Is there a set $\mathcal{C}' \subseteq \mathcal{C}$ of size k such that for each element i of $\{1, \ldots, n\}$:

1. if $i < m$, the interval $[i, i + 1]$ is included in some interval $[s_i, t_i]$ defined by a pair in \mathcal{C}', and
2. i belongs to some pair of \mathcal{C}'?

References

