From String Attractors to Strings

Dominik Köppl
Tokyo Medical and Dental University, Japan, koeppl.dsc@tmd.ac.jp

presented at IWOCA 2022 on June 10
last update: November 2, 2022

Given a string $T[1 . . n]$, a string attractor Γ is a set of positions $\Gamma \subset[1 . . n]$ such that every substring S of T has an occurrence $T[i . . i+|S|-1]$ in T such that $[i . . i+|S|-1] \cap \Gamma \neq \emptyset$, see also [2].

Example 1. For $T=$ banana, a minimal string attractor is $\Gamma=\{1,2,3\}$ since all substrings of T have an occurrence that intersects with $T[1 . .3]$. For instance, the suffix $n a$ has another occurrence starting at position 3, and therefore is "hit" by Γ.

Problem 1. For a given set $\Gamma \subset[1 . . n]$, find all strings whose smallest string attractor is Γ.

Comment 1. Already for $\Gamma=\{1\}$, there can be infinitely many strings such as a, aa, aaa... having Γ as smallest string attractor. However, if such a string becomes too long, then it becomes ultimately periodic [4, meaning that it is a prefix of $S P^{\infty}$, where S and P are finite strings. So these strings can be classified by S and P. Hence, we can classify a string derived from $\Gamma=\{1\}$ just by the first letter a and its length.

Definition 1. We represent a string T by the triplet (S, P, ℓ) such that $S \cdot P^{\ell}=$ T, S and P are strings, and ℓ a rational number. Further, no rotation of P is a suffix of S (otherwise we could increase ℓ), and P is the shortest possible such string. We say that the triplet is the ultimately periodic representation of T.

Example 2.

string	ultimately periodic representation
abbb	$(\mathrm{a}, \mathrm{b}, 3)$
abcbcbc	$(\mathrm{a}, \mathrm{bc}, 3)$
abcabab	$(\mathrm{abc}, \mathrm{ab}, 2)$

We reformulate Problem 1 as follows:
Problem 2. For a given set $\Gamma \subset[1 . . n]$, what is the number of different ultimately periodic representation when neglecting the length ℓ ? (meaning that we count (S, P, ℓ) and $\left(S, P, \ell^{\prime}\right)$ for $\ell \neq \ell^{\prime}$ only once)

Comment 2. It is still unknown whether we can represent every string T in space $\mathcal{O}\left(\gamma_{T}\right)$, where γ_{T} is the size of a smallest string attractor of T [3. However, [1] showed that we can compress every string T of length n into $\mathcal{O}\left(\gamma_{T} \log \frac{n}{\gamma_{T}}\right)$ space.

Assume that we have a representation of a string of length n within $c \gamma \log n$ bits, for $\gamma:=\gamma_{T}$. Then this number of bits is enough to enumerate solutions from 1 to $2^{c \gamma \log n}=n^{c \gamma}$. This leads to another problem:

Problem 3. Prove or disprove: There is a constant c (depending on the alphabet size) such that for any length n, the number of strings of length n having a string attractor of size γ is at most $n^{c \gamma}$.

References

[1] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms, 17(1):8:1-8:39, 2021. doi:10.1145/ 3426473.
[2] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proc. STOC, pages 827-840. ACM, 2018. URL: http://doi. acm.org/10.1145/3188745.3188814, doi:10.1145/3188745.3188814.
[3] Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures. ACM Comput. Surv., 54(2):29:1-29:31, 2021. doi: 10.1145/3434399.
[4] Antonio Restivo, Giuseppe Romana, and Marinella Sciortino. String attractors and infinite words. In Proc. LATIN, pages 426-442, 2022. doi: 10.1007/978-3-031-20624-5_26.

