Quantitative analysis of secure information flow via probabilistic semantics

Technical Report: TR-08-08

Chunyan Mu \(^1\),\(^2\) David Clark\(^3\)

Department of Computer Science
King’s College London
The Strand, London, UK

Abstract

We present an automatic analyzer for measuring information flow within software systems. In this paper, we quantify leakage in terms of information theory and incorporate this computation into probabilistic semantics. Our semantic functions provide information flow measurement for programs given secure inputs under any probability distribution. The major contribution is a automatically quantitative analyzer based on the leakage definition for such a language. While-loops are handled by applying entropy of generalized distributions and relative properties in order to provide a more precise analysis with observing time.

Keywords: Language, Security, Non-interference, Semantics, Information Theory, Flow.

1 Introduction

Quantifying and measuring information flow in software has recently become an active research topic. Access control systems are designed to restrict access to information, but cannot control information propagation once accessed. The goal of information flow security is to ensure that the information propagates throughout the execution environment without security violations such that no secure information is leaked to public outputs. The traditional theory based reasoning and analysis of software systems has largely relied on logics, but they are not concerned with bit leakage, nor with the program execution observers. It would be good to have a quantitative study geared towards the tasks relevant for the computational environment in which we live. The quantitative information flow analysis tool can also be used as part of the testing and auditing process, and such research would be

\(^1\) This research is supported by the EPSRC grant EP/C009967/1 Quantitative Information Flow
\(^2\) Email: chunyan.mu@kcl.ac.uk
\(^3\) Email: david.j.clark@kcl.ac.uk
beneficent to the analysis of software applications in security related domains such as the military, banks etc.

Traditionally, the approach of information flow security is based on interference \cite{6}. Consider interference between program variables: informally, the capacity of variables to affect the values of other variables. Non-interference, i.e. absence of interference, is often used in proving that a system is well behaved, whereas interference can lead to mis-behaviors. However, mis-behaviors in the presence of interference will generally happen only when there is enough interference. A concrete example is a software system with access control. To enter such a system the user has to pass an identification stage: whether subsequently authorized or failed, some information has been leaked so these systems present interference. Otherwise, if the interference in such systems is small enough we can be confident in the security of the system. The security community hence requires determining how much information flows from high level to low level, which is known as quantitative information flow. Consider the following examples, which show secure information flow is violated during the execution of the programs:

(i) \(l := h \);
(ii) \(\text{if } (h==0) \text{ then } l := 0 \text{ else } l := 1 \);
(iii) \(l := h; \text{ while } (l<>0) \text{ l := l*2} \);

where \(l \) is a low security variable, \(h \) is a high security variable. It is obvious that, the assignment command causes the entire information in \(h \) to flow to \(l \), the if statement allows one bit of information in \(h \) to flow to \(l \) in the case that \(h \) and \(l \) are Boolean, and \(l \) learns some information (whether \(h \) equals to zero or not) about \(h \) via the termination behaviors of while loop command. Note that executing the program reduces the uncertainty about secure information and causes the information leakage. Quantifying and measuring information flow aims to compute how much information is leaked, and suggesting how secure the program is from a quantitative point of view.

Clark et al.’s system for a simple programming language\cite{2} was the most complete static quantitative information flow analysis to our knowledge. The main weakness of this work is that the bounds for loops are over pessimistic. Malacaria\cite{10} gave a more precise quantitative analysis of loop construct using partition property of entropy but its application is hard to automate and there is no formal treatment. All the work to date suffers one of two problems: either it is verified but does not give tight bounds or all the examples are given tight bounds but there is no general verified analysis. The quality of the analysis for the measurement of information flow need to be improved. A both automatic and precise analysis system is required.

In this paper, we consider the mutual information between a high security variable at the beginning of a batch program and a low one at the end of the program, conditioned on the mutual information between the initial values of high and low, as the measure of how much of the initial secret information is leaked by executing the program. Malacaria’s\cite{10} leakage calculation method for loops provides a way of calculating the exact leakage, given knowledge of whether the loop terminates and the maximum possible number of iterations when it does terminate. This calcula-
method has not been formalized with respect to semantics to date. Nor does it seem likely that an analysis based on abstraction could calculate exact leakage. We show that Kozen’s Scott-domain version of probabilistic state transformer semantics can be used to overcome some of the drawbacks in Malacaria’s method. We devise an algorithm that implements Kozen’s semantics. It takes as input a probability distribution on the initial store and calculates a probability distribution on the final store when the program sometimes terminates. In fact it calculates a probability distribution at each program point. These can then be used to calculate leakage. Specifically, while-loops are handled by applying the definition of entropy of generalized distributions and relative properties in order to provide a more precise analysis with observing time. We show that this algorithm calculates the same quantity as Malacaria’s method, thereby providing correctness for his method relative to Kozen’s semantics. Unlike Malacaria’s method there is no need for any initial (human) analysis of loop behavior and it is completely automatic while applying to general while language programs. The drawbacks of our approach are that it is not, in general, lacking abstraction, time complexity can become large in certain circumstances. The critical component in the time complexity is the conditional mutual information calculation. This is confirmed by tests of the implementation. Using the algorithm to generate plots of loop iterations vs. leakage for example can take hours. We are currently doing an abstract analysis for our approach.

The rest of the paper is organized as follows. In Section 2, we briefly review the relevant mathematical background. Section 3 introduces the syntax and the probabilistic semantics, presents a leakage analyzer due to such semantics. An implementation is given in Section 4. Finally, we present related work and draw conclusions in Section 5, 6.

2 Mathematical Background

In this section we review some definitions in the relevant mathematical background including information theory, measures, random variables and programs.

2.1 Measures, Random Variables and Programs

There is a clear connection between the notion of probability distribution, information theory, and information leakage in a program. Measures assign weight on the domain, probabilities are a particular case of measures. Hence we could apply it to the semantics to drive the distributions’ transform. A measure on a space \(\Omega \) assigns a “weight” to subsets of the set \(\Omega \). A set of useful definitions are reviewed as follows referenced in [18]. A measure space is a triple \((\Omega, \mathcal{B}, \mu)\), where \(\Omega\) is a set, \(\mathcal{B}\) is a \(\sigma\)-algebra of subsets of \(\Omega\), \(\mu\) is a nonnegative, countable additive set function on \(\mathcal{B}\). A \(\sigma\)-algebra is a set of subsets of a set \(M\) that contains \(\emptyset\), and is stable by countable union and complementation. A set \(M\) with a \(\sigma\)-algebra \(\sigma_M\) defined on it is called a measurable space and the elements of the \(\sigma\)-algebra are the measurable subsets. If \(M\) and \(N\) are measurable spaces, \(f: M \to N\) is a measurable function if for all \(W\) measurable in \(N\), \(f^{-1}(W)\) is measurable in \(M\). A positive measure is a function \(\mu\) defined on a \(\sigma\)-algebra \(\sigma_M\), which is countable additive, and has a range in \([0, \infty]\). \(\mu\) is countably additive, if taking \((E_n)_{n \in N}\) a disjoint collection of elements of \(\sigma_M\),
then \(\mu(\bigcup_{n=0}^{\infty} E_n) = \sum_{n=0}^{\infty} \mu(E_n) \). A probability measure is a positive measure of total weight 1. A sub-probability measure has total weight less than or equal to 1. Note that \(\mathcal{P}_{\leq 1}(M) \) is the sub-probability measures on \(M \).

We consider denotational semantics for programs. Assume that all program variables \(\mathcal{V} \) range over the same state space \(\Omega \). The denotational semantics of a command is a mapping from the set \(M \) of possible environments before a command into the set \(N \) of possible environments after the command. These spaces updated by semantic transformation functions can be used to calculate leakage at each program point.

2.2 Shannon’s Measure of Entropy

In order to measure the information flow, we treat the program as a communication channel. Information theory introduced the definition of entropy, \(\mathcal{H} \), to measure the average uncertainty in random variables. Shannon’s measures were based on a logarithmic measure of the unexpectedness of a probabilistic event (random variable). The unexpectedness of an event which occurred with some non-zero probability \(p \) was \(\log_2 \frac{1}{p} \). Hence the total information carried by a set of events was computed as the weighted sum of their unexpectedness: \(\mathcal{H} = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} \).

Considering a program as a state transformer, random variable \(X \) is a mapping between two states which are equipped with distributions, let \(p(x) \) denote the probability that \(X \) takes the value \(x \), the entropy \(\mathcal{H}(X) \) of discrete random variable \(X \) was defined as: \(\mathcal{H}(X) = \sum_x p(x) \log_2 \frac{1}{p(x)} \). Intuitively, entropy is a measure of the uncertainty of a random variable, which can never be negative. Furthermore, given two random variables \(X \) and \(Y \), the notion of conditional entropy \(\mathcal{H}(X|Y) = \sum_y p(y) \mathcal{H}(X|Y=y) \) suggests possible dependencies between random variables, i.e., knowledge of one may change the information associated with another. Let \(p(x,y) \) denote the joint distribution of \(x \in X \) and \(y \in Y \), the notion of mutual information between \(X \) and \(Y \), \(\mathcal{I}(X;Y) \), is given by: \(\mathcal{I}(X;Y) = \sum_x \sum_y p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)} \). Furthermore, there are conditional versions of mutual information: \(\mathcal{I}(X;Y|Z) \) denotes the mutual information between \(X \) and \(Y \) given knowledge of \(Z \), and is defined as follows: \(\mathcal{I}(X;Y|Z) = \mathcal{H}(X|Z) + \mathcal{H}(Y|Z) - \mathcal{H}(X,Y|Z) \).

2.3 Entropy of Generalized Probability Distributions

From a measure space transformer point of view, the loop command is going to create a set of sub-probability measures (see Section 3). In order to give a more precise leakage analysis, we need an observation of state at any semantic computation point in an abstract way, e.g., we may consider the attacker can observe the iteration of loops. Loop semantics uses sub-measures for loop approximations, and we need to calculate the entropy of sub-measures. However, Shannon’s entropy definition does not work for the sub-probability measures, therefore we need the more general entropy definition. We now consider some properties and definitions of measures of entropy on the set of generalized probability distributions by Renyi referenced in [16]. Let \((\Omega, \mathcal{B}, \mu) \) be a probability space, consider a function \(X \) defined for \(\omega \in \Omega \) and is measurable with respect to \(\mathcal{B} \), where \(X \) is called a generalized random variable. Furthermore, if \(\mu(\Omega) = 1 \), \(X \) is called a complete random variable; if \(0 < \mu(\Omega) < 1 \),
X is called an incomplete random variable.

The distribution of a generalized random variable is called a generalized probability distribution. Specifically, consider a generalized random variable $X = \{x_1, x_2, \ldots, x_n\}$, with probability $p_k = \mu\{X = x_k\}$ for $k = 1, 2, \ldots, n$, such that the generalized probability distribution is written as $\mathcal{P} = (p_1, p_2, \ldots, p_n)$, the weight of the distribution \mathcal{P} is defined by: $W(\mathcal{P}) = \sum_{k=1}^{n} p_k$, and $0 < W(\mathcal{P}) \leq 1$. It is easy to see that the weight of a complete distribution is equal to 1, and the weight of an incomplete distribution is less than 1.

Let Δ denote the set of all finite discrete generalized probability distributions, i.e., the set of all sequences $\mathcal{P} = (p_1, p_2, \ldots, p_n)$, where $0 < \sum_{k=1}^{n} p_k \leq 1$. $\forall \mathcal{P} \in \Delta$, the entropy of a generalized probability distribution $\tilde{H}(\mathcal{P})$ is defined as:

$$\tilde{H}(\mathcal{P}) = \frac{\sum_{k=1}^{n} p_k \log_2 \frac{1}{p_k}}{\sum_{k=1}^{n} p_k}$$

2.3.1 Partition Property of Entropy

The partition property of entropy given by Renyi [17] suggests that the entropy of a space with a partition can be computed by summing the entropy of each weighted partition. Formally, given a generalized distribution μ over a set of events $E = \{e_{i,1}, \ldots, e_{i,m}\}$: $\mu(E_i) = \sum_{1 \leq j \leq m} \mu(e_{i,j})$, and a partition of E in sets $(E_i)_{1 \leq i \leq n}$: $E_i = \{e_{i,1}, \ldots, e_{i,m}\}$, the entropy of E can be computed by:

$$\tilde{H}(\mu(e_{1,1}), \ldots, \mu(e_{n,m})) = \tilde{H}(\mu(E_1), \ldots, \mu(E_n)) + \sum_{i=1}^{n} \mu(E_i) \tilde{H}(\frac{\mu(e_{i,1})}{\mu(E_i)}, \ldots, \frac{\mu(e_{i,m})}{\mu(E_i)})$$

where, $\mu(E_i) = \sum_{j=1}^{m} \mu(e_{i,j})$ ($i = 1, 2, \ldots, n$), and by assumption, $\sum_{i=1}^{n} E_i = \sum_{i=1}^{n} \sum_{j=1}^{m} e_{i,j} \leq 1$.

This formula can be considered as a theorem about the information associated with a mixture of distributions, see Renyi [17]. Indeed, the entropy of set E is the information associated with the mixture of the subset (a partition of E) distributions $\frac{\mu(e_{1,1})}{\mu(E_i)}, \ldots, \frac{\mu(e_{i,m})}{\mu(E_i)}$ with weights $\mu(E_i)$. The above formula suggests that this information is equal to the sum of the average of the information $\frac{\mu(e_{i,1})}{\mu(E_i)}, \ldots, \frac{\mu(e_{i,m})}{\mu(E_i)}$ with weights $\mu(E_i)$ and the information associated with the mixing distribution $(\mu(E_1), \ldots, \mu(E_n))$. Furthermore, if we denote the set of events in E by ξ, denote a partition of E in sets E_i by η, and denote the elements $e_{i,j}$ of the partition E_i as ζ, then we have: $\tilde{H}(\xi) = \tilde{H}(\eta) + \tilde{H}(\zeta|\eta)$.

3 The Leakage Analyzer

The semantics concerned with probability distribution behavior in program analysis and leakage computation will be presented in this section. Measures express the intuitive idea of a “repartition of weight” on the domain, probabilities are a particular case of measures. Hence we would expect this to apply to the semantics. We apply Kozen’s [8] probabilistic semantics as the framework to build the relationship between the probability distribution functions and the variables, expressions, and the commands in a program language to present the probability distribution transformations during the program executions. This provides a basis to develop
an automatic analysis of leakage measurement since there is an intimate connection between probability distribution and measurement of information flow.

The property of program executions considered here is the notion of probability distribution on the set of states which induces the computation transformations of probability distributions. The intuition behind a probabilistic transition is that it maps an input distribution to an output distribution so that we can get a series of computation traces of probability distributions. Next we present a set of measurable functions on the set of traces of execution. The transition probability functions map each state of the first state space to a probability distribution on the second state space. This will help us to explore the property of quantitative information flow on the transformations, in which the sequence reaches in a certain state.

3.1 The Language and its Semantics

Kozen [8] presents two equivalent semantics for probabilistic programs. One interprets programs as partial measurable functions on a measurable space, the other interprets programs as continuous linear operators on a Banach space of measures. We are more interested in the first one which expresses properties of probabilistic behavior of programs at a more appropriate level of abstraction. We concentrate on the distributions and present the semantic functions by using Lambda Calculus and the notation of inverse function following [13], see Fig. 1.

\[
\begin{align*}
 f_{[x:=e]}(\mu) & \triangleq \lambda X.\mu(f_{[x:=e]}^{-1}(X)) \\
 f_{[c_1];[c_2]}(\mu) & \triangleq f_{[c_2]} \circ f_{[c_1]}(\mu) \\
 f_{[\text{if } b \text{ then } c_1 \text{ else } c_2]}(\mu) & \triangleq f_{[c_1]} \circ f_{[b]}(\mu) + f_{[c_2]} \circ f_{[\neg b]}(\mu) \\
 f_{[\text{while } b \text{ do } c]}(\mu) & \triangleq f_{[\neg b]}(\lim_{n \to \infty} (\lambda \mu'.\mu + f_{[c]} \circ f_{[b]}(\mu'))^n(\lambda X.\bot)) \\
 \text{where, } f_{[B]}(\mu) &= \lambda X.\mu(X \cap B)
\end{align*}
\]

This semantics can be considered as a distribution transformer. The vector of the program variables \(\vec{V} = \{x|x \in \vec{V}\}\) satisfy some joint distribution \(\mu\) on program input, a program \([C]\) maps distribution \(\mu\) over a \(\vec{V}\) to distributions \(f_{[C]}(\mu)\) over \(\vec{V}\): \(f_{[C]} : \mu \to \mu\), and \(X : \{\mu : \sigma \mapsto [0, 1]\}\), where \(\sigma\) denotes the store. Function \(f_{[B]}\) for boolean test \(B\) defines the set of environments matched by condition \(B\), which causes the space to split apart. Conditional statement is executed on the conditional probability distributions for either the true branch or false branch: \(f_{[c_1]} \circ f_{[b]}(\mu) + f_{[c_2]} \circ f_{[\neg b]}(\mu)\). In the while loop, the measure space with distribution \(\mu\) goes around the loop, and at each iteration, the part that makes test \(b\) false breaks off and exits the loop, while the rest of the space goes around again. The output distribution \(f_{[\text{while } b \text{ do } c]}(\mu)\) is thus the sum of all the partitions that finally find their way out. Note that these partitions are part of the space when the loop partially terminated, which implies the outputs are partially observable and hence produce an incomplete distributions. For the case that the loop is completely non-terminated, \(\bot\) is returned and leakage is 0 when no new partition is produced but
3.2 Automatic Leakage Analysis for Programs

Assume we have two types of input variables: \(H(\text{confidential}) \) and \(L(\text{public}) \), and the inputs are equipped with probability distributions, so the inputs can be viewed as a joint random variable \((H, L)\). From a state transformation point of view, the semantic function of programs maps the state of inputs to the state of outputs. We present the basic leakage definition refer to [2] for programs as follows.

Definition 3.1 [Leakage] Let \(H \) be a random variable in high security inputs, \(L \) be one in low security inputs, and let \(L' \) be a random variable in the output observation, the secure information flow (or interference) is defined by \(I(L'; H|L) \), i.e., the conditional mutual information between the output and the high input given knowledge of the low output. Note that for deterministic programs, we have \(I(L'; H|L) = H(L'|L) \), i.e., interference between the uncertainty in the output given knowledge of the low input.

Fig. 2 presents the analysis as a collection of inference rules. In these rules, \(\Gamma \) is a partial function from \(\vec{V} \) to a pair: \(\langle \mu, \mathcal{L} \rangle \). We use \(x : \langle \mu_x, \mathcal{L}_x \rangle \) to denote the partial function sending \(x \) to distribution \(\mu_x \) and leakage \(\mathcal{L}_x \). Entailment \(\Gamma \vdash e \downharpoonright x : \langle \mu_x, \mathcal{L}_x \rangle \) means that the program \(c \) modifies \(x \) in such a way that \(x \) with distribution \(\mu_x \) and leakage quantity \(\mathcal{L}_x \). The rules are presented in functional form and automated, we present a detailed discussion in Section 3.2.1 - 3.2.5.

\[
\begin{align*}
&\text{const} & \Gamma \vdash n : \langle \mu(n), 1, 0 \rangle \\
&P_0 = \{p_0 = \mu_0(\text{tt})\} & \Gamma \vdash x : \langle \mu_x, \mathcal{L}_x \rangle \vdash x : \langle \mu_x, \mathcal{L}_x \rangle \\
&P_1 = \{p_1 = \mu_0(\text{ff})\} & \Gamma \vdash e : \langle \mu_e, \mathcal{H}(\mu_e) \rangle (\text{Var}) \\
\text{BExp} & \Gamma \vdash b : \langle P_0 \cup P_1, \mathcal{H}(P_0 \cup P_1) \rangle & \Gamma \vdash e : \langle \mu_e, \mathcal{H}(\mu_e) \rangle (\text{Exp}) \\
& \Gamma \vdash b : \langle P_0 \cup P_1, \mathcal{H}(P_0 \cup P_1) \rangle & \Gamma \vdash e : \langle \mu_e, \mathcal{H}(\mu_e) \rangle (\text{Exp}) \\
\text{Ass} & \Gamma \vdash x := e \downharpoonright x : \langle \mu_e, \mathcal{L}_e \rangle & \Gamma \vdash c_1 \downharpoonright \Gamma', \Gamma' \vdash c_2 \downharpoonright \Gamma'' (\text{Seq}) \\
\text{IF} & \Gamma \vdash b : \langle P_0 \cup P_1, \mathcal{H}(P_0 \cup P_1) \rangle & \Gamma \vdash c_1 \downharpoonright x : \langle Q_0, \mathcal{H}(Q_0|P_0) \rangle_{i=1,2} \\
& \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \downharpoonright x : (Q_0 \cup Q_1, \mathcal{H}(Q_0 \cup Q_1; P_0 \cup P_1) + \mathcal{H}(Q_0 \cup Q_1|P_0 \cup P_1)) \\
& \Gamma \vdash b : \langle P_0 \cup \ldots \cup P_n, \mathcal{H}(P_0, \ldots, P_n) \rangle \\
& \text{While} \ c \downharpoonright x : (Q_0 \cup \ldots \cup Q_n, \mathcal{H}(Q_0 \cup \ldots \cup Q_n; P_0 \cup \ldots \cup P_n) + \mathcal{H}(Q_0 \cup \ldots \cup Q_n|P_0 \cup \ldots \cup P_n)) \\
& \text{while} \ b \ \text{do} \ c \downharpoonright x : (P_0 \cup \ldots \cup P_n, \mathcal{H}(P_0 \cup \ldots \cup P_n) + \mathcal{H}(Q_0 \cup \ldots \cup Q_n|P_0 \cup \ldots \cup P_n))
\end{align*}
\]

Fig. 2. Inference rules for leakage analysis
3.2.1 Arithmetic Expressions

We denote the probability function of x as μ_x. Let $\mu_x(v)$ be the probability that the value of x is v, the domain of μ_x will be the set of all possible values that x could be. The computation function $f_e(\mu)$ of an arithmetic expression e defines the measure space that the arithmetic expression can evaluate to in a given set of environments. Specifically, consider the joint probability distribution over the discrete random variable X, Y, by the definition of conditional probability, the distribution function for arithmetic expression $e(x, y)$ is given by:

$$
\mu_{e(x,y)}(z) = \sum_{\text{domain}_x} \mu_x(e^{-1}(z, y))\mu_y(y) = \sum_{\text{domain}_y} \mu_y(e^{-1}(z, x))\mu_x(x)
$$

where z stands for a possible value of $e(x, y)$ in the current environment. For instance, the probability density function for addition is:

$$
\mu_{x+y}(z) = \sum_{\text{domain}_x} \mu_x(z-y)\mu_y(y).
$$

The entropy of expressions is considered as the entropy of its distribution $H(\mu_e)$, which also can be calculated by using the functional relationship between inputs and outputs $[2]$: Let $Z = e(X, Y)$, then $H(Z) = H(X, Y) - H(X, Y | Z)$, i.e., the entropy of the output space is the entropy of the input space minus the entropy of the input space given knowledge of the output space. Note that, for any constant value $c : \mu_c(c) = 1$, $H_c = 0$.

3.2.2 Assignment

Suppose $[c] : X \rightarrow Y$, X and Y being metric spaces, W denotes all measurable space in Y is measurable, consider the following linear operator $f_{[c]}$ in general, which is presented by inverse image:

$$
f_{[c]} : \mathcal{M}_{\leq 1}(X) \rightarrow \mathcal{M}_{\leq 1}(Y),
\mu \mapsto \lambda W, \mu(f_{[c]}^{-1}(W))
$$

Specifically, for the command of assignment, the transformation function for assignment updates the state such that the measure space of assigned variable x is mapped to the domain of expression e:

$$
f_{x:=e}(\mu) = \lambda X, \mu(f_{[x:=e]}^{-1}(X))
$$

Assume variable x is a low security variable with public output, the information leaked to x after command $[x := e]$ is given by $L_{[x := e]} = H(\mu_e)$.

3.2.3 Sequential

The distribution transformation function for sequential is obtained by composition:

$$
f_{[c_1; c_2]}(\mu) = f_{[c_2]} \circ f_{[c_1]}(\mu)
$$

Let $\mu' = f_{[c_1; c_2]}(\mu)$, the low security variable v is public observable, according to the leakage definition, the leakage due to sequential command $[c_1; c_2]$ is the entropy $H(\mu'_v | \mu_v)$, where μ'_v and μ_v are the distribution of variable v after and before the sequential command.

Consider a piece of program $l:=2; l:=h+3; \text{print}(l);$, assume h is high security variable, l is low security variable, and initially the variables satisfy
with the joint distribution $\mu_{(h,l)} = \begin{bmatrix} (0,0) \ w.p. \ 0.3 \\ (1,0) \ w.p. \ 0.5 \\ (2,0) \ w.p. \ 0.2 \end{bmatrix}$, then $f_{[l:=2; l:=h+3;]}(\mu_{(h,l)}) = \begin{bmatrix} (0,3) \ w.p. \ 0.3 \\ (1,4) \ w.p. \ 0.5 \\ (2,5) \ w.p. \ 0.2 \end{bmatrix}$. The distribution of l is $\mu_l = \begin{bmatrix} 3 \ w.p. \ 0.3 \\ 4 \ w.p. \ 0.5 \\ 5 \ w.p. \ 0.2 \end{bmatrix}$. The leakage due to this piece of program is the conditional entropy $H(\mu_l|\mu_h) = 1.485$, which means the information contained in h (uncertainty due to the initial distribution of h) totally flows to output.

3.2.4 Conditional

A conditional creates multiple paths conditionalized on some tests, which constructs two branches based on the boolean test, and also makes the partitions a complete distribution. We define that $\mu_b(\text{tt})$ is the probability of b to be true, and $\mu_b(\text{ff})$ is the probability of b to be false. Let $P_0 = \{p_0 = \mu_b(\text{tt})\}$, $P_1 = \{p_1 = \mu_b(\text{ff})\}$ denote the partition due to the test b, $Q_0^l = \{q_0, \ldots , q_{0m}\}$, $Q_1^l = \{q_0, \ldots , q_{1m}\}$ denote the probability distribution of low security variable l in the two branches under the condition that event b is true/false,

$$f_{[\text{if } b \text{ then } c_1 \text{ else } c_2]}(\mu) = f_{[c_1]} \circ f_{[q]}(\mu) + f_{[c_2]} \circ f_{[\neg q]}(\mu)$$

Assume l is low security variable and output to public, the leakage due to if statement is defined as: $L_{[14]} = \tilde{H}(P_0 \cup P_1) + \tilde{H}(Q_0^l \cup Q_1^l | P_0 \cup P_1)$.

Example Consider the following program. We only consider a k-bit variable with possible values $0, \ldots , s^k - 1$, i.e., non-negative numbers for simplification.

```c
if (h==0) then l=0 else l=1; print(l);
```

Assume h is 32-bit high security variable with uniform distribution, l is low security variable. It is easy to get, $P_0 = \{\frac{1}{2^{32}}\}$, $P_1 = \{1 - \frac{1}{2^{32}}\}$, and $Q_0^l = \{\mu_l(0)\} = \{\frac{1}{2^{32}}\}$, $Q_1^l = \{\mu_l(1)\} = \{1 - \frac{1}{2^{32}}\}$. The resulting set of probability distribution transformation is obtained as:

$$f_{[\text{if}]}(h,l) \mapsto \begin{bmatrix} (0, \bot) \ w.p. \ 1/2^{32} \\ \ldots \\ (2^{32} - 1, \bot) \ w.p. \ 1/2^{32} \end{bmatrix} = \begin{bmatrix} (l \mapsto \begin{bmatrix} 0 \ w.p. \ 1/2^{32} \\ 1 \ w.p. \ 1 - 1/2^{32} \end{bmatrix}) \end{bmatrix}$$

The distribution of low security variable l after the if statement can be described as

$$l \mapsto \begin{bmatrix} 0 \ w.p. \ 1/2^{32} \\ 1 \ w.p. \ 1 - 1/2^{32} \end{bmatrix}$$

and the information flowed to low component under this example can be computed by:

$$H_{[14]} = \tilde{H}(P_0 \cup P_1) + \tilde{H}(Q_0^l \cup Q_1^l | P_0 \cup P_1)$$

$$= \tilde{H}(\{\frac{1}{2^{32}}\} \cup \{1 - \frac{1}{2^{32}}\}) + 0 = 7.8 \times 10^{-9}$$
The result implies that this example just releases few information to the public, which agrees our intuition: the possibility of $h = 0$ is quite low and the uncertainty of h under condition $h \neq 0$ is still big, i.e., just few information released.

3.2.5 While Loop

The semantic function for loop is given by:

$$f_{\text{while } b \text{ do } c}(\mu) = f_{\neg b}[\lim_{n \to \infty} (\lambda \mu', \mu + f_{[c]} \circ f_{[b]}(\mu'))^n(\lambda X.\bot)]$$

Such function produces the union of all the sub-measures that have already quit the loop so far. Intuitively, the initial measure space goes around the loop. At each iteration, the part of the space which leads the boolean test to be false exits the loop, while the rest of the space goes around again. This accumulates a set of partitions that have come to occupy the same parts of the program through different paths. At some certain points, e.g. k^{th} iteration, the output distribution \mathcal{P}_k is the sum of all the pieces that eventually find their way out, i.e., the union of sub-measures which have left the loop finally at that point. Consider a terminating loop $\text{while } b \text{ C}$ as a sub-measure transformer which builds a set of accumulated incomplete probability distributions, i.e., due to k^{th} iteration,

$$\mathcal{P}([\text{while } b \text{ C}]) = \bigcup_{0 \leq i \leq k} \mathcal{P}_i([\text{while } b \text{ C}])$$

where $k \leq n$, and n is the maximum number of iteration of the loop. Let,

$$\mathcal{P}_i = \{p_i\} = \{\mu(e^i)\}, \text{ where } e^i = \begin{cases} b^0 = \text{ff}, & i = 0 \\ b^0 = \text{tt} \land b^1 = \text{ff}, & i = 1 \\ b^0 = \text{tt}, \ldots, b^{i-1} = \text{tt} \land b^i = \text{ff}, & i > 1 \end{cases}$$

where e^i is the event that the loop test b is true until the i^{th} iteration, b^i denotes the value of the boolean test b at i^{th} iteration. Consider the union of the decompositions

$$\mathcal{P} = (\mathcal{P}_0 \cup \mathcal{P}_1 \cup \ldots \cup \mathcal{P}_k)_{0 \leq k \leq n} = (\{p_0\} \cup \{p_1\} \cup \ldots \cup \{p_k\})_{0 \leq k \leq n}$$

the events $\mathcal{P}_0, \ldots, \mathcal{P}_k$ build the partition of the states for a while loop. The sum of the probability of \mathcal{P}_i is less than or equal to 1, and equal to 1 only if $k = n$, i.e., the loop terminates at n^{th} iteration, every part of the space has found its way out or we get the fixed point (no new partition finds way out of the loops but the boolean test is still satisfied) which means the loop is non-terminate with regard to this part of the space.

Next we propose to produce the leakage definition for loop command due to the semantic function. First consider the entropy of the union of the decompositions $\bigcup_{0 \leq i \leq k} \mathcal{P}_i$. According to the mean-value property of entropy [16], let Δ denote the set of all finite discrete generalized probability distributions, if $\mathcal{P}_1 \in \Delta, \mathcal{P}_2 \in \Delta, \ldots, \mathcal{P}_n \in \Delta$, such that $\sum_{k=1}^{n} W(\mathcal{P}_k) \leq 1$, we have:

$$\tilde{H}(\mathcal{P}_1 \cup \mathcal{P}_2 \cup \ldots \cup \mathcal{P}_n) = \frac{W(\mathcal{P}_1)\tilde{H}(\mathcal{P}_1) + \ldots + W(\mathcal{P}_n)\tilde{H}(\mathcal{P}_n)}{W(\mathcal{P}_1) + \ldots + W(\mathcal{P}_n)}$$

The entropy of the union of set of incomplete distributions is the weighted mean value of the entropies of the set of distributions, where the entropy of each compo-
nent is weighted with its own weight \((W(P_i))_{0 \leq i \leq n}\).

We next consider the amount of information contained in the loop body under the observation of the set of events \(E = \{e^i\}_{0 \leq i \leq n}\). We denote the set of events in \(E\) by \(e^i\), let \(P\) denote the original distribution of the random variable \(\xi\) and \(Q\) denote the conditional distribution of random variable \(\xi\) under the condition that event \(E\) has taken place. We shall denote a measure of the amount of information concerning the random variable \(\xi\) contained in the observation of the event \(E\) by \(\tilde{\mathcal{H}}(Q|P)\). Let \(Q^L_i\) denote the distribution of the low component at the end of the execution of the loop body due to the \(i\)th iteration under the condition that event \(e^i_{0 \leq i \leq k}\) has taken place, we have:

\[
Q^L = (Q^L_0 \cup Q^L_1 \cup \ldots \cup Q^L_k)_{0 \leq k \leq n} = (\{q_{00}, \ldots, q_{0j}\} \cup \{q_{10}, \ldots, q_{kj}\})_{0 \leq k \leq n}
\]

where \(k\) implies up to the \(k\)th iteration. By applying the formula of conditional entropy for generalized probability distributions [16], and let \(W\) denotes weight, we have:

\[
\tilde{\mathcal{H}}(Q^L|P) = \frac{W(Q^L_0)\tilde{\mathcal{H}}(Q^L_0|P_0) + \ldots + W(Q^L_k)\tilde{\mathcal{H}}(Q^L_k|P_k)}{W(Q^L_0) + \ldots + W(Q^L_k)}
\]

As we discussed above, the loop command creates a set of sub-measures (incomplete distribution). To give a more precise leakage analysis, we need an observation of state at any semantic computation point in an abstract way, e.g., we may consider the attacker can observe the iteration of loops. Loop semantics uses sub-measures for loop approximations, and we need to calculate the entropy of sub-measures by applying the more general Renyi’s entropy of generalized distributions. Definition 3.2 is therefore defined for computing leakage with observing time (iteration) for loops incorporated with our semantic function.

Definition 3.2 We define the leakage into low component with regard to the while loop up to \(k\)th iteration by addition of the entropy of the union of the boolean test for each iteration and the sum of the entropy of the loop body for each weighted sub-probability measures:

\[
\mathcal{L}_{\text{while}}(k) = \tilde{\mathcal{H}}(P) + \tilde{\mathcal{H}}(Q^L|P) = \tilde{\mathcal{H}}(P_0 \cup \ldots \cup P_k) + \tilde{\mathcal{H}}(Q^L_0 \cup \ldots \cup Q^L_k|P_0 \cup \ldots \cup P_k)
\]

\[
= \sum_{i=0}^{n} (p_i \log_2 \frac{1}{p_i}) + \sum_{i=0}^{n} \sum_{j=0}^{m} q_{ij} \log_2 \frac{q_{ij}}{p_i} \frac{q_{ij}}{p_i} \ldots \frac{q_{ij}}{p_i}
\]

\[
= \tilde{\mathcal{H}}(p_0, \ldots, p_n) + \sum_{i=0}^{n} p_i \tilde{\mathcal{H}}(\frac{q_{0i}}{p_i}, \frac{q_{1i}}{p_i}, \ldots \frac{q_{mj}}{p_i})
\]

where \(P = \{p_i\}\), thus \(\tilde{\mathcal{H}}(P) = \log_2 \frac{1}{p_i}\).

- case \(0 \leq k < n\): \(P = P_0 \cup \ldots \cup P_k\) and \(Q^L = Q^L_0 \cup \ldots \cup Q^L_k\) are two incomplete distributions, such that, \(W(P_0) + \ldots + W(P_k) < 1\), and \(W(Q^L_0) + \ldots + W(Q^L_k) < 1\). With regard to this case, part of the space has exit the loop but not all, we therefore can compute the leakage by observing each iteration before the loop terminates. An intuition behind of the introduction of the notion of entropy of incompleted loops is that the term \(\log_2(1/p_k)\) in Shannon’s formu-
lar is interpreted as the entropy of the generalized distribution consisting of the single probability p_k and thus it implies that Shannon’s entropy definition $H(p_1, \ldots, p_n) = \sum_{k=1}^{n} p_k \log_2 \left(\frac{1}{p_k} \right)$ is actually a mean value.

- case $k = n$: $P = P_0 \cup \ldots \cup P_n$ and $Q^L = Q^L_0 \cup \ldots \cup Q^L_n$ are two complete distributions, such that, $W(P_0) + \ldots + W(P_n) = 1$, and $W(Q^L_0) + \ldots + W(Q^L_n) = 1$, i.e., $\sum_{i=0}^{n} p_i = \sum_{i=0}^{n} \sum_{j=0}^{m} q_{ij} = 1$, all part of the space exit the loop.

- case $k = \infty$: this is the case of nonterminating (partially or totally) loops, our tool returns the partitions makes the loop terminated (case of partially termination) and also the left partition which cannot produce new partitions but still satisfy test b.

Proposition 3.3 presents a relationship between our leakage definition for loops with Malacaria’s [10] definition. We show that our algorithm calculate the same final quantity (when the loop terminate) as Malacaria’s method, hence providing correctness for his method relative to our semantics. Unlike Malacaria’s method there is no need for any initial human analysis of loop behavior and it is completely automatic while applying to general while language programs. Furthermore, our leakage rate is variant with observing time which is more precise than malacaria’s average rate. Such analysis can provide a leakage profile of programs to show the behavior of information flow with observing time, i.e., how much information is leaked till any interested iteration (depends on the observers). Importantly, our analysis can provide an automatic analysis for quantitative information flow and make the leakage computation due to each iteration.

Proposition 3.3 Assume the loop is going to terminate at the n^{th} iteration, at the point of termination, the leakage computation for while loop due to our definition is equivalent to Malacaria’s definition of leakage for loops [10].

Proof. $\mathcal{L}_{\text{while}}(n)$ is the leakage into the low component with regard to the while loop. The pieces of the space partitioned by the semantic function of while loop are disjoint, hence there is no collisions which happened in Malacaria’s definition. According to Definition 3.2, we have:

$$\mathcal{L}_{\text{while}}(n) = \tilde{H}(P_0 \cup \ldots \cup P_n) + \tilde{H}(Q^L_0 \cup \ldots \cup Q^L_n | P_0 \cup \ldots \cup P_n)$$

$$= \frac{W(P_0)\tilde{H}(P_0) + \ldots + W(P_n)\tilde{H}(P_n)}{W(P_0) + \ldots + W(P_n)} + \frac{W(Q^L_0)\tilde{H}(Q^L_0 | P_0) + \ldots + W(Q^L_n)\tilde{H}(Q^L_n | P_n)}{W(Q^L_0) + \ldots + W(Q^L_n)}$$

$$= \frac{p_0 \log_2 \frac{1}{p_0} + \ldots + p_n \log_2 \frac{1}{p_n}}{p_0 + \ldots + p_n} + \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} q_{ij} \log_2 \frac{q_{ij}}{p_i}}{\sum_{i=0}^{n} \sum_{j=0}^{m} q_{ij}}$$

$$= \sum_{i=0}^{n} (p_i \log_2 \frac{1}{p_i}) + \frac{\sum_{i=0}^{n} p_i \sum_{j=0}^{m} q_{ij} \log_2 \frac{q_{ij}}{p_i}}{\sum_{i=0}^{n} p_i}$$

$$= H(p_0, \ldots, p_n) + \frac{\sum_{i=0}^{n} p_i H(q_{0i}, q_{1i}, \ldots, q_{imi})}{p_i}$$
We have proved that, when \(k = n \), our leakage definition is equivalent to Malacaria’s leakage definition of collision free loops [10]. For the case of semantic function \(f : X \rightarrow Y \) with collisions in Malacaria’s definition, we consider to make an adjusting to \(Y \) to eliminate the collisions, drive the new partitions \(E_i \) of disjoint measurable subsets of \(X \), and let \(\mathcal{P}_i = \mu(E_i) \), where \(0 \leq i \leq n \). The rest of the proof is then similar to previous arguments. \(\square \)

A terminating example

```plaintext
1:=0; while(l<h) l:=l+1; print(l);
```

Assume \(h \) is 3-bit high security variable with distribution:

\[
\begin{bmatrix}
0 & w.p. \frac{7}{8} & 1 & w.p. \frac{1}{56} & \cdots & 7 & w.p. \frac{1}{56}
\end{bmatrix}
\]

\(l \) is low security variable. The semantic function of while-loop presents the decompositions \(\mathcal{P}_i \) with regard to the partitions due to the boolean test, and the resulting set of probability distribution \(\mathcal{Q}_i^L \) of low level variable \(l \) due to the loop body under the condition that event \(e^i \) has taken place are:

\[
\begin{align*}
\mathcal{P}_0 &= \{ \mu(e^0) \} = \{ \frac{7}{8} \} & \mathcal{Q}_0^L &= \{ \mu_l(0) \} = \{ \frac{7}{8} \} \\
\mathcal{P}_1 &= \{ \mu(e^1) \} = \{ \frac{1}{56} \} & \mathcal{Q}_1^L &= \{ \mu_l(1) \} = \{ \frac{1}{56} \} \\
&\cdots & & \cdots \\
\mathcal{P}_7 &= \{ \mu(e^7) \} = \{ \frac{1}{56} \} & \mathcal{Q}_7^L &= \{ \mu_l(7) \} = \{ \frac{1}{56} \}
\end{align*}
\]

i.e.,

\[
\begin{bmatrix}
\langle 0, 0 \rangle & w.p. \frac{7}{8} \\
\langle 1, 0 \rangle & w.p. \frac{1}{56} \\
\cdots & \cdots \\
\langle 7, 0 \rangle & w.p. \frac{1}{56}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\langle 0, 0 \rangle & w.p. \frac{7}{8} \\
\langle 1, 1 \rangle & w.p. \frac{1}{56} \\
\cdots & \cdots \\
\langle 7, 7 \rangle & w.p. \frac{1}{56}
\end{bmatrix}
\]

Note that \(q_i = p_i \), hence \(\tilde{H}(\mathcal{Q}^L|\mathcal{P}) = 0 \), i.e., the leakage of the body is 0, we calculate the leakage due to each iteration \(i_0 \leq i \leq 7 \) by:

\[
\begin{align*}
\mathcal{L}_{\text{while-0}} &= \tilde{H}(\mathcal{P}_0) = 0.19 & \mathcal{L}_{\text{while-1}} &= \tilde{H}(\mathcal{P}_0 \cup \mathcal{P}_1) = 0.30 \\
\mathcal{L}_{\text{while-2}} &= \tilde{H}(\mathcal{P}_0 \cup \mathcal{P}_1 \cup \mathcal{P}_2) = 0.41 & \mathcal{L}_{\text{while-3}} &= \tilde{H}(\mathcal{P}_0 \cup \ldots \cup \mathcal{P}_3) = 0.52 \\
\mathcal{L}_{\text{while-4}} &= \tilde{H}(\mathcal{P}_0 \cup \ldots \cup \mathcal{P}_4) = 0.62 & \mathcal{L}_{\text{while-5}} &= \tilde{H}(\mathcal{P}_0 \cup \ldots \cup \mathcal{P}_5) = 0.71 \\
\mathcal{L}_{\text{while-6}} &= \tilde{H}(\mathcal{P}_0 \cup \ldots \cup \mathcal{P}_6) = 0.81 & \mathcal{L}_{\text{while-7}} &= \tilde{H}(\mathcal{P}_0 \cup \ldots \cup \mathcal{P}_7) = 0.89
\end{align*}
\]

The result of this example also match our expectation: the initial information contained in \(h \) totally reveals to low output at the end of the program; in another hand, by observing the output with observing time passed (due to each iteration),
the leakage published to public is increasing. Our analysis therefore provide the leakage profile of the loop showing the behavior of information flow by observing the output at each observing time point.

A partially terminating example

while(l>=h) l:=l+1; print(l);

Assume \(h \) is high security variable and \(l \) is low security variable with joint distribution:
\[
\mu_{\langle h, l \rangle} \mapsto \begin{cases}
(0, 2) \ w.p. \frac{7}{56} \\
(1, 2) \ w.p. \frac{1}{56} \\
(2, 2) \ w.p. \frac{1}{56} \\
\ldots \\
(7, 2) \ w.p. \frac{1}{56}
\end{cases} \ A
\]

Note that this example is partially terminated: non-terminated by the top part (A) of the space while terminated by the bottom part (B) of the space. According to the definition, the leakage due to this example is computed by: \(\mathcal{L} = \tilde{H}(6/56, 50/56) = 0.491 \). The first partition is part B of the space, which quit the loop for the first time trying enter into the loop, and second partition is part A which can never find their way to out. Our tool outputs the result when the fixed point is reached (no new partition is produced).

A non-terminating example

while(l>h) {l:=l+1;} print(l);

Assume \(h \) is high security variable and \(l \) is low security variable with joint distribution:
\[
\mu_{\langle h, l \rangle} \mapsto \begin{cases}
(0, 2) \ w.p. \frac{1}{3} \\
(1, 2) \ w.p. \frac{2}{3}
\end{cases}
\]

The whole space will never quit the loop in this example, our tool outputs the result since no going out partition is produced but the boolean test is still satisfied. The leakage computation is given by: \(\mathcal{L} = \tilde{H}(\bot) = 0 \), this also meet our intuition: no information is leaked by a non-terminated loop.

4 An Implementation

For a feasibility study, we have implemented this method which can be used to calculate mutual information between (sets of) variables at any program point automatically. Fig. 3 describes the basic structure of the system. The initial configuration (joint distribution for variables \(\vec{V} \)) and the example program are fed into the analyzer, the analyzer will present the distribution transformation and the measurement of the secret information leaked to low component at each program point by executing the program.

Experiment The following program computes the following sequence: if \(h \) is even then halve it else multiply by 3 and add 1, repeat this process un-
By applying the analysis rule given by Clark etc. [2], all the content of h will be leaked. Malacaria’s method can give more precise result but it cannot do it automatically, and the number of iterations is needed in advance. Our approach however presents a both precise and automatic analysis, also shows the information flow behavior with observing time (iteration) elapsed. In order to check the time complexity and feasibility of the analysis, we do experiment on different size of variables. Fig. 4 shows the leakage analysis result in the case of high input h being 4-bit, 8-bit, 10-bit, 16-bit variable under uniform distribution, time consumed for final leakage computation (without doing computation on each iteration) are 30, 82, 103, and 187 seconds respectively. The result of this example shows that how much secure information flowed from h to l with observing time (iteration) elapsed. Let us take h as 16-bit variable as an example, the initial joint distribution for (h, l) is
Input such initial configuration and the example program into our analyzer. The analyzer transforms the joint distribution by analyzing the program. Note that at the end of each iteration, \(l \) is output to public. The analyzer thus compute the leakage at each time(iteration) point(\(t \)) \(\mathcal{L}_t \) by applying the definition of leakage presented in Section 3, and there are 339 iterations totally.

With time goes by, the space of \(h \) is enlarging: \(h \) will multiply 3 and plus 1 for the case of \(h \) being odd, which leads the mutual information between initial \(h \) and low variable \(l \) getting big, hence the leakage curve is decreasing overall with observing time point getting big. Furthermore, as a test of tractability, using our leakage analysis system to compute the final result (without internal leakage computation) is a matter of minutes, and to generate plots of loop iterations and information flow with observing time takes hours. The critical component in time complexity lies in the conditional mutual information calculation according to the result of the experiments.

5 Related Work

There has been significant activities around the question of how to measure the amount of secure information flow caused by interference between variables by using information theoretic quantities. The precursor for this work was that of Denning in the early 1980’s. Denning [5] presented that the data manipulated by a program can be typed with security levels, which naturally assume the structure of a partially ordered set. Moreover, this partially ordered set is a lattice under certain conditions [4]. Denning first explored the use of information theory as the basis for a quantitative analysis of information flow in programs. However, he did not suggest how to automate the analysis. In 1987, Millen [12] first built a formal correspondence between non-interference and mutual information, and established a connection between Shannon’s information theory and state-machine models of information flow in computer systems. Later related work is that of McLean and Gray and McIver and Morgan in 1990’s. McLean presented a very general Flow Model in [11], and also gave a probabilistic definition of security with respect to flows of a system based on this flow model. The main weakness of this model is that it is too strong to distinguish between statistical correlation of values and casual relationships between high and low object. It is also difficult to be applied to real systems. Gray presented a less general and more detailed elaboration of McLean’s flow model in [7], making an explicit connection with information theory through his definition of the channel capacity of flows between confidential and non-confidential variables. Webber [19] defined a property of n-limited security, which took flow-security and specifically prevented downgrading unauthorized information flows. Wittbold and Johnson [20] gave an analysis of certain combinatorial theories of computer security from information-theoretic perspective and introduced non-deducibility on strate-
gies due to feedback. Gavin Lowe [9] measured information flow in CSP by counting refusals. McIver and Morgan devised a new information theoretic definition of information flow and channel capacity. They added demonic non-determinism as well as probabilistic choice to while program thus deriving a non-probabilistic characterization of the security property for a simple imperative language. There are some other attempts in the 2000s: Pierro, Hankin and Wiklicky gave a definition of probabilistic measures on flows in a probabilistic concurrent constraint system where the interference came via probabilistic operators [15]. Clarkson etc. suggested a probabilistic beliefs-based approach to non-interference [3]. This work might not works for most of situations, different attackers have different beliefs, the worst case leakage bound is required. Boreale [1] studied the quantitative models of information leakage in the process calculi. Clark, Hunt, and Malacaria [2] presented a more complete quantitative analysis but the bounds for loops are imprecise. Malacaria [10] gave a more precise quantitative analysis of loop construct but this analysis is hard to automate.

6 Conclusion and Future Work

Quantitative information flow for security analysis provides a potential way to examine the security properties in computer software. However, much work on quantitative information flow mechanisms lacks a satisfactory account of precise measurement of information released. This problem has not yet been successfully solved. This paper develops an automatic system for quantitative analysis of information flow in a probability distribution sensitive language. In order to give a more precise analysis for loops, we have given the leakage definition with observing time by using the measure of entropy of generalized probability distributions. We also have introduced probabilistic semantics to automate such analysis for leakage. The family of techniques for information flow measurement presented in this paper can be applied to check whether a program meets an information flow security policy by measuring the amount of information revealed by the program. If the information revealed is small enough we can be confident in the security of the program, otherwise the analyzer’s result indicate the program points where the excessive flow occurs.

We are currently doing an approximation on our method. We propose to develop an algorithm to provide an abstract analysis of leakage and also integrate with bounds on the number of small steps in the operational semantics. Such abstract analysis will enable us to produce more feasible and precise graphs of leakage behavior of a program over time. We also expect to improve our analysis based on the experimental results of the influence of certain parameters over the quality of approximation.

Secondly, we propose to develop a chopped information flow graph for representing information flow of program by capturing and modeling the information flow of data tokens on data slice. Since such graph can show the information flow on data slice explicitly, it can represent well the interesting elementary changes of the information flow of a program and can enhance efficiency of the leakage analysis of programs.
Further possible plan is inspired by [13,14], which suggested a scheme for the backwards abstract interpretation of nondeterministic, probabilistic programs. The idea is that we start from a description of an output event, compute back to the description of the input domains describing their probability distribution of making the behavior happen. This allows the effective computation of upper bounds on the probability of outcomes of the program.

The leakage analysis techniques we considered here concentrate on simple programming languages over semantics. There is still a long way to go before being actually used due to the need for formal semantics for full-blown languages and poor runtime performance of the leakage analyzer implementation. It is also required to apply the measurement techniques to real programming languages and operate on large programs and without using too much time and computing resources.

References