Reorder Notifying TCP (RN-TCP) with Explicit
Packet Drop Notification (EPDN)

Arjuna Sathiaseelan and Tomasz Radzik

Department of Computer Science, King’s College London,
Strand, London WC2R 2LS
Tel: +44 20 7848 2841
Email: arjuna,radzik@dcs.kcl.ac.uk
Technical Report: TR-04-08

Abstract. Numerous studies have shown that packet reordering is com-
mon, especially in networks where there is high degree of parallelism and
different link speeds. Reordering of packets decreases the TCP perfor-
mance of a network, mainly because it leads to overestimation of the
congestion of the network. We consider wired networks and analyze the
performance of such networks when reordering of packets occurs. We
propose a proactive solution that could significantly improve the per-
formance of the network when reordering of packets occurs. We report
results of our simulation experiments, which support this claim. Our so-
lution is based on enabling the senders to distinguished between dropped
packets and reordered packets.

1 Introduction

Packet reordering occurs naturally as a result of local parallelism [2]: a packet can
traverse through multiple paths within a device. Packet reordering also occurs
mainly due to route changes: if the new route offers a lower delay than the old
one, then reordering occurs [10]. A network path that suffers from persistent
packet reordering will have severe performance degradation.

TCP has two basic methods of finding out that a segment has been lost.

Retransmission timer
If an acknowledgement for a data segment does not arrive at the sender at a
certain amount of time, then the retransmission timer expires and the data

segment is retransmitted [11].

Fast Retransmit
When a TCP sender receives three dupacks (duplicate acknowledgements)
for a data segment X, it assumes that the data segment Y which was imme-
diately following X has been lost, so it resends segment Y without waiting
for the retransmission timer to expire [6]. Fast Retransmit uses a parameter
called dupthresh which is fixed at three dupacks to conclude whether the

network has dropped a packet.

Reordering of packets during transmission through the network has several
implications on the TCP performance. The following implications are pointed

out in [3]:

1. When a network path reorders data segments, it may cause the TCP receiver
to send more than three successive dupacks, triggering the Fast Retransmit
procedure at the TCP sender. Unnecessary retransmission of data segments
means that some of the bandwidth is wasted.

2. The TCP transport protocol assumes congestion in the network only when it
assumes that a packet is dropped at the gateway. Thus when a TCP sender
receives three successive dupacks, the TCP assumes that a packet has been
lost and that this loss is an indication of network congestion, and reduces

the congestion window(cwnd) to half its original size unnecessarily.

We propose extending the TCP protocol to enable TCP senders to recognize
whether a received dupack means that a packet has been dropped or reordered.
The extended protocol is based on storing at the gateways some information
about dropped packets and passing this information to the receiver by inserting
it into the subsequent packets of the same flow. We term this mechanism of
informing the receiver about dropped packets as Explicit Packet Drop Notifica-

tion Version 2.0(EPDNv2.0). Based on this information, the receiver notifies the

sender whether the packet has been dropped or reordered. We call this protocol
RN-TCP (Reorder Notifying TCP).

Section 1.1 presents the previous work related to our study. Section 2 presents
the details of our proposed solution. In Sections 6,7, 8 ; 9, 10 and 11 , we describe
and discuss our simulations. We conclude this paper with a summary of our work

and a short discussion of the further research in Section 12.

1.1 Related Work

Several methods to detect the needless retransmission due to the reordering of

packets have been proposed:

— The Eifel algorithm uses either the TCP time stamp option or two bits
from the TCP reserved field to distinguish an original transmission from
an unnecessary retransmission [8]. The Eifel algorithm is robust to up to
a cwnds worth of lost ACKs. When using the reserved bits, the algorithm
requires negotiation of Eifel during the initial three-way handshake used to
initiate every TCP connection.[8] does not consider varying dupthresh to
avoid spurious retransmissions. It only backs out window reductions if the
retransmission was spurious.

— The DSACK option in TCP, allows the TCP receiver to report to the sender
when duplicate segments arrive at the receiver’s end. Using this informa-
tion, the sender can determine when a retransmission is spurious [5]. Also
in their proposal, they propose storing the current cwnd before reducing the
cwnd upon detection of a packet loss. Upon an arrival of a DSACK, the
TCP sender can find out whether the retransmission was spurious or not.
If the retransmission was spurious, then the ssthresh is set to the previous
cwnd.Their proposal does not specify any mechanisms to proactively detect

reordering of packets. The main drawback of DSACK is, if an ACK con-

taining DSACK information is dropped or corrupted by the network, the
information about that particular segment is lost and the sender will never

detect the spurious retransmission.

In [3], the authors use the DSACK information to detect whether the retrans-
mission is spurious and propose various techniques to increase the value of
dupthresh value. The main drawback in this proposal is that if the packets
had in fact been dropped, having an increased value of dupthresh would not
allow the dropped packets to be retransmitted quickly and the dupthresh

value would be decreased to three DUPACKSs upon a timeout.

In [13], the authors propose mechanisms to detect and recover from false
retransmits using the DSACK information. They propose several algorithms
for proactively avoiding false retransmits by adaptively varying dupthresh.

The various algorithms used are listen in Table 1.

Algorithm Description

DSACK-FA |DSACK-R + fixed FA ratio
DSACK-FAES |DSACK-FA + enhanced RTT sampling
DSACK-TA |DSACK-FA + Timeout Avoidance
DSACK-TAES|DSACK-TA + enhanced RTT sampling

Table 1. RR-TCP Algorithms

In the DSACK-FA algorithm, the dupthresh value is chosen to avoid a per-
centage of false fast retransmit, by setting the dupthresh value equal to that
percentile value in the reordering length cumulative distribution. The per-

centage of reordering the algorithm avoids is known as FA ratio.

In the DSACK-FAES algorithm, the DSACK-FA algorithm is combined with
a RTT sampling algorithm which samples the RTT of retransmitted packets

caused by packet delays.

The DSACK-TA algorithm uses cost functions that heuristically increase or
decrease the FA ratio such that the throughput is maximized for a connection
experiencing reordering. The FA ratio will increase when false retransmits
occur and the FA ratio will decrease when there are significant timeouts.
In the DSACK-TAES algorithm, the DSACK-TA algorithm is combined with
a RTT sampling algorithm which samples the RTT of retransmitted packets
caused by packet delays.

According to [13], the DSACK-TA algorithm performed the best when com-
pared with the other algorithms.

— In [12], we proposed a novel method to enable the TCP senders to distin-
guish whether a packet has been dropped or reordered in the network by
using the gateways to inform the ’sender’ about the dropped packets. The
gateway had to maintain information about all dropped packets for a flow,
requiring considerable amount of dedicated memory at each gate. More-
over this method was proposed for networks that strictly follow symmetric
routing and did not consider the case of asymmetric routing. The method
proposed in the current paper overcomes both these drawbacks of the pre-
vious method. The information maintained at the gateways is substantially
more concise, requiring much less memory than in the previous solution, and
asymmetric routing is supported by sending the information about dropped
and reordered packets to the sender via the receiver. Moreover, we have over-
come the limitations of the previous method while maintaining the level of

performance improvement provided by the previous method.

These methods, with exception of [13] and the method we presented in [12]
are reactive and show ways of improving the TCP performance when a packet
has been retransmitted in the event of reordering i.e these methods are reactive

rather than being proactive. In our paper, we try to improve the performance

by proactively preventing the unnecessary retransmits that occur due to the
reordering event by allowing the TCP sender to distinguish whether a dupack
received for a packet is for a dropped packet or for a reordered packet and takes

the appropriate action.

2 Our proposed Solution

We propose a solution to maintain information about dropped packets in the
gateways, by having a hashtable that maintains for each flow the maximum se-
quence number and minimum sequence number of the packets that get dropped
in the gateway.The drop can be either due to buffer overflow or due to a check-
sum error. When the next data packet of flow ¢ passes through that gateway,
the gateway inserts the maximum sequence number and the minimum sequence
number of the dropped packets in the data packet and the entry is deleted from
the data structure. We term this mechanism of explicitly informing the TCP
receiver about the dropped information as Explicit Packet Drop Notification
Version 2.0 (EPDNv2.0).

The RN-TCP receiver uses the information from the EPDNv2.0 to inform
the sender about whether a packet has been dropped or reordered or corrupted
in the network. The RN-TCP receiver maintains two lists: the reorder list and
the drop list. The elements of these lists are packet sequence numbers. When a
packet is received at the receiver, the receiver uses the sequence number of the
current packet, the maximum and minimum dropped information in the packet
and the sequence number of the last received packet in the buffer queue to
detect which packets have been dropped or reordered and inserts those sequence
numbers into the drop list or the reorder list accordingly. The RN-TCP receiver
uses the information present in the lists to decide whether the gap between the

out of order packets are caused by reordering or not and informs the RN-TCP

sender about its assumption. (Informing the sender is done by setting the drop-
negative bit in corresponding DUPACKSs.) If the packets had been dropped in
the network, the TCP sender retransmits the lost packets after waiting for three
DUPACKSs. If the packets are assumed to be reordered in the network, the sender
waits for ’3+k’ DUPACKs (k > 1) before retransmitting the packets.

A detailed example on how the receiver identifies whether a data packet
has been dropped or reordered is given as follows. The following case is when
the current received packet P:m at the receiver is greater than the last received
packet @:m in the receiver buffer queue and P:n is greater than P:maz and
P:min is greater than @:n. More details and descriptions of other cases are given
in Section 4. Assume a data packet @ = (1,2,,,datag) is last received packet
in the receiver buffer queue. When the receiver receives the next data packet
P = (1,7,5,4,datap), the entries P:maz and P:min are checked. In this case
these values are not null. If the entries are not null and if there is a gap between
the P:min = 4 and the last received packet @:n = 2 in the receiver’s buffer queue
or a gap in between P:max = 5 and the current received packet P:n = 7, then the
packets within the gap (3,6) have been probably reordered in the network and
packets (4,5) have been dropped. If there was no gap, then the receiver assumes
that most likely all the packets between the last received packet @Q:n and the
recently received packet P:n have been dropped at the gateway. If the entries
P:max and P:min are empty, this means that the packets in between the last

received packet Q:n and the current packet P:n have been probably reordered.

3 EPDNvV2.0: Details of the implementation

3.1 Data Structure used.

Each gateway has a hashtable storing entries E = (flowid, max, min), where

flowid is the flow id (also the key used to index the hashtable), max is the

maximum sequence number and min is the minimum sequence number of the
packets dropped by the gateway. P = (flowid,n, maz, min,data) denotes a
data packet having entries flowid: flowid, n: sequence number, maz: maximum
dropped entry in the packet min: minimum dropped entry in the packet, and
data: all other data in the packet. For an entry E in a hashtable and a packet
P, E:field_name and P:field_name will denote the values of field field_name in E

and P, respectively.

3.2 Algorithm: Recording information about dropped packets.

For each gateway,

— Initially, the hashtable is empty.

— When a packet P gets dropped in the gateway, the flow id P:flowid of this
packet is used as the index to check the hashtable to find out whether there
is an entry for this flow.

— If an entry E such that E:flowid = P:flowid is present in the hashtable
(meaning that packets of this flow have been already dropped), then this
entry is updated as follows:

E:maz = max{E:max, P:n},
E:min = min{ E:min, P:n}.

— If such an entry is not present (meaning this is the first packet of this flow
to be dropped), an entry E is inserted into the hashtable, where
E:flowid = P:flowid,

E:maz = P:n,

E:min = P:n.

3.3 Algorithm: Processing the data packets at the gateway.

When a data packet P is to be sent out of the gateway and there is an entry F
with E:flowid = P:flowid in the hashtable at this gateway, then the fields maz

and min in packet P are set as follows.

— If Prmaz and P:min are empty then, P:max = E:max and P:min = E:min.
— If P:maz and P:min are not empty then,

P:maz = max{E:maz, P:mazx}, and P:min = min{ E:min, P:min}.

In both cases the entry FE is deleted from the hashtable.
If a subsequent gateway drops the data packet carrying the dropped infor-
mation, then the fields E:mazx and E:min would be updated accordingly. These

values are then inserted into a data packet that is sent out of the gateway.

3.4 EPDN: Implementation Issues

— For the EPDN mechanism to work successfully, all routers in the network
path MUST be enabled with the EPDN mechanism. Inorder to verify whether
all routers in the path are EPDN enabled, this requires a modification to the
IP header by including a new field called the EPDN-TTL (EPDN Time To
Live). Adding an EPDN-TTL field to the IP header requires another 8 bits.
Every EPDN enabled router, decrements the EPDN-TTL along with the
actual TTL (Time To Live) while forwarding the packet. When the receiver
receives the packet, the receiver checks whether TTL = EPDN-TTL. If they
are equal, then that means all routers in the path are EPDN enabled. The
receiver can then make a decision on the out of order packet. This method
of detection is similar to the one proposed in [7] and is based on discussions
from [14].

— According to Chinoy [4], most routing changes occur at the edges of the net-

work and not along its ’backbone’. This ensures that the routing of packets

do not change inside the backbone more often, allowing the the maximum-
minimum dropped information to be inserted into the next packet that passes
through the gateway. Incase the routing changes and if the dropped informa-
tion cannot be propagated to the receiver (for instance in multipath routing),
we believe the gateway could be modified to send the dropped information

in an ICMP message to the sender. This requires further study and testing.

4 RN-TCP: Details of the Implementation

4.1 Receiver side: Implementation details

The TCP receiver maintains two lists: the reorder list and the drop list. The
elements of these lists are packet sequence numbers. The data packets that arrive
at the receiver could bring in the maximum-minimum dropped information about
any dropped packets irrespective of the sequence. For example, a packet with
lesser sequence number could bring in higher minimum and maximum dropped
sequence numbers for that particular flow. The TCP receiver has to consider all
possible cases before considering whether the gaps caused are due to reordering

or dropped packets.

TCP receiver algorithm: Processing data packets. When a data packet
P arrives at the TCP receiver, the following computation is done. The TCP

receiver checks whether the dropped entries P:min and P:maz are empty or not.

— If the dropped entries P:min and P:max are null, the TCP receiver checks
if P:n is greater than the highest received packet @:n in the receiver buffer
queue.

o If P:nis greater than @):n, then the TCP receiver checks for a gap between
P:n and @:n and if those sequence numbers required to fill the gap are

present in the drop list.

* If some of these numbers are in the drop list, then the TCP receiver
assumes that those packets have been dropped.

* If not, then the packets within the gap are assumed to be reordered.
The TCP receiver adds those sequence numbers required to fill the

gap to the reordered list.

o If P:n is less than @:n, then the TCP receiver checks if P:n is in the

reordered list. If yes, then the packet is removed from the reordered list.

— If P:min and P:max are not null, the TCP receiver checks if P:n is in the
reordered list. If present, then the entry is deleted. Then the TCP receiver
checks if P:n > @Q:n.

o If Prn> Q:mn,

* The TCP receiver checks if P:min > Q:n AND P:max < P:n.
The TCP receiver checks for a gap between P:min and Q:n and also
checks for a gap between P:max and P:n. If there is a gap, the TCP
receiver adds those sequence numbers required to fill the gap to the
reordered list. Whilst adding, check if the sequence numbers from
P:min to P:mazx are present in the reordered list. If present, remove
them from the reordered list. Add P:min to P:maz into the droplist.

* If Prmin > Q:n AND P:maz > P:n and P:min < P:n.
The TCP receiver checks for a gap between P:min and @:n. If there
is a gap, the TCP receiver adds those sequence numbers required to
fill the gap to the reordered list. Then the TCP receiver checks if the
sequence numbers from P:min to P:n and P:max are present in the
reordered list. If present, remove them from the reordered list. Put
the sequence numbers from P:min to P:n— 1 and P:n+ 1 to P:max
into the drop list for future references.

x If Prmin > Q:n AND P:maz > P:n and P:min > P:n.

Add sequence numbers from P:min to P:maz into the droplist. Add
sequence numbers from @Q:n+ 1 to P:n — 1 into the reordered list.

x If Prmin < Q:n AND P:mazx < P:n and P:maz > @ :n.
The TCP receiver checks for a gap between P:maz and P:n. If there
is a gap, the TCP receiver adds those sequence numbers required to
fill the gap to the reordered list. Then the TCP receiver checks if the
sequence numbers from P:min to P:max are present in the reordered
list. If present, remove them from the reordered list. Add sequence
numbers from P:min to @:n— 1 and from Q:n+ 1 to P:max into the
droplist.

* If Prmin < @Q:n AND Prmaz < P:n and Prmaz < @ :n.
Add sequence numbers from P:min to P:maz into the droplist. Add
sequence numbers from @Q:n+ 1 to P:n — 1 into the reordered list.

* If P:min < Q:n AND P:mazx > P:n.
The TCP receiver checks if the sequence numbers from P:min to P:n
are present in the reordered list. If present, remove them from the
reordered list. Put the sequence numbers from @Q:n+ 1 to P:n— 1,

P:n+1 to P:max and P:min into the drop list for future references.

o If Prn< Q:n,

* If Prmin > Q:n AND P:maz > P:n.
The TCP receiver checks for a gap between P:min and @:n. If there
is a gap, the TCP receiver adds those sequence numbers required
to fill the gap to the reordered list. Put the sequence numbers from
P:min to P:maz into the drop list for future references.

x If Prmin < Q:n AND P:maz > P:n and P:min < P:n.
The TCP receiver checks if the sequence numbers from P:min to Q:n

are present in the reordered list. If present, remove them from the

reordered list. Put the sequence numbers from P:min to P:n+ 1 and
P:n+1 to P:max into the drop list for future references.

x If Prmin < Q:n AND P:maz > P:n and P:min > P:n.
Add sequence numbers from P:min to P:maz into the droplist.

x If Prmin < Q:n AND P:maz < P:n.
The TCP receiver checks for a gap between P:max and P:n. If there
is a gap, the TCP receiver adds those sequence numbers required
to fill the gap to the reordered list. The TCP receiver checks if the
sequence numbers from P:min to P:max are present in the reordered
list. If present, remove them from the reordered list and add them

to the droplist.

TCP receiver algorithm: Sending acknowledgements. When the received

data packet has been processed, the TCP receiver does the following,

— If an incoming packet P:n is filling a gap, then check if packet P:n+ 1 is in
the reordered list. If yes, the drop-negative bit is set and the cumulative ACK
is sent. Else, the cumulative ACK is sent without setting the drop-negative
bit.

— If the packet does not fill a gap, then the receiver checks whether the sequence
number following the last inorder packet is in the reordered list. If yes, the
drop-negative bit is set for that particular SACK packet. Else, the SACK is

sent without setting the drop-negative bit.

4.2 Sender side: Implementation Details

Limited Transmit. The limited transmit algorithm [?] allows the sender to
send a new data packet for each of the DUPACKSs that arrive at the sender. When

the dupthresh value is three, the limited transmit algorithm allows the sender to

send two packets beyond its current cwnd. When a greater dupthresh value is
used, the sender is allowed to send more packets (dupthresh - 1 packets) beyond
its current cwnd. We extend the limited transmit to send upto one additional
cwnd’s worth of packets when the dupthresh value is greater than the current
cwnd. If the value is less than the current cwnd, the sender is allowed to send

dupthresh - 1 packets.

Avoiding false fast retransmits: Increasing dupthresh. The TCP sender
assumes a packet to be reordered only when the ACK packet has the drop-
negative bit set. If the packets are assumed to be reordered in the network,
the TCP sender waits for more than three DUPACKSs before retransmitting the
packets i.e. the dupthresh value is increased and the retransmission procedure
is delayed to avoid false fast retransmits. The dupthresh value is calculated as
follows:

dupthresh = max(4, swnd + (swnd x k)

where swnd is the sending window (minimum of cwnd and the receiver win-

dow). 'k’ is a constant which is set based on the RTT as follows:

— If the sampled RTT is in between 0 ms and 50 ms, we set the value of 'k’ to
be 0.05 and for every false fast retransmit we increase 'k’ by 0.05.

— If the sampled RTT is in between 51 ms and 100 ms, we set the value of ’k’
to be 0.1 and for every false fast retransmit we increase 'k’ by 0.1.

— If the sampled RTT is in between 101 ms and 150 ms, we set the value of
'k’ to be 0.15 and for every false fast retransmit we increase 'k’ by 0.15.

— If the sampled RTT is in between 151 ms and 200 ms, we set the value of
'k’ to be 0.2 and for every false fast retransmit we increase 'k’ by 0.2.

— If the sampled RTT is in between 201 ms and 250 ms, we set the value of

'k’ to be 0.25 and for every false fast retransmit we increase 'k’ by 0.25.

— If the sampled RTT is greater than 250 ms, we set the value of ’k’ to be 0.3

and for every false fast retransmit we increase 'k’ by 0.3.

These values were determined to be optimal after heuristically testing for

different values of 'k’.

Avoiding Timeouts: Reducing dupthresh. There is a possibility of packets
being dropped in the gateways while the receiver assumes these packets have
been reordered (for instance the routing changes and if the dropped informa-
tion cannot be propagated to the receiver e.g. multipath routing), and sets the
drop-negative bits in corresponding DUPACKSs. If the packets had infact been
dropped and if the dupthresh value is large, then the timer times out leading
to retransmission of the packet and the slow start phase is entered. The sender
then assumes that all contiguous packets following the dropped packet in that
particular SACK block are dropped and retransmits those packets (even if the
drop-negative bit is set) after receiving three DUPACKSs (dupthresh value is im-
mediately set to three). Moreover the value of 'k’ is set back to those initial

values based on the sample RTT (discussed in the previous section).

Sender side algorithm: Processing the ACK packets. When an acknowl-

edgement is received, the TCP sender does the following,

— If none of the three DUPACKS received have their drop-negative bit set, then
the TCP sender assumes that the packet has been dropped. So the sender
retransmits the lost packet after receiving three DUPACKSs and enters fast
recovery.

— If the fourth ACK packet that causes the third DUPACK has a drop-negative
bit set, then the TCP sender assumes that the packet has been reordered

and waits for 'k’ more DUPACKSs before retransmitting the packet. While

waiting, if the following ACK packet has no drop-negative bit then the TCP
sender assumes the packet could have been dropped and retransmits the
packet immediately and sets the dupthresh to 3.

— If the current dupthresh value is not enough to prevent a false fast retransmit,
increase the dupthresh value by 1.

— If the timer runs out while waiting for ’3+k’ DUPACKs (assuming the value
of dupthresh is high), then the sender assumes that the packet has been
dropped, retransmits the packet and enters fast recovery. The sender also
assumes that all contiguous packets following the dropped packet in that
particular SACK block are dropped and retransmits the contiguous packets

after receiving three DUPACKSs.

5 Storage and Computational Costs

The TP options has 40 bytes of unused space. We use the IP options to store
the maximum and minimum dropped information in the packet. We use 4 bytes
for each minimum and maximum dropped entries to be inserted into the option
field of the IP header. We need another byte for representing the EPDN-TTL
field. We use one bit from the reserved bits from the TCP header to denote the
drop-negative bit. In our implementation we do not have to maintain the list
of all the flows that pass through a particular gateway i.e. we do not maintain
per-connection state for all the flows. Our monitoring process records only flows
whose packets have been dropped. When the dropped information is inserted
into the corresponding packet that leaves the gateway successfully, the entry
is deleted. Thus, the gateway maintains only limited information in the hash
table. To get some rough estimate of the amount of memory needed for our
implementation, let us assume that there are 200,000 concurrent flows passing

through one gateway, 10% of them have information about one or more dropped

packets recorded in this gateway. Thus the hash table will have 20,000 flow-id
entries with 2 entries corresponding to the maximum and minimum dropped
sequence numbers. We need 4 bytes for each flow-id, 4 bytes for each packet
sequence number, and another 4 bytes for each pointer. This means that the
total memory required would be about 320 KB. This is only a rough estimate
of the amount of extra memory needed, but we believe that it is realistic. Thus
we expect that an extra 500KB SRAM would be highly sufficient to implement

our solution.

The computational costs in the gateways are mostly constant time. If a flow
has not dropped any packets in the gateway, then the computation done would
be to check whether an entry for that particular flow-id is present or not. This
takes constant time computation. If a flow has dropped packets, then inserting
the information into the packet takes constant time. Deleting the entry also takes
constant time. The computational costs at the receiver are as follows: The cost
of maintaining the reorder list and drop list depends on the amount of packets
the TCP receiver assumes that has been reordered and dropped in the network.
Thus the computational cost involved in Insertion is O(n) where n is the number
of packets the receiver has assumed to be dropped or reordered. Deletion and
comparison costs O(m) where m is the length of the list. The computational cost
can be O(logn) and O(logm) respectively if we use balanced trees. If the list is

empty, then the computational cost is constant time.

We believe that the improvement of the throughput offered by our solution
justifies the extra memory and computational costs, but further investigations
are needed to obtain a good estimate of the trade-off between the costs and

benefits.

Fig. 1. RN-TCP:Simulation Scenario

6 Topology

The simulated network has a source and destination node connected to two in-
termediate routers. The nodes are connected to the routers via 10Mbps Ethernet
having a delay of 1 ms. The routers are connected to each other via link with
variable link capacity and variable delay. Our simulations use 1500 byte seg-
ments. We used the drop-tail queueing strategy with a queue size set to the
bandwidth delay product. The experiments were conducted using a one or more
long lived FTP flows traversing the network topology. The maximum window
size of the TCP flow was also set to the bandwidth delay product. The TCP

flow lasts 1000 seconds.

7 Mild Reordering

In this section, we verify the performance of RN-TCP when packets undergo rel-
atively mild reordering lengths. The link between the routers was set to 6Mbps
capacity with a propagation delay of 50 ms. The process of delaying a packet
was normally distributed with a mean of 25 ms and standard deviation of 8 ms,
such that the delay introduced varied from 0 ms to 50 ms. The parameters rep-
resenting propagation delay and packet delay process represents typical Internet

link delays and relatively mild reordering.

7.1 Throughput: Varying Packet Delay Rate

700000000

T
SACK —+—

2 RR-TCP --%--
. RN-TCP & |

I
600000000 %

500000000 J‘

400000000 |- |

Throughput (Bytes)

300000000 - |
200000000 - &

100000000

-
~—
I -

Packet Delay Rate %

Fig. 2. Throughput versus fraction of delayed packets.

In this section, we vary the percentage of packet delays from 1% to 30% to
introduce a wide range of packet reordering events and compare the throughput
performance of the simulated network using TCP SACK, DSACK-R, RR-TCP
and RN-TCP.

As shown in the Figure 2, the throughput performance of RN-TCP is much
better compared to the throughput of TCP SACK, DSACK-R and RR-TCP for
all packet delay rates. For e.g., when the link experiences 5% of packet delays,
RN-TCP’s throughput performance is almost 9% more than RR-TCP, 4 times
more than DSACK-R and almost 5 times more than SACK. When the link
experiences 10% of packet delays, RN-TCP’s throughput performance is almost
25% more than RR-TCP, 5 times more than DSACK-R and almost 6 times more
than SACK.

As shown in the figure 3, when the packet delay rate increases, RN-TCP does

not undergo any unnecessary cwnd reductions due to false fast retransmissions

35

30t
25 [

i

15 / SACK —+—

Fast Retransmit Ratio %

RR-TCP(DSACK-TA) ---%--
RN-TCP e}

1w/

05|/

0.0 # & & L & L
0 5 10 15 20 25 30

Packet Delay Rate %

Fig. 3. Fast retransmit ratio versus fraction of delayed packets.

followed by RR-TCP for which the number of times the cwnd was reduced due
to fast retransmission was less than 0.3%. SACK and DSACK-R undergo large
number of unnecessary cwnd reductions.

The ability of RN-TCP to detect the packet reorder events, delay the fast
retransmit procedure, prevent false fast retransmits and unnecessary reduction
of the cwnd are the major reasons behind the better performance of RN-TCP
over SACK, DSACK-R and RR-TCP.

7.2 Steady State Congestion Window

The graphs in Figure 4 present the comparison of the cwnd states of SACK versus
RN-TCP, DSACK-R versus RN-TCP and RR-TCP versus RN-TCP when 30%
of packets were delayed individually for each of these protocols. When packets get
delayed frequently in the network, there are unnecessary false fast retransmits
causing the cwnd of SACK to reduce very often and thus the cwnd is not able
to reach the maximum window size of 50 segments. DSACK-R has the ability to

retrieve to the previous cwnd on detecting a false retransmission. This is not suf-

Congestion Window (packets)

Congestion Window (packets)

SACK

100 200 300 400 500 600 700 800 900 1000
Time (s)
T T T T T T T T T
‘f“’“ﬂ \‘H“\‘ ‘\“ Il
I RR-TCP(DSACK-TA) 1
| RN-TCP
100 200 300 400 500 600 700 800 900 1000

Time (s)

Congestion Window (packets)

Fig. 4. Comparison of congestion window.

Time (s)

ficient to reach the maximum cwnd since DSACK-R does not proactively detect
packet reorders and the cwnd is constantly reduced upon a false retransmission.
RR-TCP is able to achieve the maximum cwnd size only after 300 seconds. It
is evident from the Figure 4, RR-TCP does not maintain a steady cwnd state
and keeps on fluctuating whereas RN-TCP is able to distinguish a reorder event
and prevent unnecessary reduction of the cwnd when packet reordering occurs.

RN-TCP maintains a steady cwnd throughout the experiment.

7.3 Link Utilization

10

T
SACK —+—

RR-TCP -
09 F. RN-TCP @

0.8

Link Utilization

04|
03 |

01 . S O
0 5 10 15 20 25 30
Packet Delay Rate %

R e

Fig. 5. Link Utilization versus fraction of delayed packets.

Figure 5, presents the link utilization of SACK, DSACK-R, RR-TCP and
RN-TCP with varying packet delay rate. It is evident from the figure, that
RN-TCP offers better link utilization when compared to SACK, DSACK-R and
RR-TCP.

The graphs in Figure 6, present the comparison of the link utilization of

SACK versus RN-TCP, DSACK-R versus RN-TCP and RR-TCP versus RN-

Link Utilization of SACK and RN-TCP

Link Utilization of DSACK-R and RN-TCP

05 -

04

Link Utilization

03

Link Utilization

L L L
100 200 300

L
400

.
1000 o 100 200 300 400 500 600 700
Time (s)

.
500 600 700 800 900
Time (s)

Link Utilization of RR-TCP(DSACK-TA) and RN-TCP

0.9

08
0.7
06

05 |

Link Utilization

.4

o4y
03
02

01t

0.0

“r‘

A

RR-TCP(DSACK-TA) —— 4
RN-TCP

L L L
0 100 200 300

TCP when 30% of packets were delayed. When packets get delayed in the net-
work, there are unnecessary false fast retransmits causing the cwnd of SACK
and DSACK-R to reduce by half. This causes the sender to send lesser amount
of packets resulting in improper utilization of the available bandwidth. RR-TCP
is able to achieve 80% link utilization only after 300 seconds. Moreover RR-
TCP does not maintain a steady utilization rate throughout the experiment.

RN-TCP prevents unnecessary reduction of the cwnd and is able to maintain a

L
400

.
500 600 700 800 900
Time (s)

1000

Fig. 6. Link utilization.

steady utilization rate of almost 80% throughout the experiment.

L
800

L
900

1000

700000000

SACK - No delay ——

SACK ---%---

600000000 - DSACK-R &~ |

500000000 | |
400000000 -

300000000 |- \

200000000 [T~

Throughput (Bytes)
4

100000000 F ¥~y D g e

Packet Drop Rate %

Fig. 7. Throughput versus fraction of dropped packets. 5% of packets delayed.

7.4 Throughput: Varying Packet Drop Rate

In this section, we compare the throughput performance of the simulated network
using SACK, DSACK-R, RR-TCP and RN-TCP when the link experiences both
packet drops and packet delays. We also compared the performance of SACK and
RN-TCP with packet drops only. 5% of the packets were delayed. The packet
drop rate varied from 0% to 2%. Figure 7 , reveals that the throughput of
SACK, DSACK-R, RR-TCP and RN-TCP reduces considerably when packets
get dropped. When packet drops occur, the throughput of any TCP variant
would reduce drastically even when there is no reordering in the network. This
is evident from the graph, where the performance of SACK with no delay reduce
drastically with increasing packet drops. Moreover, our RN-TCP with no delay
performs similar to SACK with no delay. Thus, it is clear that given there are no
reordering events, RN-TCP performs similar to SACK. Unlike RR-TCP, which
can only identify a false fast retransmit when there are no packet loss within that
window of packets, RN-TCP can identify whether a packet has been reordered or

dropped even when there are packet losses within that window of packets. From

the figure it is evident that RN-TCP’s performance is slightly better compared
to SACK, DSACK-R and RR-TCP.

0.12

0.08 | SACK —+—

RR-TCP(DSACK-TA) ---%---
RN-TCP &

004 | - —]
=}
K a

0.02 K e

Timeout Ratio %
o
=)
3

000 LT
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Packet Drop Rate %

Fig. 8. Timeout ratio versus fraction of dropped packets.

It is also evident from figure 8, that the number of timeout events of RN-TCP
is much less compared to RR-TCP. RR-TCP does not have the ability to detect
whether a packet has been dropped or reordered instantaneously, leading to
more timeouts when the dupthresh value is high. RN-TCP’s ability to distinguish
packet loss from packet reordering reduces unnecessary timeouts by setting the
dupthresh value to three upon a packet drop. Incase a packet drop is detected
after a timeout event, RN-TCP sender then assumes that all contiguous packets
following the dropped packet in that particular SACK block are dropped and
retransmits those packets (even if the 'drop-negative’ bit is set) after receiving

three DUPACKSs (dupthresh value is immediately set to three).

7.5 Fairness

When a protocol gives an throughput performance improvement over a standard

protocol, the question of fairness arises. According to [13], the poor throughput

350000000

SACK with RN-TCP —+—
\ SACK with RR-TCP -----
300000000 | |

250000000

200000000
150000000 \

100000000 T—

Throughput of SACK (Bytes)

50000000 L L L L
0

Packet Delay Rate %

Fig.9. Throughput of SACK while co-operating with RN-TCP and RR-
TCP(DSACK-TA) versus fraction of reordered packets

performance of SACK is due to the reordering of packets that occur on the
network. The enhanced versions such as DSACK-R, RR-TCP or RN-TCP does
not cause reordering to occur and thus not responsible for the poor throughput
performance of SACK. For instance, when SACK competes with an enhanced
version on a path that reorders packets, replacing the enhanced version with
a SACK will not improve the throughput performance of the other competing
SACK. Inorder to verify this, we examine the performance of a single flow using
SACK when it competes with a single flow using RN-TCP, a single flow using
SACK when it competes with a single flow using RR-TCP and when a single
flow using SACK competes with a single flow using SACK. We varied the delay
of data packets from 1% to 10% using a mean of 50 ms and a standard deviation
of 8 ms such that the packets chosen for delay varies from 0 to 50 ms. Moreover,
inorder to analyze the fairness when reordering happens, we ensure that packets
do not get dropped by having a suitable queue size. From the figure 9, it is clear
that when there are pure reordering events, an enhanced version of SACK does

not cause SACK to perform badly. This is evident from the graph, where the

performance of SACK with RR-TCP and SACK with RN-TCP perform almost
similar to SACK with SACK.

7.6 Throughput: ACK Reordering

600000000
550000000 [- g R
500000000 [
450000000 SACK —+—

RR-TCP(DSACK-TA) ------
RN-TCP =

400000000 [
350000000 -

300000000

Throughput (Bytes)

250000000 [

200000000

150000000

100000000 - ! ! ! !
0

ACK Delay Rate %

Fig. 10. Throughput versus fraction of reordered ACK packets, 4% of data pack-
ets delayed.

Reordering could occur on the reverse path, such that the sender receives out
of order ACKs. Inorder to analyze the effect of reordered ACKs on the sender’s
throughput performance, we examine the performance of the simulated network
using SACK, DSACK-R, RR-TCP and RN-TCP when the link experiences both
data packet delays and ACK packet delays. We delayed 3% of data packets and
varied the delay of ACK packets from 1% to 10%. From the Figure 10, it is
evident that reordering of ACK packets does not have any significant impact on

the the throughput performance of SACK, DSACK-R, RR-TCP and RN-TCP.

600000000

550000000 -
500000000 |- s
450000000 SACK —+—
RR-TCP(DSACK-TA) ---%---
RN-TCP &

400000000 [

350000000 -

Throughput (Bytes)

300000000 [

250000000 -

200000000 [~

150000000

— S — |
100000000
0 2 4 6 8 10
ACK Drop Rate %

Fig. 11. Throughput versus fraction of dropped ACK packets, 4% of data pack-
ets delayed.

7.7 Throughput: ACK Drops

We would also like to verify whether loss of ACK packets has any effect on the
throughput performance of the sender. In this section, we examine the through-
put performance of the simulated network using SACK, DSACK-R, RR-TCP
and RN-TCP when the link experiences both data packet delays and ACK
packet drops. We delayed 4% of data packets. 1% to 10% of the ACK pack-
ets were dropped. From the Figure 11, it is evident that when ACK packets get

dropped, there is no significant impact on the throughput of all the protocols.

7.8 Throughput: Various Reordering Distribution

The graphs in figure 12, present the throughput performance of the simulated
network using SACK, DSACK-R, RR-TCP and RN-TCP for various reorder-
ing distributions. We compared the performance when the packet delay process
undergoes normal, exponential and uniform distributions. The packet delay pro-
cess varied from 0 ms to 50 ms. The normal distribution was configured with a

mean of 25 ms and a standard deviation of 8 ms. The uniform distribution was

configured between 0 ms and 50 ms. The exponential distribution was configured

with a mean of 25 ms. It is evident from the figure that RN-TCP outperforms

SACK, DSACK-R and RR-TCP independent of any reordering distribution.

700000000

600000000

500000000

400000000

300000000

Throughput (Bytes)

200000000

100000000

Normal Distribution

Uniform Distribution

T T T T T T T T T T
. SACK —+— 3 SACK —+—
! RR-TCP %~ “5! RR-TCP -
LS. RN-TCP - %000g0000 Yo RN-TCP 8- |
[Tea | 2y
B % o
\ N o . | T teaa,
il ey, 500060000 X o 4
| R -~ ‘\ .
| * * g | .
F & 40000000 |- | *. g
| < | *
| 2 |
| £ |
Fl 3 300060000 [\‘ * B
| £ |
| |
E 200040000 | X 4
\\ \
F Tht——— 100060000 - *w\,,‘q,kff 1
. 0
5 10 15 20 25 0 0 5 10 15 20 25 30
Packet Delay Rate % Packet Delay Rate %
Exponential Distribution
700000000 T T T T T
L SACK —+—
| R RR-TCP -~
600000000 il RN-TCP g 4
L xm=
\‘ .
, o
500000000 . &a 4
- \ ., o
g w
& 400000000 J‘ o i
] | *
2
2 |
2 |
3 300000000 | —
£ | *
200000000 - \\ 4
100000000 \"*—»F++777 1
0
o 5 10 15 20 25 30

Packet Delay Rate %

Fig. 12. Various probability distributions.

8 Multipath Routing

In this section, we compare the throughput performance of the simulated network

using SACK, DSACK-R, RR-TCP and RN-TCP when multipath reordering

occurs. The link between the routers was set to 6Mbps capacity with a delay of 50

ms. We varied the average delay from 0.0 seconds to 0.2 seconds (upto 2 x RT'T).

700000000

SACK —+—

| RR-TCP(DSACK-TA) ---¥---
600000000 [. RN-TCP e |

500000000 || “u,

400000000 | | R

Throughput (Bytes)
®

g i
300000000 - | T

200000000 |

100000000 |- \\

I
0 0.05 01 0.15 02
Average Delay (s)

Fig. 13. Throughput versus average delay.

The average delay represents the RTT difference between the 100 ms RTT path
and the longer path. When the average delay is 0.0 seconds, the packets are
routed through the same path without any reordering events. From the Figure 13,
it is evident that when the average delay is increased, the throughput of SACK
and DSACK-R reduce considerably, whereas the throughput of RR-TCP and

RN-TCP reduce much more slowly. RN-TCP outperforms SACK and DSACK-
R and achieves similar throughput to RR-TCP.

9 Severe Reordering

In this section, we compare the throughput performance of the simulated net-
work using SACK, DSACK-R, RR-TCP and RN-TCP when packets experience
large delay distributions in the order of multiples of RTT. The link between the
routers was set to 1.3Mbps capacity with a propagation delay of 200 ms. This
propagation delay represents an upper range of Internet link delays which are
predominant in satellite networks. To introduce severe packet delays, we used

a mean of yP ms (P is the propagation delay) and standard deviation of %P

110000000

100000000

90000000

80000000

70000000

60000000

50000000

Throughput (Bytes)

40000000

30000000

20000000

10000000 L L
0.

0.6

—_—

T
 SACK ——

RR-TCP(DSACK-TA) -
RN-TCP

*0
*0

S s —

0.

6

0.7

0.8 09 1 11 12

Average Delay (s)

14. Throughput versus average delay.

05

04

0.3

Timeout Ratio %

0.2

01

0.0

)SACK.
RR-TCP(DSACK-TA) ---
RN-TCP

SACK —+—
R —-¢-

=

-

i

L

bx

0.2

Fig.15. Timeout ratio versus average

0.4 0.5

0.6

0.7

0.8

Average Delay (s)

0.9 12

delay.

45

40 F e

35 —

i

25 SACK —+—

RR-TCP(DSACK-TA) -----
20k RN-TCP -8

Fast Retransmit Ratio %

15
10 1

05 |

00 L & L i L T
02 03 04 05 06 07 08 09 1 11 12

Average Delay (s)

Fig. 16. Fast retransmit ratio versus average delay.

ms, such that the delay introduced varied from 0 and 2yP seconds. The packet
delay rate was fixed at 7%. We varied the value of y from 1.0 to 6.0. From the
Figure 14, when packets experience an average delay of 0.2 s, the throughput of
RN-TCP is 14% more than the throughput of RR-TCP, almost five times more
than SACK and four times more than DSACK-R. When packets experience an
average of 1.2 s, the throughput of RN-TCP is 18% more than RR-TCP, four

times more than SACK and three times more than DSACK-R.

Moreover, RN-TCP does not experience any timeout events whereas RR-
TCP experiences timeouts when the average delay is more than 1.0 s. Both
SACK and DSACK-R experiences more timeouts when the average delay is
increased. RN-TCP does not undergo any fast retransmission when compared
to RR-TCP. SACK and DSACK-R undergo large number of congestion window

reductions due to fast retransmits.

10 Varying bandwidth with constant delay

In this section, we compare the throughput performance of SACK, DSACK-R,
RR-TCP and RN-TCP with packet reordering events for various link capacities
varying from [1.3Mbps, 10Mbps]. The delay was fixed at 80 ms. 10% of packets

were delayed using uniform distribution [0, 2P] where P is the propagation delay.

550000000

500000000
450000000 - “

400000000 - SACK —+—
= RR-TCP --%--

350000000 - RN-TCP &

300000000 -

Throughput (Bytes)

250000000 - R S

*o

200000000
150000000 e
100000000 |-

50000000 F

0

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Bandwidth (Mbps)

Fig. 17. Throughput versus varying bandwidth, 80 ms propagation delay.

As shown in the Figure 17, when the link capacity is set to 3Mbps, the
throughput of RN-TCP is almost 7% more than RR-TCP, five times more than
SACK and three times more than DSACK-R. When the link capacity is set to
10Mbps, the throughput of RN-TCP is twice more than RR-TCP, eleven times
more than SACK and eight times more than DSACK-R. Thus it is evident that
RN-TCP outperforms SACK, DSACK-R and RR-TCP irrespective of the link

capacity.

11 Varying delay with constant bandwidth

In this section, we compare the throughput performance of SACK, DSACK-
R, RR-TCP and RN-TCP when the propagation delay varied from [10ms, 1.4s].
The bandwidth was fixed at 10Mbps. 10% of packets were delayed using uniform

distribution [0, 2P] where P is the propagation delay.

700000000 :
SACK —+—
: RR-TCP %

600000000 | e e

500000000 |- N
= g
2
& 400000000 |- b
5
2
2
[=] H
3 300000000 ' h
£ \ H
£

200000000 [|| % b

100000000 [\ = 1

Tz THee =
S . e
o i T ST *
0.2 0.4 0.6 0.8 1 1.2 1.4

Propagation Delay (s)

Fig. 18. Throughput versus varying delay, 10Mbps bandwidth.

As shown in the Figure 18, when the link delay is set to 10 ms, the throughput
of RN-TCP is almost 4% more than RR-TCP, twice more than SACK and
DSACK-R. When the link delay is set to 1.4 s, the throughput of RN-TCP
is twice more than RR-TCP, eleven times more than SACK and eight times
more than DSACK-R. RN-TCP outperforms SACK, DSACK-R and RR-TCP

irrespective of the propagation delay.

12 Summary

In this paper, we proposed a proactive solution that prevents the unnecessary

retransmits that occur due to reordering events in networks, by allowing the

TCP sender to distinguish whether a packet has been lost or reordered in the
network. This was done by maintaining information about dropped packets in
the gateway and using this information to notify the sender, whether the packet
has been dropped or reordered in the gateway. We also compared RN-TCP with
other protocols namely TCP SACK, DSACK-R and RR-TCP, showing that our

solution improves the throughput performance of the network to a large extent.

We believe the gateway could be modified to send the dropped information
in an ICMP message to the sender. This requires further study and testing.
Further simulations and testing needs to be carried out to find the efficiency of
the protocol when there is an incremental deployment i.e. when there are some
routers in a network which have not been upgraded to use our mechanism. We
believe RN-TCP can be built in a receiver side fashion where the TCP receiver
identifies the amount of reordering that has occurred in the network and informs
the TCP sender about this information. The TCP sender can then increase
the value of dupthresh by some value 'k’ according to the degree of reordering.
Moreover, the simulated results presented in this paper needs verification in the

real network.

References

1. Allman, M., Paxson, V.: On Estimating End-to-End Network Path Properties.
Proceedings of the SIGCOMM (1999)

2. Bennett, J., Partridge, C., Shectman, N.: Packet Reordering is Not Pathological
Network Behaviour. IEEE/ACM Transactions on Networking (1999)

3. Blanton, E., Allman, M.: On Making TCP More Robust to Packet Reordering.
Proceedings of the SIGCOMM (2002)

4. Chinoy, B.: Dynamics of Internet Routing Information. Proceedings of the SIG-
COMM (1993)

10.

11.

12.

13.

14.

Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M.: An Extension to the Selective
Acknowledgement (SACK) Option for TCP. RFC 2883 (2000)

Jacobson, V.: Congestion Avoidance and Control. Proceedings of the SIGCOMM
(1988)

D. Katabi, M. Handley, C. Rohrs, Congestion Control for High Bandwidth-Delay
Product Networks,. Proceedings on ACM SIGCOMM 2002.

Ludwig, R., Katz, R.: The Eifel Algorithm: Making TCP Robust Against Spurious
Retransmissions. Computer Communication Review, 30(1)(2000)

McCanne, S., Floyd, S.: Network Simulator. http://www.isi.edu/nsnam/ns/
Mogul, J.: Observing TCP Dynamics in Real Networks. Proceedings of the SIG-
COMM (1992).

Postel, J.: Transmission Control Protocol. RFC 793 (1981)

Sathiaseelan, A., Radzik, T.: RD-TCP: Reorder Detecting TCP. Proceedings of
the 6th IEEE International Conference on High Speed Networks and Multimedia
Communications HSNMC’03, Portugal, July 2003 (LNCS 2720, pp.471-480).
Zhang, M., Karp, B., Floyd, S., Peterson, L.: RR-TCP: A Reordering-Robust TCP
with DSACK. IEEE International Conference on Network Protocols (2003).
Question on XCP, http://www.postel.org/pipermail/end2end-interest/2005-
February/004606.html

