
Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

A New Approach to Regular &

Indeterminate Strings

Felipe A. Louzaa Neerja Mhaskarb W. F. Smythb,c,d

a Dept. of Computing and Mathematics, University of Sao Paulo, Brazil

b Dept. of Computing and Software, McMaster University, Canada

c Dept. of Informatics, King’s College London, UK
d School of Engineering & Information Technology, Murdoch University, Perth, Australia

LSD & LAW 2019, London, UK

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 1 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Outline

Abstract

Regular and Indeterminate Strings

Palindromes and Maximal Palindrome Array

Open Problems

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 1 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Abstract

We propose a new, more appropriate definition of a regular string;
that is, one that is isomorphic to a string whose entries all consist of
a single letter. A string that is not regular is said to be
indeterminate. We describe an algorithm to determine whether or
not a string x is regular and, if so, to replace it by a
lexicographically least string string y whose entries are all single
letters. We then introduce the idea of a feasible palindrome array
MP of a string, and show that every feasible MP corresponds to
some (regular or indeterminate) string – perhaps, surprisingly, both!
We describe an algorithm that constructs a string x corresponding
to given feasible MP, lexicographically least whenever x is regular.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 2 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Introduction

The idea of a string as something other than a sequence of single
letters has been discussed for almost half a century.

In 1974 Fischer & Paterson [FP74] studied pattern-matching on
strings x whose entries could be don’t-care letters; that is, letters
matching any single letter in the alphabet ⌃ on which the string is
defined, hence matching every position in x.

In 1987 Abrahamson [Abr87] extended this model by considering
pattern-matching on generalized strings whose entries could be
arbitrary subsets of ⌃.

Both of these models have been intensively studied in this century,
notably by Blanchet-Sadri (“strings with holes”) and Iliopoulos
(“degenerate strings”).

Louza, Mhaskar and Smyth LSD & LAW 2019, London Introduction - 3 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Regular & Indeterminate Strings

In this paper we redefine an indeterminate string in a context that
we believe captures the idea in a more appropriate way — at once
more general and more precise.

A letter ` is a finite list of s distinct characters c1, c2, . . . , cs, each
drawn from a set ⌃ of size � = |⌃| called the alphabet.

In the case that ⌃ is ordered, ` is said to be in normal form if its
characters occur in the ascending order determined by ⌃.

The integer s = s(`) is called the scope of `. For s = 1, ` is said to
be regular, otherwise indeterminate.

Two letters `1, `2 are said to match, written `1 ⇡ `2, if and only if
`1 \ `2 6= ;. In the case that matching `1 and `2 are both regular,
we may write `1 = `2.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 4 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

For n � 1, a string x = x[1..n] is a sequence x[1],x[2], . . . ,x[n] of
letters, where n = |x| is the length of x, and every i 2 1..n is a
position in x.

If every letter in x is in normal form, then x itself is said to be in
normal form.

A tuple T = (i, j1, j2) of distinct positions i, j1, j2 in x such that

x[j1] ⇡ x[i] ⇡ x[j2]

is said to be a triple.

A triple T is transitive if x[j1] ⇡ x[j2], otherwise intransitive.

If every triple T in x is transitive, then we say that x is regular;
otherwise, x is indeterminate.

The scope of x is given by

S(x) = max

i21..n
s(x[i]).

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 5 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Two strings x and y of equal length n are said to be isomorphic if
and only if for every i, j 2 1..n,

x[i] ⇡ x[j]() y[i] ⇡ y[j]. (1)

Lemma (1)

Every regular string is isomorphic to a string of scope 1.

Lemma (2)

Given a regular string x[1..n], then, corresponding to every triple

(i, j1, j2), we can assign a regular letter to y[i],y[j1],y[j2] in such a

way that the resulting string y[1..n] is isomorphic to x[1..n].

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 6 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

We propose the algorithm (function regular) outlined below to
determine whether a given string x[1..n] on alphabet ⌃ is regular.

If x is regular, on exit the string y is the lex-least regular string of
scope 1 on the integer alphabet ⌃0

= {1, 2, . . . , �0} that is
isomorphic to x.

The runtime complexity of regular is O(n

2
�

2
)

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 7 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Function regular

Input: String x[1..n]

Output: If x is regular, returns true; otherwise, false.

(And if x is regular, also constructs a lex-least string y[1..n].)

Outline of function regular

Initialize each letter in y[1..n] to 0.

Scan x from left to right, using y to record previous matches.

During this scan the following condition holds as long as x is
regular:

C : x[i] ⇡ x[j], y[i] = y[j] ^ y[i] 6= 0.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 8 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

If at a position i 2 1..n, we have y[i] = 0 — that is, it was not
part of a previous match — we fill it with a new character �0.

We then scan the rest of the strings x[i+ 1..n] and y[i+ 1..n]

to see if condition C continues to hold. If it does not, we mark
x as indeterminate and exit; otherwise, whenever x[j] ⇡ x[i]

and y[j] = 0, we assign y[j] �

0.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 9 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Palindromes

A substring u = x[i..j], 1 i j n, of length ` = j�i+1 is
said to be a palindrome if x[i+h] ⇡ x[j�h] for every h 2 0..b`/2c.
A palindrome u = x[i..j] is said to be a maximal palindrome if
one of the following holds: i = 1, j = n, or x[i�1] 6⇡ x[j+1].

The centre of a palindrome u is at position i+

�̀1
2 .

Since this is not an integer for odd `, we form the string x

⇤, where
62 ⌃ and m = 2n+1.

x

⇤
[1..m] = #x1#x2# · · ·#xn#,

Now every palindrome in x

⇤ has an integer centre c. We call
d = 2`+1 the diameter and r = bd/2c the radius of a palindrome
in x

⇤.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 10 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Maximal Palindrome Array

We can now define the maximal palindrome array MP = MP
x

⇤
of x⇤:

For every i 2 1..m, if x⇤
[i] = # and x

⇤
[i�1] 6⇡ x

⇤
[i+1], then

MP[i] = 0 (radius zero); otherwise, MP[i] � 1 is the radius of the
maximal palindrome centred at position i.

For example, MP
x

⇤ derived from x = aabac is as follows:

1 2 3 4 5 6 7 8 9 10 11

x

⇤
= # a # a # b # a # c #

MP
x

⇤
= 0 1 2 1 0 3 0 1 0 1 0

(2)

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 11 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

The most general form of the palindrome array is given by

MP = 0i2i3 · · · im�10, (3)

where for every j 2 2..m� 1:

(a) ij 2 (1�j mod 2)..min(j�1,m�j);
(b) ij is odd if and only if j is even.

Any array satisfying (3) is said to be feasible.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 12 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Lemma (3)

There exists a string corresponding to every feasible palindrome

array.

To prove the above lemma, we construct a string x

⇤ corresponding
to the input feasible array MP = MP

x

⇤
[1..m] as follows:

First, for every odd c 2 1..m, we assign x

⇤
[c] #, while

every even position remains empty.

For every c 2 3..m�2 such that MP[i] = r � 2, we add a
unique character to each pair of positions c�k, c+k in x

⇤,
where

• (c even, r odd) k = 2, 4, . . . , r�1;
• (c odd, r even) k = 1, 3, . . . , r�1.

Finally, we assign a unique character to each position that
remains empty.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 13 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example of construction for the previous Lemma:

1 2 3 4 5 6 7 8 9 10 11

x

⇤
= # a # {a, b} # c # b # d #

MP
x

⇤
= 0 1 2 1 0 3 0 1 0 1 0

(4)

However, as we have seen in (2), the regular string
#a#a#b#a#c# has the same palindrome array: a palindrome
array can correspond to both a regular and an indeterminate string!

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 14 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Forbidden pair: To each position c 2 1..m of a feasible MP array we
associate a pair of integers (i, j) such that

i = c�MP[c]� 1, and j = c+MP[c] + 1.

Then, provided 0 < i, j < m+ 1, we must have x

⇤
[i] 6⇡ x

⇤
[j]. We

call (i, j) the forbidden pair with respect to c.

Assuming that x⇤
[0] = x

⇤
[m+ 1] = ;, we denote by FP the set of

all forbidden pairs with respect to each centre c 2 1..m.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 15 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example of forbidden pair for each centre c:

c 1 2 3 4 5 6 7

MP 0 1 0 3 2 1 0

x

⇤
1 # {2, 3} # {1, 3}

FP (0, 2) (0, 4) (2, 4) (0, 8) (2, 8) (4, 8) (6, 8)

(5)

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 16 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

To characterize MP arrays we use Manacher’s condition [Man75],
restated in [IIBT10], and restated again below:

In MP = MP
x

⇤ , we consider each centre c of a palindrome of radius
r = MP[c], where for c even, r � 3, and for c odd, r � 2.

Then we must have x

⇤
[c�k] ⇡ x

⇤
[c+k], where 1 k r. For

each k, let r` = MP[c�k], rr = MP[c+k]. We then have

Definition (Manacher’s condition)

Every position c in MP = MP

x

⇤
satisfies the following:

(a) if r` 6= rk then rr = min(r`, rk) else rr � r`;

(b) if rr 6= rk then r` = min(rr, rk) else r` � rr.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 17 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

In [Man75] it is shown that, for every palindrome in string x

⇤ such
that S(x⇤

) = 1, Manacher’s condition must hold.

Thus, by Lemma (1), Manacher’s condition holds for every regular
string; that is, for every string whose triples are all transitive.

We propose procedure construct which on an input MP produces a
lex-least regular string if MP is regular; otherwise produces an
indeterminate string.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 18 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Procedure construct

Input: Feasible maximal palindrome array MP[1..m].

Main Data Structure: FS[1..m] — an array giving forbidden pairs
(i, j) that have been identified w.r.t centres c: for every (even) i and
8j 2 FS[i], x⇤

[i] 6⇡ x

⇤
[j].

Outline of procedure construct

For every odd i 2 1..m, assign x

⇤
[i] #; for every even

j 2 1..m, assign x

⇤
[j] 0. Set x⇤

[2] 1.

For each centre c 2 3..m� 1, compute its forbidden pair (i, j)
and update the FS[i] and FS[j] sets accordingly.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 19 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

If the string x

⇤
[1..c�1] constructed so far is regular and the

centre c and range k satisfy Manacher’s condition, we continue
to construct the regular string by copying the previously filled
letter x⇤

[c�k] to its corresponding matching position c+k.

Whenever there is a choice of filling an empty position — that
is, when x

⇤
[c] = 0 — the lex-least character which is not in

the forbidden set of characters FS[c] is chosen.

If a given centre c and range k do not satisfy Manacher’s
condition, we mark the string as indeterminate, and every
subsequent letter match including the current one is achieved
by adding a new character to x

⇤
[c�k] and x

⇤
[c+k], where

c�k and c+k are even.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 20 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example 1 (MP [12] = 3):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MP = 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0
x

⇤ = # 1 # 2 # 1 # 3 # 1 # 2 # 1 #
(6)

x

⇤ is the string produced by construct.

The input MP array is regular, therefore the resulting string x

⇤ is
regular.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 21 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example 2 (MP [12] = 1):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MP = 0 1 0 3 0 1 0 7 0 1 0 1 0 1 0
x

⇤ = # 1 # {2, 3} # {1, 4} # 5 # 4 # 3 # 1 #
(7)

x

⇤ is the string produced by construct.

The input MP array is not regular, therefore the resulting string x

⇤

is indeterminate.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 22 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Results

Lemma (4)

Let x

⇤
be the string produced by procedure construct. Then

S(x

⇤
) = 1, x

⇤
is regular.

Theorem (1)

Let x

⇤
be the string produced by the procedure construct on an

input MP. Then x

⇤
is regular , MP is regular.

Theorem (2)

Given an MP array of length m = 2n+1, procedure construct

executes in O(n

2
�) time, where � is the size of the generated

alphabet.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 23 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Open Problems:

1 Procedures regular and construct both have worst-case time
complexity O(n

2
). It should be possible to reduce this.

2 Given the new definition of regularity in strings, what is its
e↵ect on the computation of data structures such as border
array, cover array, prefix array, su�x array, Lyndon array?

3 Is it possible to compute the above mentioned data structures
without first using the O(n

2
) time function regular?

4 What e↵ect does this new definition have on the “reverse
engineering” problem related to these arrays?

5 There exist algorithms to reverse engineer the other arrays
noted above — can they be modified/extended to yield
equivalent results?

6 Can the time requirements of these algorithms be reduced to
near-linear, except in pathological cases?

Louza, Mhaskar and Smyth LSD & LAW 2019, London Open Problems - 24 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

References I

[Abr87] K. Abrahamson.

Generalized string matching.

SIAM Journal of Computing, 16(6):1039–1051, 1987.

[FP74] M.J. Fischer and M.S. Paterson.

String matching and other products.

In R.M. Karp, editor, Complexity of Computation,, pages 113–125.
American Mathematical Society, 1974.

[IIBT10] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

Counting and verifying maximal palindromes.

Proc. 17th Symposium on String Proocessing & Information Retrieval

(SPIRE), LNCS 6393, pages 135–146, 2010.

Louza, Mhaskar and Smyth LSD & LAW 2019, London References - 25 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

References II

[Man75] G. Manacher.

Anew Linear– Time “ On– Line” Algorithm for Finding the Smallest
Initial Palindrome of a String.

J. Assoc. Comput. Mach., 22:346–351, 1975.

Louza, Mhaskar and Smyth LSD & LAW 2019, London References - 26 / 26

