Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

A New Approach to Regular &

Indeterminate Strings

Felipe A. Louza® Neerja Mhaskar® W. F. SmythP:¢¢

@ Dept. of Computing and Mathematics, University of Sao Paulo, Brazil
b Dept. of Computing and Software, McMaster University, Canada

¢ Dept. of Informatics, King's College London, UK
d School of Engineering & Information Technology, Murdoch University, Perth, Australia

LSD & LAW 2019, London, UK

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 1/ 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Outline

@ Abstract
@ Regular and Indeterminate Strings
@ Palindromes and Maximal Palindrome Array

@ Open Problems

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 1/ 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Abstract

We propose a new, more appropriate definition of a regular string;
that is, one that is isomorphic to a string whose entries all consist of
a single letter. A string that is not regular is said to be
indeterminate. We describe an algorithm to determine whether or
not a string @ is regular and, if so, to replace it by a
lexicographically least string string y whose entries are all single
letters. We then introduce the idea of a feasible palindrome array
MP of a string, and show that every feasible MP corresponds to
some (regular or indeterminate) string — perhaps, surprisingly, both!
We describe an algorithm that constructs a string x corresponding
to given feasible MP, lexicographically least whenever x is regular.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Outline - 2 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Introduction

The idea of a string as something other than a sequence of single
letters has been discussed for almost half a century.

In 1974 Fischer & Paterson [FP74| studied pattern-matching on
strings « whose entries could be don’t-care letters; that is, letters
matching any single letter in the alphabet > on which the string is
defined, hence matching every position in x.

In 1987 Abrahamson [Abr87] extended this model by considering
pattern-matching on generalized strings whose entries could be
arbitrary subsets of X..

Both of these models have been intensively studied in this century,
notably by Blanchet-Sadri (“strings with holes”) and lliopoulos
(“degenerate strings”).

Louza, Mhaskar and Smyth LSD & LAW 2019, London Introduction - 3 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Regular & Indeterminate Strings

In this paper we redefine an indeterminate string in a context that
we believe captures the idea in a more appropriate way — at once
more general and more precise.

A letter / is a finite list of s distinct characters ¢;, co, ..., c,, each
drawn from a set ¥ of size 0 = |X| called the alphabet.

In the case that X is ordered, ¢ is said to be in normal form if its
characters occur in the ascending order determined by >..

The integer s = s(¢) is called the scope of /. For s =1, { is said to
be regular, otherwise indeterminate.

Two letters /1, {5 are said to match, written ¢ ~ /5, if and only if
01N ¥y # 0. In the case that matching ¢, and ¢, are both regular,
we may write {1 = /{s.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 4 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

For n > 1, a string = x[l..n| is a sequence x|1], x[2], ..., x[n| of
letters, where n = |x| is the length of x, and every i € 1..n is a
position in x.

If every letter in @ is in normal form, then a itself is said to be in
normal form.

A tuple T' = (4, ji1, j2) of distinct positions 7, ji, jo in @ such that
z|j1] = zli] = x[j2]

is said to be a triple.

A triple T is transitive if x[j,] =~ x|j>], otherwise intransitive.

If every triple T" in x is transitive, then we say that x is regular;
otherwise, @ is indeterminate.

The scope of x is given by

S(x) = max s(xli]).

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 5 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Two strings & and y of equal length n are said to be isomorphic if
and only if for every 7,5 € 1..n,

x[i] = x[j] <= yli] = y[j]. (1)

Lemma (1)

Every regular string is isomorphic to a string of scope 1.

Lemma (2)

Given a regular string x[1..n|, then, corresponding to every triple
(¢, j1, J2), we can assign a regular letter to y|i], y|j1], y|j2| in such a
way that the resulting string y[1..n| is isomorphic to x[1..n].

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 6 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

We propose the algorithm (function regular) outlined below to
determine whether a given string x[1..n] on alphabet 3 is regular.

If & is regular, on exit the string y is the lex-least regular string of
scope 1 on the integer alphabet >’ = {1,2,...,0'} that is
isomorphic to .

The runtime complexity of regular is O(n*c?)

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 7 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Function reqular

Input: String x[1..n]
Output: If x is regular, returns true; otherwise, false.
(And if x is regular, also constructs a lex-least string y[1..n].)

Outline of function regular

@ Initialize each letter in y[1..n] to 0.
@ Scan x from left to right, using y to record previous matches.

@ During this scan the following condition holds as long as @ is
regular:

C:ali] = z[j] < yli] =yj] Ayli] #0.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 8 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

@ If at a position i € 1..n, we have y[i] = 0 — that is, it was not
part of a previous match — we fill it with a new character o’.

@ We then scan the rest of the strings x[i + 1..n] and y[i + 1..n]
to see if condition C' continues to hold. If it does not, we mark
x as indeterminate and exit; otherwise, whenever x|j] ~ x|i]

and y[j] = 0, we assign y|j| < o’

Louza, Mhaskar and Smyth LSD & LAW 2019, London Regular & Indeterminate Strings - 9 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Palindromes

A substring u = x[i..j|, 1 <i < j <mn, of length { = j—i+1is
said to be a palindrome if x[i+h] ~ x[j—h] for every h € 0..|£/2].

A palindrome u = xi..j] is said to be a maximal palindrome if
one of the following holds: i =1, j = n, or x[i—1]| % x[j+1].

The centre of a palindrome u is at position z'+£_71.

Since this is not an integer for odd ¢, we form the string x*, where
¢ > and m = 2n+1.

w*(1.m| = #x1# T4 - - Fra#,

Now every palindrome in * has an integer centre c. We call
d = 20+1 the diameter and r = |d/2] the radius of a palindrome
in x*.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 10 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Maximal Palindrome Array

We can now define the maximal palindrome array MP = MP .
of x*:

For every i € 1.m, if *[i] = # and x*[i—1] % x*[i+1], then
MP/i] = 0 (radius zero); otherwise, MP[i| > 1 is the radius of the
maximal palindrome centred at position 1.

For example, MP .« derived from x = aabac is as follows:

1 2 3 4 5 6 7 8 9 10 11
x*=# a # a # b # a # c # (2)
MP,«=0 12 103 0 1 0 1 0

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 11 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems

The most general form of the palindrome array is given by
MP = Q523 - - - 25,10,
where for every 5 € 2.m — 1:
(a) i; € (1—j mod 2)..min(j—1,m—j);
(b) i; is odd if and only if j is even.
Any array satisfying (3) is said to be feasible.

References

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 12 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Lemma (3)

There exists a string corresponding to every feasible palindrome
array.

To prove the above lemma, we construct a string * corresponding
to the input feasible array MP = MP .« [1..m] as follows:

@ First, for every odd ¢ € 1..m, we assign x*[c| <— #, while
every even position remains empty.

@ For every ¢ € 3..m—2 such that MP[i] =7 > 2, we add a
unique character to each pair of positions c—k, c+k in x*,
where

e (ceven, rodd) k=2,4,...,r—1;
e (codd, reven) k=1,3,...,r—1.

@ Finally, we assign a unique character to each position that
remains empty.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 13 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example of construction for the previous Lemma:

10

1 2 3 5 6 7 8 9 11
x*=H# a # {a,b} # ¢ # b # d # (4)
0 1 2 O 3 01 0 1 0

However, as we have seen in (2), the regular string
Ha#a#b#a#c# has the same palindrome array: a palindrome
array can correspond to both a regular and an indeterminate string!

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 14 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Forbidden pair: To each position ¢ € 1..m of a feasible MP array we
associate a pair of integers (i, j) such that

i =c— MP[c] — 1, and j = ¢+ MP|¢| + 1.

Then, provided 0 < 4,5 < m + 1, we must have x*[i] % x*[j]. We
call (i, 7) the forbidden pair with respect to c.

Assuming that *[0] = «*[m + 1] = (), we denote by FP the set of
all forbidden pairs with respect to each centre c € 1..m.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 15 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example of forbidden pair for each centre c:

c 1 2 3 4 5 6 7
MP 0 1 0 3 2 1 0 (5
zt# 1 # {23p # L3} #
FP (0,2) (0,4) (2,4) (0,8) (2,8) (4,8) (6,8)

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 16 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

To characterize MP arrays we use Manacher's condition [Man75],
restated in [IIBT10], and restated again below:

In MP = MP_.«, we consider each centre ¢ of a palindrome of radius
r = MP|c|, where for ¢ even, r > 3, and for ¢ odd, r > 2.

Then we must have &*[c—k| =~ *|[c+ k], where 1 < k < r. For
each k, let ro = MP[c—k]|, r, = MP[c+k]. We then have

Definition (Manacher’s condition)
Every position ¢ in MP = MP_.« satisfies the following:
(a) if r, # rk then r. = min(r,, k) else r,. > ry;

(b) if r,. # rk then r, = min(r,., rk) else r, > r,.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 17 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

In [Man75] it is shown that, for every palindrome in string * such
that S(x*) = 1, Manacher's condition must hold.

Thus, by Lemma (1), Manacher’s condition holds for every regular
string; that is, for every string whose triples are all transitive.

We propose procedure construct which on an input MP produces a

lex-least regular string if MP is regular; otherwise produces an
indeterminate string.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 18 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Procedure construct

Input: Feasible maximal palindrome array MP[1..m].

Main Data Structure: FS[1..m] — an array giving forbidden pairs
(z,7) that have been identified w.r.t centres c: for every (even) i and

Vi € ES[i], &*[i] % x*|j].

Outline of procedure construct

@ For every odd i € 1..m, assign x*[i] < #; for every even
J € 1..m, assign x*[j] < 0. Set *|2] < 1.

@ For each centre ¢ € 3..m — 1, compute its forbidden pair (i, 7)
and update the FSJ[i| and FS|[j] sets accordingly.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 19 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

@ |If the string *[1..c—1] constructed so far is regular and the
centre ¢ and range k satisfy Manacher’s condition, we continue
to construct the regular string by copying the previously filled
letter *[c—k]| to its corresponding matching position c+k.

@ Whenever there is a choice of filling an empty position — that
is, when x*[c] = 0 — the lex-least character which is not in
the forbidden set of characters FS|c| is chosen.

@ If a given centre ¢ and range k do not satisfy Manacher's
condition, we mark the string as indeterminate, and every
subsequent letter match including the current one is achieved
by adding a new character to *|[c—k| and x*|c+k|, where
c—k and c+k are even.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 20 / 26

Outline Introduction

Regular & Indeterminate Strings Maximal Palindrome Array Open Problems

References
Example 1 (M P[12] = 3):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MP =0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 (6)
x* = # 1 # 2 # 1 # 3 # 1 # 2 # 1 #

x* is the string produced by construct.

The input MP array is regular, therefore the resulting string x* is
regular.

Louza, Mhaskar and Smyth LSD & LAW 2019, London

Maximal Palindrome Array - 21 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Example 2 (M P[12] = 1):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MP =0 1 0 3 0 1 0 7 0 1 0 1 0 1 0 (7)
*=# 1 # {23y # {14 # 5 # 4 # 3 # 1 #

x* is the string produced by construct.

The input MP array is not regular, therefore the resulting string x*
is indeterminate.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 22 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Results

Lemma (4)

Let x* be the string produced by procedure construct. Then
S(x*) =1 < x* is regular.

Theorem (1)

Let x* be the string produced by the procedure construct on an
input MP. Then x* is regular < MP is regular.

Theorem (2)

Given an MP array of length m = 2n+1, procedure construct
executes in O(n*c) time, where o is the size of the generated
alphabet.

Louza, Mhaskar and Smyth LSD & LAW 2019, London Maximal Palindrome Array - 23 / 26

Outline

Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

Open Problems:

Procedures reqular and construct both have worst-case time
complexity O(n?). It should be possible to reduce this.

Given the new definition of regularity in strings, what is its
effect on the computation of data structures such as border
array, cover array, prefix array, suffix array, Lyndon array?

Is it possible to compute the above mentioned data structures
without first using the O(n?) time function regular?

What effect does this new definition have on the “reverse
engineering’ problem related to these arrays?

There exist algorithms to reverse engineer the other arrays
noted above — can they be modified /extended to yield
equivalent results?

Louza, Mhaskar and Smyth LSD & LAW 2019, London Open Problems - 24 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

References |

[Abr87] K. Abrahamson.
Generalized string matching.
SIAM Journal of Computing, 16(6):1039-1051, 1987.

[FP74] M.J. Fischer and M.S. Paterson.
String matching and other products.
In R.M. Karp, editor, Complexity of Computation,, pages 113-125.

American Mathematical Society, 1974.
[IIBT10] Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

Counting and verifying maximal palindromes.

Proc. 17th Symposium on String Proocessing & Information Retrieval
(SPIRE), LNCS 6393, pages 135-146, 2010.

Louza, Mhaskar and Smyth LSD & LAW 2019, London References - 25 / 26

Outline Introduction Regular & Indeterminate Strings Maximal Palindrome Array Open Problems References

References ||

[Man75] G. Manacher.

Anew Linear— Time " On— Line" Algorithm for Finding the Smallest
Initial Palindrome of a String.

J. Assoc. Comput. Mach., 22:346-351, 1975.

Louza, Mhaskar and Smyth LSD & LAW 2019, London References - 26 / 26

