Enumerating words with forbidden factors Some things that could be better known

Richard Pinch

Institute of Mathematics and its Applications
07 February 2019

Institute of

In this talk ...

- Some facts, well-known and less-well-known, about recurrence relations and power series

Counting walks on graphs
Counting words with forbidden factors

In this talk ...

- Some facts, well-known and less-well-known, about recurrence relations and power series
- Counting walks on graphs

Counting words with forbidden factors An application

In this talk ...

- Some facts, well-known and less-well-known, about recurrence relations and power series
- Counting walks on graphs
- Counting words with forbidden factors

In this talk ...

- Some facts, well-known and less-well-known, about recurrence relations and power series
- Counting walks on graphs
- Counting words with forbidden factors
- An application

Institute of

A curiosity?

$$
\frac{1}{89}=0.011235 \ldots
$$

A curiosity?

$\frac{1}{89}=0.011235955056179 \ldots$

A curiosity?

$\frac{1}{89}=0.0112358$

 132134
55
\ddots.

A curiosity?

Let F_{n} denote the nth Fibonacci number (with $F_{0}=0$).

$$
\frac{1}{89}=\sum_{n=0}^{\infty} F_{n} 10^{-n-1}
$$

Institute of mathematics

A curiosity?

This is simply the power series expansion

$$
\frac{z}{1-z-z^{2}}=\sum_{n=0}^{\infty} F_{n} z^{n}
$$

evaluated at $z=\frac{1}{10}$. The occurence of the polynomial $1-z-z^{2}$ should come as no surprise, as it is the driving polynomial of the Fibonacci sequence.

Institute of

Not a curiosity

The power series with coefficients which satisfy a linear recurrence relation are precisely the formal power series attached to rational functions: indeed, the denominator of the rational function will be the driving polynomial of the linear recurrence.

Institute of

Not a curiosity

The polynomials over a field K form a K-algebra with dual the space of infinite sequences.
The linear recurrent sequences form the restricted dual, and hence have a coalgebra structure.
Indeed, the polynomials and the linear recurrent sequences form bialgebras and in two different ways.

Institute of

Generating functions

Let $\left(r_{n}\right)$ be a sequence defined by a recurrence relation

$$
r_{n+k}=c_{k-1} r_{n+k-1}+\cdots+c_{0} r_{n}
$$

for $n \geq 0$, with $c_{0} \neq 0$, subject to given initial conditions on r_{0}, \ldots, r_{k-1}. Let $f(x)$ be the auxiliary polynomial

$$
f(x)=x^{k}-\left(c_{k-1} x^{k-1}+\cdots+c_{0}\right) .
$$

Let the roots of f be $\alpha_{1}, \ldots \alpha_{k}$: we shall assume for simplicity of this exposition that f has no repeated roots.

Generating functions

The generating function as a formal power series is equal to a rational function of the form

$$
\sum_{n=1}^{\infty} r_{n} z^{n}=\frac{p(z)}{\tilde{f}(z)}
$$

where p is a polynomial of degree $\leq k-1$, determined by the initial conditions, and \tilde{f} is the reciprocal polynomial

$$
\tilde{f}(z)=\prod_{i=1}^{k}\left(1-\alpha_{i} z\right)=\left(-1 / c_{0}\right) z^{k} f(1 / z)
$$

Institute of

Traces

We may also express any such generating function as

$$
\sum_{i=1}^{k} \frac{\beta_{i}}{1-\alpha_{i} z}
$$

that is, as a trace

$$
\operatorname{tr}\left(\frac{\beta}{1-\alpha z}\right)
$$

Institute of mathematics

Impulse response sequence

The impulse response sequence has initial values $0, \ldots, 0,1$, so that every sequence is a linear combination of this and its left shifts. The corresponding generating function has initial term z^{k-1}.
We have

$$
\operatorname{tr} \frac{1 / f^{\prime}(\alpha)}{(1-\alpha z)}=z^{k-1}+O\left(z^{k}\right)
$$

as the generating function of the IRS in trace form.

Institute of

Walks on graphs

Let $G=(V, E)$ be a directed graph with possibly multiple edges, and A the adjacency matrix with entry $A_{i j}$ counting the number of edges from vertex v_{i} to vertex v_{j}. Then the entries of the matrix power A^{n}, for $n \geq 0$, count the number of directed paths of length n between vertices.

Walks on graphs

We can regard the formal power series

$$
\sum_{n \geq 0} A^{n} z^{n}
$$

as either a formal power series over the matrix ring or as a matrix whose entries are formal power series.

Institute of

Generating function

Let $G=(V, E)$ be a directed graph with possibly multiple edges, and
It is then easy to see that

$$
(I-A z)\left(\sum_{n \geq 0} A^{n} z^{n}\right)=I
$$

and since $I-A z$ is invertible, this matrix formal power series is an expression for the inverse $(I-A z)^{-1}$.

Institute of

Formal power series

We are considering the formal term z^{n} as encoding paths of length n. Let B be a matrix in which every entry is a polynomial in z with integer coefficients and with zero constant term: so that $A z$ is an example of such a matrix. Then the sum

$$
\sum_{n \geq 0} B^{n}
$$

converges (formally speaking in the z-adic topology) to a formal power series in z over the ring of matrices.

Institute of

Counting paths

If we want to count the number of paths of length n from a given vertex i to vertex j, then we write

$$
e_{i}^{\top}\left(\sum_{n \geq 0} A^{n} z^{n}\right) e_{j}
$$

where e_{i} is the coordinate vector for the i-th position.

Institute of

Counting paths

We have the generating function

$$
e_{i}^{\top}(I-A z)^{-1} e_{j}
$$

and expanding $(I-A z)^{-1}$ we obtain

$$
\frac{1}{\operatorname{det}(1-A z)} e_{i}^{\top} \operatorname{adj}(I-A z) e_{j}
$$

which is a rational function with the characteristic polynomial of A as denominator.

Forbidden factors

We give as a worked example the problem of counting words over a finite alphabet with forbidden factors: that is, words with no consecutive substring drawn from a finite forbidden set.

Institute of

An application

The specific application that motivated us to look at this problem comes from the problem of counting binary words in prefix normal binary words: words over the alphabet $\{\mathbf{0}, \mathbf{1}\}$ with the property that no factor has more occurrences of the symbol 1 than the prefix of the same length. This problem is addressed, for example, by Burcsi et al. They obtain an upper bound of the form $2^{n-\lg n+1}$ by observing that a binary word in prefix form for which the first k symbols are an initial run of $\mathbf{1}^{k-1}$ followed by a $\mathbf{0}$ necessarily has the property that it has no factor of the form $\mathbf{1}^{k}$.

Institute of

de Bruijn graphs

We wish to enumerate words whose factors of length k come from a permissible set S.
\qquad
\square the movement one place of a k-long window into the word This reduces the problem to one of enumerating walks in the graph G_{S}

Institute of mathematics

de Bruijn graphs

We wish to enumerate words whose factors of length k come from a permissible set S. The de Bruijn graph or state machine G_{S} has vertex set S. There is a directed edge from a vertex $x Y \in S$ to a vertex $Y z \in S$, where x, z denote single letters and Y denotes a string of length $k-1$: following an edge represents the movement one place of a k-long window into the word. This reduces the problem to one of enumerating walks in the graph G_{S}.

Institute of
mathematics
\& its applications

Words without runs

We illustrate the application of power series to obtain this upper bound for binary words with no factor $\mathbf{1}^{k}$.
The de Bruijn graph has $2^{k}-1$ vertices, labelled by all binary strings except 1^{k}, and each vertex $x Y$ has two arrows to vertices $Y 0$ and $Y 1$: except for the vertex 01^{k-1} which has only a single arrow, to $\mathbf{1}^{k-1} \mathbf{0}$.

Institute of

Words without runs

Fix $k \geq 2$ and consider the number $F(n)$ of binary words of length n with no runs of k consecutive 1 . We know that F satisfies a linear recurrence relation which we can obtain from its de Bruijn diagram. In this case, it is easy to see that F satisfies the recurrence

$$
F(n)=F(n-1)+\cdots+F(n-k)
$$

with initial conditions $F(i)=2^{i}, i=0, \ldots, k-1$.

Institute of

The characteristic equation

Let $f(z)=z^{k}-\left(z^{k-1}+\cdots 1\right)$ be the auxiliary polynomial of this recurrence. It is clear that f has no roots of absolute value greater than or equal to 2 . Let α_{1} denote the largest real root.

Theorem

- The dominant root satisfies $\alpha_{1}<2-\frac{1}{2^{k}}$
- f has no repeated roots
- All roots other than α_{1} are inside the unit circle.

A picture

\& its applications

The characteristic equation

This already gives us the asymptotic behaviour of F. For a more explicit bound we need to locate the other roots and to estimate $f^{\prime}(\alpha)$ as α runs over the roots of f.

Theorem

The roots of f within the unit circle are at distance of order $1 / k$ from the $k-1$ non-trivial k-th roots of unity.

Institute of

Conclusion

We conclude that $f^{\prime}(\alpha) \sim k$, for α one of the roots inside the unit circle. Hence we can obtain an estimate strong enough to give Theorem 15 of [BFLRS]

$$
\sum_{k=1}^{n} F_{k}(n-k)<2^{n-\lg n+1}
$$

Summary

- Recurrent sequences and the associated power series have a rich natural algebraic structure

Summary

- Recurrent sequences and the associated power series have a rich natural algebraic structure
- This structure is useful in a wide range of applications in combinatorics

Institute of

The end

Questions?

Comments!

