The Best-of-Three Voting on Dense Graphs

Nan Kang¹ Nicolás Rivera²

¹Department of Informatics King's College London

²Cambridge Computer Laboratory University of Cambridge

07/Feb/2019

Contents

- Introduction
 - Best-of-k protocol
 - Illustration of the process
 - Main results
- Models and Analysis
 - Structure
 - Sprinkling model
 - Duplicating model
- Future work
- Questions

- Consider a graph G = (V, E) with |V| = n, in which every vertex has an initial opinion.
- At each time step, every vertex randomly samples k neighbours with replacement, and adopts the majority opinion.
- (if no majority: wait or picks a random popular opinion.)
- Consensus time? Reflects initial majority?

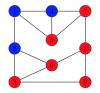
- Consider a graph G = (V, E) with |V| = n, in which every vertex has an initial opinion.
- At each time step, every vertex randomly samples k neighbours with replacement, and adopts the majority opinion.
- (if no majority: wait or picks a random popular opinion.)
- Consensus time? Reflects initial majority?

- Consider a graph G = (V, E) with |V| = n, in which every vertex has an initial opinion.
- At each time step, every vertex randomly samples k neighbours with replacement, and adopts the majority opinion.
- (if no majority: wait or picks a random popular opinion.)
- Consensus time? Reflects initial majority?

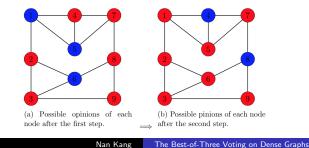
- Consider a graph G = (V, E) with |V| = n, in which every vertex has an initial opinion.
- At each time step, every vertex randomly samples k neighbours with replacement, and adopts the majority opinion.
- (if no majority: wait or picks a random popular opinion.)
- Consensus time? Reflects initial majority?

Example: Best-of-1

Initially, each vertex is assigned a colour of either red or blue.



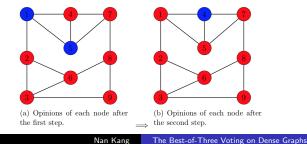
In each step, every vertex adopts the opinion of a random neighbour.



Example: Best-of-3

Initially, each vertex is assigned a colour of either red or blue.

In each step, every vertex adopts majority opinion of 3 random neighbours.



Previous work: k = 1

Consensus time under Best-of-1 protocol: (voter model)

- non-bipartite graphs
- Pr(consensus to *OpinionA*) is proportional to $\sum_{v} d_{v}$, where v has *OpinionA*.
- $\Theta(n)$ w.h.p in K_n .

[Yehuda Hassin and David Peleg. *Distributed probabilistic polling and applications to proportionate agreement.* 2001.]

Previous work: k = 1

Consensus time under Best-of-1 protocol: (voter model)

- non-bipartite graphs
- Pr(consensus to *OpinionA*) is proportional to $\sum_{v} d_{v}$, where v has *OpinionA*.
- $\Theta(n)$ w.h.p in K_n .

[Yehuda Hassin and David Peleg. *Distributed probabilistic polling and applications to proportionate agreement.* 2001.]

Previous work: k = 1

Consensus time under Best-of-1 protocol: (voter model)

- non-bipartite graphs
- Pr(consensus to *OpinionA*) is proportional to $\sum_{v} d_{v}$, where v has *OpinionA*.
- $\Theta(n)$ w.h.p in K_n .

[Yehuda Hassin and David Peleg. *Distributed probabilistic polling and applications to proportionate agreement.* 2001.]

Consensus time under Best-of-2 protocol:

- Converge to majority under appropriate conditions.
- $O(\log n)$ w.h.p in expanders.

[Colin Cooper, Robert Els asser, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. *Fast consensus for voting on general expander graphs.* 2015.] Consensus time under Best-of-2 protocol:

- Converge to majority under appropriate conditions.
- $O(\log n)$ w.h.p in expanders.

[Colin Cooper, Robert Els asser, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. *Fast consensus for voting on general expander graphs.* 2015.] Consensus time under Best-of-3 protocol:

- O(log n) w.h.p in K_n with more than two opinions.
 [Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri, and Luca Trevisan. Simple dynamics for plurality consensus. 2014.]
- $O(\log n)$ w.h.p in expanders.

[Colin Cooper, Tomasz Radzik, Nicola s Rivera, and Takeharu Shiraga. *Fast plurality consensus in regular expanders.* 2016.]

Consensus time under Best-of-3 protocol:

- O(log n) w.h.p in K_n with more than two opinions.
 [Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri, and Luca Trevisan. Simple dynamics for plurality consensus. 2014.]
- $O(\log n)$ w.h.p in expanders.

[Colin Cooper, Tomasz Radzik, Nicola s Rivera, and Takeharu Shiraga. *Fast plurality consensus in regular expanders.* 2016.]

Consensus time under Best-of-5 protocol:

- O(log log n) w.h.p in almost all graphs with a given degree sequence;
- $O(\log n)$ w.h.p in *d*-regular graphs, $d \ge 5$;
- O(log log n) in G_{n,p} w.h.p with p = O(log n/n).
 [Mohammed Amin Abdullah, Moez Draief. Consensus on the initial global majority by local majority polling for a class of sparse graphs. 2013]

Why Best-of-3?

- Best-of-1 is slow, not a desired model when consensus to majority is required.
- Best-of-2 and 3 take O(log n), while Best-of-5 takes O(log log n) from previous work.
- So, we want to close the gap between Best-of-3 and 5. Fast consensus time and low cost.

Why Best-of-3?

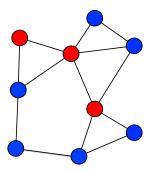
- Best-of-1 is slow, not a desired model when consensus to majority is required.
- Best-of-2 and 3 take O(log n), while Best-of-5 takes
 O(log log n) from previous work.
- So, we want to close the gap between Best-of-3 and 5. Fast consensus time and low cost.

Why Best-of-3?

- Best-of-1 is slow, not a desired model when consensus to majority is required.
- Best-of-2 and 3 take O(log n), while Best-of-5 takes
 O(log log n) from previous work.
- So, we want to close the gap between Best-of-3 and 5. Fast consensus time and low cost.

(synchronous, two-party)

At the beginning, each vertex is randomly assigned a colour of either red or blue.



In each step, every vertex samples three random neighbours, and assumes the majority colour.

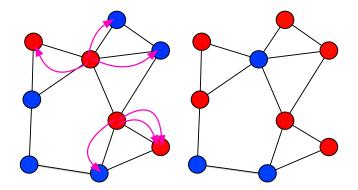


Illustration: sampling (step 2)

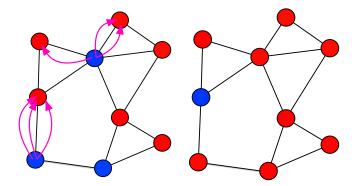


Illustration: sampling (step 3)

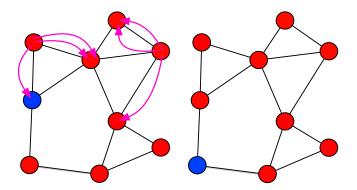
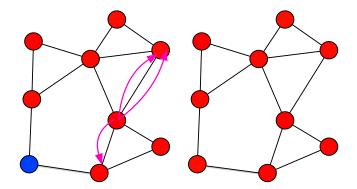


Illustration: sampling (step 4)



Thereom.

Consider the Best-of-Three protocol on a graph *G* of *n* vertices. Initially, each vertex of *G* is assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$.

- If G is a graph with minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.
- Particularly, if G is a complete graph and $\delta = \log_2 n^{-O(1)}$, with probability 1 O(1/n), every vertex of G has colour **R** after $\frac{21}{16}\log_2\log_2 n + \frac{16}{5}\log_2(\delta^{-1})$ timesteps.

Thereom.

Consider the Best-of-Three protocol on a graph *G* of *n* vertices. Initially, each vertex of *G* is assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$.

• If G is a graph with minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 - O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.

• Particularly, if G is a complete graph and $\delta = \log_2 n^{-O(1)}$, with probability 1 - O(1/n), every vertex of G has colour **R** after $\frac{21}{16}\log_2\log_2 n + \frac{16}{5}\log_2(\delta^{-1})$ timesteps.

Thereom.

Consider the Best-of-Three protocol on a graph *G* of *n* vertices. Initially, each vertex of *G* is assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$.

- If G is a graph with minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.
- Particularly, if G is a complete graph and $\delta = \log_2 n^{-O(1)}$, with probability 1 - O(1/n), every vertex of G has colour **R** after $\frac{21}{16}\log_2\log_2 n + \frac{16}{5}\log_2(\delta^{-1})$ timesteps.

Idea of the structure: Pseudo-tree

For an arbitrary vertex v of G, we investigate the process of v updating its opinion in a reverse chronological order.

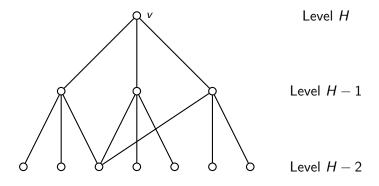
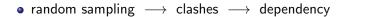
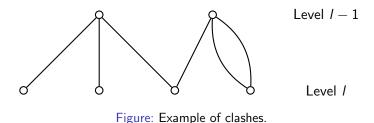


Figure: Updating process of a vertex: pseudo-tree.

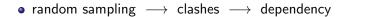
Clashes in the process





- clash: in the pseudo-tree, a vertex at level *l* has more than one parent at level *l* - 1.
- no clash \longrightarrow ternary tree \longrightarrow independent opinions

Clashes in the process



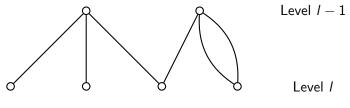
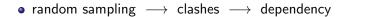


Figure: Example of clashes.

 clash: in the pseudo-tree, a vertex at level / has more than one parent at level / -1.

• no clash \longrightarrow ternary tree \longrightarrow independent opinions

Clashes in the process



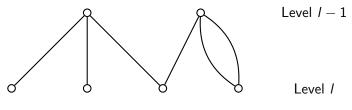


Figure: Example of clashes.

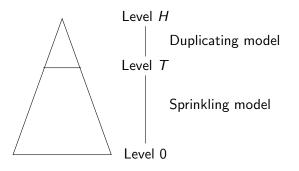
- clash: in the pseudo-tree, a vertex at level / has more than one parent at level / - 1.
- no clash \longrightarrow ternary tree \longrightarrow independent opinions

Best-of-3 in graphs with min degree $d = n^{\alpha}$

1. Choose an arbitrary vertex, and construct a pseudo-tree its opinion-updating process.

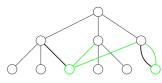
2. To deal with the dependency resulting from clashes:

- Level 0 to T: Sprinkling model
- Level T to H: Duplicating model

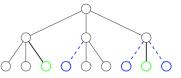


Sprinkling model: idea

• From level 0 to T : bottom to top, left to right. (add extra blues)



(a) Part of the original tree with clashes.



 \Rightarrow (b) New model with extra blue nodes.

Figure: Construction of the Sprinkling model.

• \mathbb{P} {a vertex at level *i* having clashes} $\leq \frac{3^{H-i}-1}{n-1} \approx \frac{3^{H-i}}{n} = \varepsilon_i$

Sprinkling model: analysis

- p_i : probability of a vertex at level *i* being blue, $p_0 = \frac{1}{2} - \delta$. $\varepsilon_i = 3^{H-i}/d = O(\log n)/d$.
- Let $T_1 = O\left(\log_2(\delta^{-1})\right)$, $T_2 = \log_2 \log_2 n$, and $T = T_1 + T_2 + const$. Then,

 $T_1 : p_{T_1} < 1/2 - 1/(2\sqrt{3});$ $T - 1 : p_{T_1+T_2+2} < \varepsilon_{T_1+T_2+2} = O\left((\log n)/d\right); \text{and}$ $T : p_{T_1+T_2+3} < \varepsilon_{T_1+T_2+3}^2 = O\left((\log n^2)/d^2\right).$

Sprinkling model: analysis

•
$$p_i$$
: probability of a vertex at level *i* being blue,
 $p_0 = \frac{1}{2} - \delta$.
 $\varepsilon_i = 3^{H-i}/d = O(\log n)/d$.
• Let $T_1 = O(\log_2(\delta^{-1}))$, $T_2 = \log_2 \log_2 n$, and
 $T = T_1 + T_2 + const$. Then,
 $T_1 : p_{T_1} < 1/2 - 1/(2\sqrt{3})$;
 $T - 1 : p_{T_1+T_2+2} < \varepsilon_{T_1+T_2+2} = O((\log n)/d)$; and
 $T : p_{T_1+T_2+3} < \varepsilon_{T_1+T_2+3}^2 = O((\log n^2)/d^2)$.

Sprinkling model: upper bounds

•
$$T = T_1 + T_2 + 3 = \log_2 \log_2 n + \frac{16}{5} \log_2(\delta^{-1})$$
.

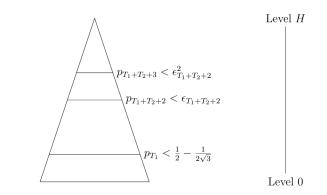
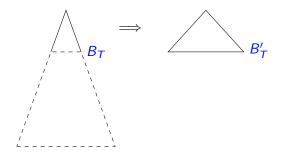


Figure: Upper bounds of p_i given by the Sprikling model.

• Deal with the top part from level T to H?

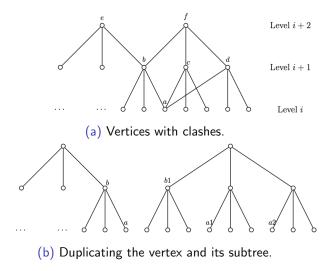
Duplicating model

- Consider the top part of the pseudo-tree from level T to H.
- Transform the top part into a ternary sub-tree.
- B_T = # blues at level T of the pseudo-tree after Sprinkling, B'_T = #blues at level T of the ternary sub-tree after Duplicating.



Duplicating model: idea

Level T to H: bottom to top, left to right. (add copy + subtree)



Duplicating model: an upper bound on blue vertices

 Recall that B_T = # blue vertices at level T of the pseudo-tree after Sprinkling, and B'_T = # blues at level T of the ternary sub-tree after Duplicating.

$$\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right)$$

- Let K = # levels containing clashes from level T to H, then an upper bound is: $B'_T \leq B_T \cdot 2^K$.
- $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}(B_T' \geq 2^{H-T}) \leq \mathbb{P}(B_T \geq 2^{H-T-K})$.

Duplicating model: an upper bound on blue vertices

 Recall that B_T = # blue vertices at level T of the pseudo-tree after Sprinkling, and B'_T = # blues at level T of the ternary sub-tree after Duplicating.

$$\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right)$$

- Let K = # levels containing clashes from level T to H, then an upper bound is: $B'_T \leq B_T \cdot 2^K$.
- $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}(B_T' \geq 2^{H-T}) \leq \mathbb{P}(B_T \geq 2^{H-T-K})$.

Duplicating model: an upper bound on blue vertices

 Recall that B_T = # blue vertices at level T of the pseudo-tree after Sprinkling, and B'_T = # blues at level T of the ternary sub-tree after Duplicating.

$$\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right)$$

- Let K = # levels containing clashes from level T to H, then an upper bound is: $B'_T \leq B_T \cdot 2^K$.
- $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right) \leq \mathbb{P}\left(B_T \geq 2^{H-T-K}\right)$.

Duplicating model: analysis

- $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_{\mathcal{T}}' \geq 2^{H-\mathcal{T}}\right) \leq \mathbb{P}\left(B_{\mathcal{T}} \geq 2^{H-\mathcal{T}-\mathcal{K}}\right)$.
- $K \prec Bin(H-T, 9^{H-T}/d)$, $B_T \preceq Bin(3^{H-T}, 3^{H-T}/d)$.
- To ensure $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}(B_T \cdot 2^K \geq 2^{H-T}) = O(1/n^2)$, it is required that

$$d = n^{\Omega(1/\log_2 \log_2 n)}.$$

Hence, $\mathbb{P}(\text{blue wins}) = O(1/n)$ by union bound.

Duplicating model: analysis

• $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right) \leq \mathbb{P}\left(B_T \geq 2^{H-T-K}\right)$.

•
$$K \prec Bin(H-T, 9^{H-T}/d)$$
,
 $B_T \preceq Bin(3^{H-T}, 3^{H-T}/d)$.

• To ensure $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}(B_T \cdot 2^K \geq 2^{H-T}) = O(1/n^2)$, it is required that

$$d = n^{\Omega(1/\log_2 \log_2 n)}.$$

Hence, $\mathbb{P}(\text{blue wins}) = O(1/n)$ by union bound.

Duplicating model: analysis

• $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}\left(B_T' \geq 2^{H-T}\right) \leq \mathbb{P}\left(B_T \geq 2^{H-T-K}\right)$.

•
$$K \prec Bin(H-T, 9^{H-T}/d)$$
,
 $B_T \preceq Bin(3^{H-T}, 3^{H-T}/d)$.

• To ensure $\mathbb{P}(\text{root is blue}) \leq \mathbb{P}(B_T \cdot 2^K \geq 2^{H-T}) = O(1/n^2)$, it is required that

$$d=n^{\Omega(1/\log_2\log_2 n)}.$$

Hence, $\mathbb{P}(\text{blue wins}) = O(1/n)$ by union bound.

Theorem:

Let G be a graph of n vertices, such that each vertex of G is initially assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$. Under the Best-of-Three protocol:

- If G has minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 - O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.
- (does not depend on the structure of *G*)

Theorem:

Let G be a graph of n vertices, such that each vertex of G is initially assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$. Under the Best-of-Three protocol:

• If G has minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 - O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.

• (does not depend on the structure of *G*)

Theorem:

Let G be a graph of n vertices, such that each vertex of G is initially assigned a colour **R** with probability $\frac{1}{2} + \delta$, and **B** with probability $\frac{1}{2} - \delta$, where $\delta \in (0, \frac{1}{2})$. Under the Best-of-Three protocol:

- If G has minimum degree $d = n^{\Omega(1/\log_2 \log_2 n)}$, and $\delta = \log_2 n^{-O(1)}$, then with probability 1 - O(1/n), every vertex of G has colour **R** after $O(\log_2 \log_2 n) + O(\log_2 (\delta^{-1}))$ timesteps.
- (does not depend on the structure of *G*)

Further research may concern the following special classes of graphs:

- High dimensional grids
- Hypercubes
- $G_{n,p}$ with small p
- Regular expanders with low degree
- (more than two opinions)