Viral marketing without tears: Limiting the harm caused by diffusing information to vulnerable users

Huiping Chen

huiping.chen@kcl.ac.uk
King's College London

Joint work with G. Loukides, J. Fan, H. Chan

London Stringology Days/London Algorithmic Workshop

February 8, 2019

Motivation (1/2): Social networks and viral marketing

- Social networks are powerful communication infrastructures
 - Facebook (1.94 billion monthly active users¹)
 - Twitter (313 million monthly active users²)
- They allow diffusing information quickly to many users through word-of-mouth effects
 - good for advertising products or events through viral marketing
- The success of a viral marketing campaign on a social network can be measured by the number of influenced users

²https://about.twitter.com/company

¹http://newsroom.fb.com/company-info/

• Influence maximization

- Find k users (*seeds*) that influence the largest number of users, according to a diffusion model
- **Drawback**: Some users (*vulnerable users*) may be harmed by information diffusion
 - Promoting alcoholic drinks to people with drinking problems
 - Promoting junk food to obese people

How to limit the influence to vulnerable users, while maximizing the influence to the non-vulnerable users (so that users and companies benefit from viral marketing)?

Influence measure to quantify the quality of a seed-set

- Additive Smoothing Ratio (ASR)
- Baseline Heuristics for finding an ASR-Maximizing seed-set
 - GR natural greedy heuristic
 - *GR_{MB}*: a variation of *GR* (more efficient)

• Approximation algorithm for finding an ASR-Maximizing seed-set

• *ISS* (Iterative Subsample with Spread bounds): an efficient approximation algorithm

Background (1/2): Set functions

Monotonicity

A function $f : 2^U \to \mathbb{R}$ is monotone, if $f(X) \le f(Y)$ for all subsets $X \subseteq Y \subseteq U$, and non-monotone otherwise

Submodularity, supermodularity, and modularity

- A function $f : 2^U \to \mathbb{R}$ is submodular, if $\forall S \subseteq T \subseteq U$ and $j \in U \setminus T$: $f(S \cup \{j\}) - f(S) \ge f(T \cup \{j\}) - f(T)$ (1)
- supermodular, if and only if -f is submodular [3]
- modular, if Eq. 1 holds with equality

• diminishing returns property

イロン 不通と 不通と 不通とし 油

Background(2/2): Graph representation and IC model

Social network as a graph

- Directed graph G(V, E) that models a social network (at a certain time)
- V is partitioned into $\mathcal{N}(\text{non-vulnerable nodes})$ and $\mathcal{V}(\text{vulnerable nodes})$ and we assume $(\mathcal{N} \neq \emptyset)$

Independent Cascade (IC) model [2]

- Seed nodes are influenced at initial time point 0.
- At each next time point, each newly influenced node u activates its out-neighbor v independently, with probability p((u, v)).
- The process stops when no new nodes are activated.
- The spread (expected number of influenced users) for a seed-set S in the IC model is denoted with σ(S).

Difference

The difference $\sigma_{\mathcal{N}}(S) - \sigma_{\mathcal{V}}(S)$ between the spread of non-vulnerable and vulnerable users

Limitations

• It does not consider what fraction of all influenced users are vulnerable

Example

It favors promoting an alcoholic beverage to 140 users out of whom **40** have drinking problems, instead of 59 users with no drinking problems, since (140 - 40) - 40 > 59 - 0.

• It cannot be used to find a seed-set S with approximately maximum $\sigma_N(S) - \sigma_V(S)$ [1]

Ratio

The ratio $\frac{\sigma_{\mathcal{V}}(S)}{\sigma_{\mathcal{N}}(S)}$ between the spread of vulnerable and non-vulnerable users

Limitations

• It does not favor a seed-set that influences many non-vulnerable users (i.e., is good for viral marketing), among seed-sets that do not influence vulnerable users (does not distinguish seed-sets with $\sigma_V(S) = 0$).

Example

 S_1 and S_2 do not influence users with drinking problems:

- S_1 : 59 users with no drinking problems: $\frac{\sigma_V(S_1)}{\sigma_V(S_1)} = \frac{0}{59} = 0$
- S_2 : 2 users with no drinking problems: $\frac{\sigma_V(S_2)}{\sigma_V(S_2)} = \frac{0}{2} = 0$

• It cannot be used to find a seed-set with small or zero $\sigma_{\mathcal{V}}(S)$ and large $\sigma_{\mathcal{N}}(S)$.

8/24

Our influence measure and problem definition

Additive Smoothing Ratio (ASR)

•
$$ASR(S,c) = rac{\sigma_{\mathcal{N}}(S) + c}{\sigma_{\mathcal{V}}(S) + c}$$
, where S is a seed-set and $c > 0$ is a constant

Example

 S_1 : 59 users with no drinking problems, $ASR(S_1, 1) = \frac{\sigma_N(S_1) + 1}{\sigma_V(S_1) + 1} = \frac{60}{1}$

 S_2 : 2 users with no drinking problems, $ASR(S_2, 1) = \frac{\sigma_{\mathcal{N}}(S_2)+1}{\sigma_{\mathcal{V}}(S_2)+1} = \frac{3}{1}$

Problem definition

- Given G(V, E) and c > 0, find a seed-set $S \subseteq V$ of size at most k with maximum ASR(S, c)
- NP-hard
- Cannot be approximated using algorithms for submodular and/or supermodular maximization because *ASR* is **non-monotone** and **neither submodular nor supermodular**.

9/24

Baseline heuristics (1/2)

GR (GReedy heuristic)

Input: $\mathcal{N} \subseteq V, \ \mathcal{V} \subseteq V$, graph *G*, parameter *k*, constant *c* **Output**: Subset $S \subseteq \mathcal{N}$ of size $|S| \leq k$ $S_0 \leftarrow \{\}; \ i \leftarrow 0$ **While** i < kFind a node $u \in \underset{v \in \mathcal{N} \setminus \{S_i\}}{\operatorname{arg\,max}} \frac{\sigma_{\mathcal{N}}(S_i \cup v) - \sigma_{\mathcal{N}}(S_i) + c}{\sigma_{\mathcal{V}}(S_i \cup v) - \sigma_{\mathcal{V}}(S_i) + c}$ $S_{i+1} \leftarrow S_i \cup \{u\}$ $i \leftarrow i+1$ **Return** the subset $S \in \{S_1, \dots, S_k\}$ with the largest *ASR*

Limitation: The computation of $\sigma_{\mathcal{N}}$ and $\sigma_{\mathcal{V}}$ is slow (all paths from S to \mathcal{N} or \mathcal{V} in the graph need to be considered)

Baseline heuristics (2/2)

GR_{MB}

- Differs from GR in that it estimates the spread efficiently using the MIA (Maximum Influence Arborescence) Batch-update method [6]
- two orders of magnitude faster on average than *GR*, but less effective in terms of *ASR*

- For any pair of nodes *u* and *v*, find the **maximum influence path** from *u* to *v*
- Estimate influence probability *P_S(u)* as the union of maximum influence paths from *S* to *u*

(a)

•
$$\sigma_{\mathcal{N}} = \sum_{u \in \mathcal{N}} P_{\mathcal{S}}(u)$$

• $\sigma_{\mathcal{V}} = \sum_{u \in \mathcal{V}} P_{\mathcal{S}}(u)$

The ISS approximation algorithm (1/3)

Main ideas

 We define submodular (easier to maximize) functions ASR^L and ASR^U that bound ASR from below and from above:

$$ASR_{Y,c}^{\mathbf{L}}(S) = \frac{\sigma_{\mathcal{N}}(S) + c}{\widehat{\sigma_{\mathcal{V},Y}}(S) + c} = \frac{\sigma_{\mathcal{N}}(S) + c}{\sigma_{\mathcal{V}}(Y) + \sum_{u \in S \setminus Y} \sigma_{\mathcal{V}}(\{u\}) - \sum_{u \in Y \setminus S} (\sigma_{\mathcal{V}}(Y) - \sigma_{\mathcal{V}}(Y \setminus \{u\})) + c}$$
$$ASR_{Y,\pi^{Y},c}^{\mathbf{U}}(S) = \frac{\sigma_{\mathcal{N}}(S) + c}{\widetilde{\sigma_{\mathcal{V},\pi^{Y}}}(S) + c} = \frac{\sigma_{\mathcal{N}}(S) + c}{\sum (\sigma_{\mathcal{V},Y,\pi^{Y}}(u)) + c}$$

because ASR(S, c) is non-monotone and non-submodular (difficult to maximize). The bounds are based on the modular bounds for submodular functions in [1].

 $u \in S$

- We select seeds from a sample of \mathcal{N} of size approximately $\frac{|\mathcal{N}|}{k}$.
- Iterative construction of a seed-set, until ASR cannot improve.

The ISS approximation algorithm (2/3)

Simplified description of ISS

Input: $\mathcal{N} \subseteq V$, $\mathcal{V} \subseteq V$, graph *G*, parameter *k*, constant *c* **Output:** Subset $S \subseteq \mathcal{N}$ of size $|S| \leq k$

 $S_{pr} \leftarrow \{\}; S_{cur} \leftarrow \mathcal{N}$

While true

$$i \leftarrow 0; S_0^{\mathbf{0}} \leftarrow \{\}; S_0^{\mathbf{L}} \leftarrow \{\}; S_0^{\mathbf{U}} \leftarrow \{\}\}$$

While $i < k$

Uniform random sample with approximately $\frac{|\mathcal{N}|}{k}$ nodes $S_{i+1}^{\mathbf{0}} \leftarrow \text{add into } S_i^{\mathbf{0}}$ the node with max. marginal gain in ASR $S_{i+1}^{\mathbf{L}} \leftarrow \text{add into } S_i^{\mathbf{L}}$ the node with max. marginal gain in $ASR_{S_{pr,c}}^{\mathbf{L}}$ $S_{i+1}^{\mathbf{U}} \leftarrow \text{add into } S_i^{\mathbf{U}}$ the node with max. marginal gain in $ASR_{S_{pr,\pi}}^{\mathbf{U}} S_{pr,\pi}^{\mathbf{U}}$ $i \leftarrow i + 1$

 $S_{cur} \leftarrow$ best seed-set w.r.t ASR among S_k^{O} , S_k^{L} , S_k^{U} If S_{cur} not better than S_{pr} w.r.t. ASR

break

 $S_{pr} \leftarrow S_{cur}$

Return S_{cur}

The ISS approximation algorithm (3/3)

• ISS constructs a seed-set with expected value of ASR no less than $\mathcal{M} \cdot 23\%$ of the optimal, where \mathcal{M} depends on the constants c and k and the ASR^L function.

Theorem

ISS constructs a seed-set S such that:

$$\mathbb{E}[ASR(S,c)] \ge \max\left(\frac{\sigma_{\mathcal{V}}(S^*) + c}{\widehat{\sigma_{\mathcal{V},S_{pr}}}(S^*) + c}, \frac{c}{c + k \cdot \max_{u \in \mathcal{N}} \widehat{\sigma_{\mathcal{V},S_{pr}}}(\{u\})}\right) \cdot \frac{1}{e} \cdot (1 - \frac{1}{e}) \cdot ASR(S^*,c)$$

where $S^* = \arg \max_{S \subseteq \mathcal{N}, |S| \leq k} ASR(S, c)$, $\widehat{\sigma_{\mathcal{V}, S_{pr}}}$ is the modular upper bound used in ASR^{L} , and the expectation is over every possible S constructed by ISS.

Experimental setup

Evaluation of GR, GR_{MB}, ISS

Competitors:

- TIM [5]: a heuristic for maximizing σ_N(S) − σ_V(S),
- *RB*: employs *Greedy* [4] to the subset of non-vulnerable nodes that influence no vulnerable nodes
- Effectiveness measures: $\sigma_{\mathcal{N}}$, $\sigma_{\mathcal{V}}$, ASR, $\frac{\sigma_{\mathcal{N}}}{|\mathcal{N}|}$, $1 \frac{\sigma_{\mathcal{V}}}{|\mathcal{V}|}$
- Efficiency measure: Runtime

Datasets

Dataset	# of nodes	# of edges	avg in-degree	max in-degree	# of vuln. nodes	θ
	(V)	(E)			(\mathcal{V})	
WI	7115	103689	13.7	452	100	0.01
TW	235	2479	10.5	52	25	0.01
POL	1490	19090	11.9	305	100	0.003
AB	840	10008	11.9	137	10	0.01

15 / 24

Comparison to RB

 GR constructs seed-sets that influence at least 5.5 and up to 38 times more non-vulnerable nodes than those constructed by RB, for different values of c and k

ASR with c = 1

- All our algorithms substantially **outperform** *TIM*
- *ISS* outperformed all other method **3.5 times** on average over all datasets, *k* value and $|\mathcal{V}|$ values

Spread of Vulnerable and Non-vulnerable Nodes

• Each point (x, y) corresponds to the values $(1 - \frac{\sigma_V(S)}{|\mathcal{V}|}, \frac{\sigma_N(S)}{|\mathcal{N}|})$, referred to as *protection* and *utility* of a seed-set S

- All our algorithms substantially **outperformed** *TIM* in terms of σ_N and/or σ_V
- *ISS* outperformed *TIM* with respect to **both protection and utility**, achieving overall better protection than GR and better utility than GR_{MB}

Efficiency

- Our methods are faster than TIM by at least one order of magnitude
- *TIM* is too slow (10 hours for k = 50 and a dataset with 235 nodes, and more than 17 days for larger datasets)

- Introduced the problem of performing viral marketing while limiting the influence to vulnerable nodes
- Proposed an influence measure and defined an optimization problem based on the measure
- Proposed two greedy baseline heuristics and the *ISS* approximation algorithm
- Experimentally showed that *ISS* outperforms *TIM* [5] and our baselines in terms of effectiveness and efficiency

Forthcoming IEEE AINA paper:

https://kclpure.kcl.ac.uk/portal/files/104770966/VIM_paper_final.pdf

Background (3/5): Modular bounds

- We review two bounds for a submodular function that are used in our approximation algorithm.
- The bounds are computed for a given subset $Y \subseteq U$.
- The bounds are modular and thus easier than f to optimize efficiently.

Modular upper bound [1]

The modular upper bound f_Y(X) of a submodular function f : 2^U → ℝ is a modular function [1]

$$\widehat{f_Y}(X) = f(Y) + \sum_{u \in X \setminus Y} (f(\lbrace u \rbrace) - f(\lbrace \rbrace)) - \sum_{u \in Y \setminus X} (f(Y) - f(Y \setminus \lbrace u \rbrace))$$
(2)

where $Y \subseteq U$ is a given subset of U.

Modular lower bound [1]

• The modular lower bound $f_{Y,\pi^Y}(X)$ of a submodular function $f(X): 2^U \to \mathbb{R}$ is a modular function

$$\widetilde{f}_{Y,\pi^{Y}}(X) = \sum_{u \in X} f_{Y,\pi^{Y}}(u)$$
(3)

where $Y \subseteq U$ is a given subset of U, π^{Y} is a random permutation of the elements of Y, π^{Y}_{u} is the prefix of π^{Y} , $\pi^{Y}_{u^{-}}$ is π^{Y}_{u} except u, and

$$f_{Y,\pi^{Y}}(u) = \begin{cases} f(\pi_{u}^{Y}) - f(\pi_{u^{-}}^{Y}), & \text{if } u \in Y \\ 0, & \text{otherwise} \end{cases}$$
(4)

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ り Q (* 22 / 24

References

R. Iyer and J. Bilmes.

Algorithms for approximate minimization of the difference between submodular functions, with applications. In UAI, pages 407–417, 2012.

D. Kempe, J. Kleinberg, and E. Tardos.

Maximizing the spread of influence through a social network. In KDD, pages 137–146, 2003.

A. Krause and D. Golovin.

Submodular function maximization. In *Tractability*. 2013.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions. *Mathematical Programming*, 14(1):265–294, 1978.

Ramakumar Pasumarthi, Ramasuri Narayanam, and Balaraman Ravindran. Near optimal strategies for targeted marketing in social networks. In AAMAS, pages 1679–1680, 2015.

C. Wang, W. Chen, and Y. Wang.

Scalable influence maximization for independent cascade model in large-scale social networks. DMKD, 25(3):545–576, 2012.