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Motivation (1/2): Social networks and viral marketing

Social networks are powerful communication infrastructures

Facebook (1.94 billion monthly active users1)
Twitter (313 million monthly active users2)

They allow diffusing information quickly to many users through
word-of-mouth effects

good for advertising products or events through viral marketing

The success of a viral marketing campaign on a social network can be
measured by the number of influenced users

1
http://newsroom.fb.com/company-info/

2
https://about.twitter.com/company
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Motivation (2/2): Influence maximization and its drawback

Influence maximization
Find k users (seeds) that influence the largest number of users,
according to a diffusion model

Drawback: Some users (vulnerable users) may be harmed by
information diffusion

Promoting alcoholic drinks to people with drinking problems
Promoting junk food to obese people

How to limit the influence to vulnerable users, while maximizing the
influence to the non-vulnerable users (so that users and companies
benefit from viral marketing)?
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Contributions

Influence measure to quantify the quality of a seed-set
Additive Smoothing Ratio (ASR)

Baseline Heuristics for finding an ASR-Maximizing seed-set
GR natural greedy heuristic
GRMB : a variation of GR (more efficient)

Approximation algorithm for finding an ASR-Maximizing
seed-set

ISS (Iterative Subsample with Spread bounds): an efficient
approximation algorithm
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Background (1/2): Set functions

Monotonicity

A function f : 2U → R is monotone, if f (X ) ≤ f (Y ) for all subsets
X ⊆ Y ⊆ U, and non-monotone otherwise

Submodularity, supermodularity, and modularity

A function f : 2U → R is submodular, if ∀S ⊆ T ⊆ U and
j ∈ U \ T :

f (S ∪ {j})− f (S) ≥ f (T ∪ {j})− f (T ) (1)

supermodular, if and only if −f is submodular [3]

modular, if Eq. 1 holds with equality

diminishing returns property
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Background(2/2): Graph representation and IC model

Social network as a graph

Directed graph G (V ,E ) that models a social network (at a certain time)

V is partitioned into N (non-vulnerable nodes) and V(vulnerable nodes) and
we assume (N 6= ∅)

Independent Cascade (IC) model [2]

Seed nodes are influenced at initial
time point 0.

At each next time point, each
newly influenced node u activates
its out-neighbor v independently,
with probability p((u, v)).

The process stops when no new
nodes are activated.

The spread (expected number of
influenced users) for a seed-set S in
the IC model is denoted with σ(S).
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Natural influence measures (1/2)

Difference

The difference σN (S)− σV(S) between the spread of non-vulnerable and
vulnerable users

Limitations

It does not consider what fraction of all influenced users are vulnerable

Example

It favors promoting an alcoholic beverage to 140 users out of whom 40
have drinking problems, instead of 59 users with no drinking problems,
since (140− 40)− 40 > 59− 0.

It cannot be used to find a seed-set S with approximately maximum
σN (S)− σV(S) [1]
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Natural influence measures (2/2)

Ratio

The ratio σV (S)
σN (S) between the spread of vulnerable and non-vulnerable users

Limitations

It does not favor a seed-set that influences many non-vulnerable users
(i.e., is good for viral marketing), among seed-sets that do not
influence vulnerable users (does not distinguish seed-sets with
σV (S) = 0).

Example

S1 and S2 do not influence users with drinking problems:

S1: 59 users with no drinking problems: σV (S1)
σN (S1) = 0

59 = 0

S2: 2 users with no drinking problems: σV (S2)
σN (S2) = 0

2 = 0

It cannot be used to find a seed-set with small or zero σV(S) and
large σN (S). 8 / 24



Our influence measure and problem definition

Additive Smoothing Ratio (ASR)

ASR(S , c) = σN (S)+c
σV (S)+c , where S is a seed-set and c > 0 is a constant

Example

S1: 59 users with no drinking problems, ASR(S1, 1)=σN (S1)+1
σV (S1)+1 = 60

1

S2: 2 users with no drinking problems,ASR(S2, 1)=σN (S2)+1
σV (S2)+1 = 3

1

Problem definition

Given G (V ,E ) and c > 0, find a seed-set S ⊆ V of size at most k
with maximum ASR(S , c)

NP-hard
Cannot be approximated using algorithms for submodular and/or
supermodular maximization because ASR is non-monotone and
neither submodular nor supermodular. 9 / 24



Baseline heuristics (1/2)

GR (GReedy heuristic)

Input: N ⊆ V , V ⊆ V , graph G , parameter k, constant c

Output: Subset S ⊆ N of size |S | ≤ k

S0 ← {}; i ← 0

While i < k

Find a node u ∈ arg max
v∈N\{Si}

σN (Si ∪ v)− σN (Si ) + c

σV(Si ∪ v)− σV(Si ) + c

Si+1 ← Si ∪ {u}
i ← i + 1

Return the subset S ∈ {S1, . . . ,Sk} with the largest ASR

Limitation: The computation of σN and σV is slow (all paths from S to
N or V in the graph need to be considered)
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Baseline heuristics (2/2)

GRMB

Differs from GR in that it estimates the spread efficiently using the
MIA (Maximum Influence Arborescence) Batch-update method [6]

two orders of magnitude faster on average than GR, but less
effective in terms of ASR

For any pair of nodes u and
v , find the maximum
influence path from u to v

Estimate influence probability
PS(u) as the union of
maximum influence paths
from S to u

σN =
∑

u∈N PS(u)

σV =
∑

u∈V PS(u)
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The ISS approximation algorithm (1/3)

Main ideas

We define submodular (easier to maximize) functions ASRL and
ASRU that bound ASR from below and from above:

ASRL
Y ,c(S) =

σN (S) + c

σ̂V,Y (S) + c
=

σN (S) + c

σV(Y ) +
∑

u∈S\Y

σV({u})−
∑

u∈Y \S

(σV(Y )− σV(Y \ {u})) + c

ASRU
Y ,πY ,c(S) =

σN (S) + ĉ
σV,πY (S) + c

=
σN (S) + c∑

u∈S
(σV,Y ,πY (u)) + c

because ASR(S , c) is non-monotone and non-submodular (difficult to
maximize). The bounds are based on the modular bounds for
submodular functions in [1].

We select seeds from a sample of N of size approximately |N |k .

Iterative construction of a seed-set, until ASR cannot improve.
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The ISS approximation algorithm (2/3)

Simplified description of ISS

Input: N ⊆ V , V ⊆ V , graph G , parameter k, constant c

Output: Subset S ⊆ N of size |S | ≤ k

Spr ← {};Scur ← N

While true
i ← 0;SO

0 ← {};SL
0 ← {};SU

0 ← {}
While i < k

Uniform random sample with approximately |N|
k

nodes

SO
i+1 ← add into SO

i the node with max. marginal gain in ASR
SL
i+1 ← add into SL

i the node with max. marginal gain in ASRL
Spr ,c

SU
i+1 ← add into SU

i the node with max. marginal gain in ASRU
Spr ,π

Spr ,c

i ← i + 1

Scur ← best seed-set w.r.t ASR among SO
k , S

L
k , S

U
k

If Scur not better than Spr w.r.t. ASR

break

Spr ← Scur

Return Scur
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The ISS approximation algorithm (3/3)

ISS constructs a seed-set with expected value of ASR no less than
M · 23% of the optimal, where M depends on the constants c and k
and the ASRL function.

Theorem

ISS constructs a seed-set S such that:

E[ASR(S , c)] ≥max

(
σV(S∗) + c

σ̂V,Spr (S
∗) + c

,
c

c + k ·maxu∈N σ̂V,Spr ({u})

)
·

1

e
· (1− 1

e
) · ASR(S∗, c)

where S∗ = arg maxS⊆N ,|S|≤k ASR(S , c), σ̂V,Spr is the modular upper bound
used in ASRL, and the expectation is over every possible S constructed by ISS.
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Experimental setup

Evaluation of GR , GRMB , ISS

Competitors:

TIM [5]: a heuristic for maximizing σN (S)− σV(S),
RB: employs Greedy [4] to the subset of non-vulnerable nodes
that influence no vulnerable nodes

Effectiveness measures: σN , σV , ASR, σN
|N | , 1− σV

|V|

Efficiency measure: Runtime

Datasets
Dataset # of nodes # of edges avg in-degree max in-degree # of vuln. nodes θ

(|V |) (|E |) (|V|)
WI 7115 103689 13.7 452 100 0.01
TW 235 2479 10.5 52 25 0.01
POL 1490 19090 11.9 305 100 0.003
AB 840 10008 11.9 137 10 0.01
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Comparison to RB

GR constructs seed-sets that influence at least 5.5 and up to 38 times
more non-vulnerable nodes than those constructed by RB, for
different values of c and k
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ASR with c = 1

All our algorithms substantially outperform TIM
ISS outperformed all other method 3.5 times on average over all
datasets, k value and |V| values
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Spread of Vulnerable and Non-vulnerable Nodes

Each point (x , y) corresponds to the values (1− σV (S)
|V| ,

σN (S)
|N | ),

referred to as protection and utility of a seed-set S
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All our algorithms substantially outperformed TIM in terms of σN
and/or σV
ISS outperformed TIM with respect to both protection and utility,
achieving overall better protection than GR and better utility than
GRMB
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Efficiency

Our methods are faster than TIM by at least one order of magnitude
TIM is too slow (10 hours for k = 50 and a dataset with 235 nodes,
and more than 17 days for larger datasets)
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Conclusions

Introduced the problem of performing viral marketing while limiting
the influence to vulnerable nodes

Proposed an influence measure and defined an optimization problem
based on the measure

Proposed two greedy baseline heuristics and the ISS approximation
algorithm

Experimentally showed that ISS outperforms TIM [5] and our
baselines in terms of effectiveness and efficiency

Forthcoming IEEE AINA paper:
https://kclpure.kcl.ac.uk/portal/files/104770966/VIM_paper_final.pdf

20 / 24

https://kclpure.kcl.ac.uk/portal/files/104770966/VIM_paper_final.pdf


Background (3/5): Modular bounds

We review two bounds for a submodular function that are used in our
approximation algorithm.
The bounds are computed for a given subset Y ⊆ U.
The bounds are modular and thus easier than f to optimize efficiently.

X Y

 

 

X   Y

X\Y       Y\X

Modular upper bound [1]

The modular upper bound f̂Y (X ) of a submodular function
f : 2U → R is a modular function [1]

f̂Y (X ) = f (Y )+
∑

u∈X\Y

(f ({u})− f ({}))−
∑

u∈Y \X

(f (Y )− f (Y \ {u})) (2)

where Y ⊆ U is a given subset of U.
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Background (4/5): Modular bounds

Modular lower bound [1]

The modular lower bound

̂
fY ,πY (X ) of a submodular function

f (X ) : 2U → R is a modular function
̂
fY ,πY (X ) =

∑
u∈X

fY ,πY (u) (3)

where Y ⊆ U is a given subset of U, πY is a random permutation of
the elements of Y , πYu is the prefix of πY , πYu− is πYu except u, and

fY ,πY (u) =

{
f (πYu )− f (πYu−), if u ∈ Y

0, otherwise
(4)
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Background (5/5): Modular bounds

X u

f(XU{u})-f(X)

f({u})

f(XU{u})
Marginal gain of u 

X →πY

f (X ∪ {u})− f (X )→fY ,πY (u)

=

{
f (πY

u )− f (πY
u−), if u ∈ Y

0, otherwise

f (X )→
̂
fY ,πY (X )
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