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The Kendall-    distance:

Maurice Kendall

The Kendall-    distance is equivalent to the “bubble-sort” 
distance i.e. the number of transpositions needed to 
transform one permutation into the other one.
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⇡The Kendall-    distance between a permutation    and 
a set of permutations                                     :

⌧
A = {⇡1,⇡2, . . . ,⇡m}

dKT (⇡,A) =
mX

i=1

dKT (⇡,⇡i)

Our problem:

Given a set of    permutations          , we want

to find a permutation     such that⇡⇤

m A ✓ Sn

dKT (⇡⇤,A)  dKT (⇡,A), 8⇡ 2 Sn
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Let               be a set of permutations.A 2 Sn

If there is a partition (C, C’) of {1, 2, …, n} such that for any x 
in C and y in C’ the majority prefers x to y in    , then x must be 
ranked above y in a least one median of                     

A
A

Pareto criterion or Always Theorem: If a pair of elements appear in 
the same order in all permutations of the set    , then they also appear 
in that order in all medians of    .
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Theorem: With           , elements of a median permutation 
of a set    will be ordered relatively to a non-dirty 
candidate in the majority order.
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A
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Theorem: With           , elements of a median permutation 
of a set    will be ordered relatively to a non-dirty 
candidate in the majority order.

s = 0.75

A

In other words, a non-dirty candidate will separate the 
median permutation putting the elements favored to it to 
its left and the other elements to its right.
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Theorem: With           , elements of a median permutation 
of a set    will be ordered relatively to a non-dirty 
candidate in the majority order.

s = 0.75

A

Example: Let            and


than
A = {[4, 1, 2, 3, 5, 6], [4, 1, 3, 6, 2, 5], [2, 1, 4, 3, 6, 5], [6, 2, 3, 5, 1, 4]}

s = 0.75

{1, 2, 4} , 3,{5, 6}⇡⇤ = [ ]

Betzler et al. 2014*: 3/4 majority rule
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Applicability of the 3/4 majority rule, in %, on sets of uniformy distributed 
random permutations. Statistics generated over 10 000 - 400 000 instances:

m\n 8 9 10 15 20

3 0.8% 0.55% 0.41% 0.12% 0.05%
4 16.4% 12.88% 10.37% 3.93% 1.92%
5 2.19% 1.57% 1.16% 0.37% 0.18%
6 0.41% 0.28% 0.2% 0.05% 0.02%
7 0.08% 0.05% 0.03% 0.01% 0%
8 0.88% 0.6% 0.43% 0.12% 0.06%
9 0.22% 0.14% 0.09% 0.02% 0.01%
10 0.05% 0.03% 0.02% 0% 0%
15 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0%
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Question: Is there a data reduction which is less 
restrictive than the 3/4 majority rule but more englobing 
than the always theorem?

Milsoz et al. 2016*: Major Order Theorems

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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Question: Is there a data reduction which is less 
restrictive than the 3/4 majority rule but more englobing 
than the always theorem?

idea: proximity and low interference
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- It can be observed that two elements that are close enough in 
all permutations of a set    will have the tendency to be placed in 
their major order, in any median of   .A
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their major order, in any median of   .A

A

Question: Is there a data reduction which is less 
restrictive than the 3/4 majority rule but more englobing 
than the always theorem?

idea: proximity and low interference

- If we limit the interference between two elements, can we 
derive an extension of the always theorem?

Milsoz et al. 2016*: Major Order Theorems
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- It can be observed that two elements that are close enough in 
all permutations of a set    will have the tendency to be placed in 
their major order, in any median of   .A

A

Question: Is there a data reduction which is less 
restrictive than the 3/4 majority rule but more englobing 
than the always theorem?

idea: proximity and low interference

- If we limit the interference between two elements, can we 
derive an extension of the always theorem? YES!

Milsoz et al. 2016*: Major Order Theorems

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

11 / 20

Milsoz et al. 2016*: Major Order Theorems

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always

3 3
3

1 1
1
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1

3 3
3

1 1
1
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

3 3
3

1 1
1
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Always
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1

1 1
1

4 4
4
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1

1 1
1

4 4
4

E14 = {2,5,6,7,8}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
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3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6
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1 1
1

4 4
4

E14 = {2,5,6,7,8}
E41 = {}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1

1 1
1

4 4
4

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4

1 1
1

4 4
4

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure

5 ≺ 1
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure

5 ≺ 1

1 ≺ 6
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure

5 ≺ 1

1 ≺ 6

5 ≺ 6
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 4 2
4 2
4
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 4 2
4 2
4

E24 = {1,3,5,6}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 4 2
4 2
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E24 = {1,3,5,6}
E42 = {1}

11 / 20

Milsoz et al. 2016*: Major Order Theorems

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Introduction Problem Definition ConclusionSpace reduction

LSD & LAW 2019



Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6
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E24 = {1,3,5,6}

δ24 = δ42 = 1
E42 = {1}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6
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E41 = {}
δ14 = 1 > #E41 = 0
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6
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δ24 = δ42 = 1
E42 = {1}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }
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transitive closure
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E42 = {1}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2 MOT3
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 ≺ 4
5 ≺ 2
7 ≺ 4

E24 = {1,3,5,6}

δ24 = δ42 = 1
E42 = {1}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2 MOT3
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 ≺ 4
5 ≺ 2
7 ≺ 4

E24 = {1,3,5,6}

δ24 = δ42 = 1
E42 = {1}
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Example: Let A = { [7, 8, 2, 3, 6, 1, 5, 4], [3, 5, 1, 7, 8, 6, 2, 4],
[5, 8, 3, 4, 1, 2, 7, 6] }

Always
3 ≺ 1
3 ≺ 4
3 ≺ 6
5 ≺ 4
7 ≺ 6
8 ≺ 2
8 ≺ 4
8 ≺ 6

MOT1 MOT2 MOT3
1 ≺ 4
1 ≺ 6
2 ≺ 6
3 ≺ 2
5 ≺ 1
7 ≺ 2

E14 = {2,5,6,7,8}
E41 = {}
δ14 = 1 > #E41 = 0

transitive closure
5 ≺ 6

2 ≺ 4
5 ≺ 2
7 ≺ 4

E24 = {1,3,5,6}

δ24 = δ42 = 1
E42 = {1}
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Comparison of efficiency of MOT 3.0 and MOTe 3.0, in terms of the proportion of ordering of pairs of 
elements solved, on sets of uniformly distributed random permutations, statistics generated over 
100 000 instances for n      80 and 10 000 instances for n=100.≤
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* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 
10979, pp. 224–236, 2018. 

Question: What happens if we restrict ourselves to the 
median of 3 permutations problem, whose complexity is 
still unknown?

Milosz et al. 2018*: 3-Cycle Theorem
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Answer: We can derive an even better data reduction 
technique with the use of tournament graphs called here 
majority graphs.
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3-Cycle Theorem

3-Cycle Theorem: Let          be a set of 3 permutations. 
Let              be its majority graph. Let     be any 
median of   . If an edge      of     is not contained in anyA

A ✓ Sn

G = (V, E)A π*
(i, j) GA

3-cycles, then        .i ≺π* j
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3-cycles, then        .i ≺π* j
- Proof: by contradiction (see article)
- Reach: includes and improves all previous space 
reduction techniques for m=3 permutations
- Time: when combined with an ILP solver 
(CPLEX) it improve the solving time: 

1.6X for randomly generated data sets and

3.7X for real life data sets.
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the set of 3-cycles of   .

A ✓ Sn G = (V, E)A
ℰ GA T

GA
Then,   an optimal solution   of the 3-Hitting Set problem on   and  , 
for which a median permutation can be constructed by reversing all 
edges      in     and taking the topological ordering of the nodes of 

the resulting graph.

∈ S

S ℰ T

GA

∃

⟹ solving the median of 3 permutations problem amounts to 

solving a 3-Hitting Set Problem.

⟹ ILP solving 19x faster on random data sets and 187x faster

on real data sets!!
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- the median of 3 permutations problem is linked to the 3-Hitting set problem                           

- this give us that the 3-Hitting set problem is a really tight lower

bound for the median of 3 permutations problem                        

- we conjecture that solving the median of 3 permutations problem amounts to solving 
its corresponding 3 Hitting set problem                       
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Given a set of    permutations          , we want

to find a permutation     such that⇡⇤

m A ✓ Sn

dKT (⇡⇤,A)  dKT (⇡,A), 8⇡ 2 Sn
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to find a permutation     such that⇡⇤

m A ✓ Sn

dKT (⇡⇤,A)  dKT (⇡,A), 8⇡ 2 Sn

This median is not always unique
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m\n 8 10 12 14 15 20 25 30

3 2.1 3.0 3.7 4.8 5.6 12.2 23.1 61.4
4 60.6 331.4 1321.4 7551.4 14253.8 - - -
5 2.2 2.9 3.6 5.2 6.2 12.9 29.1 49.2
6 31.3 90.6 345.1 1506.2 1614.9 - - -
10 13.0 36.8 88.8 201.9 315.6 2947.9 - -
15 1.7 2.2 2.8 3.5 3.8 6.3 12.3 -
20 6.3 11.4 22.2 39.8 55.5 256.7 - -
25 1.6 1.9 2.3 2.6 2.9 4.6 7.6 -

Average number of permutations in M(A) for uniformly distributed random sets A of m 
permutations of length n. Statistics generated over 100 to 1000 instances. 
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• Implemented in Java (by Robin)

• Theoretical complexity of          :O(n3mk)
n(n − 1)

2
pairs,   n elements, m permutations, k iterations

• In practice,            if1 ≤ k ≤ 9 n ≤ 400

• Time for calculating the MOTs is small: < 30 seconds for
n ≤ 400  and m = 3
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Applicability of the 3/4 majority rule, in %, on sets 
of uniformy distributed random permutations. 
Statistics generated over 10 000 - 400 000 instances:

m\n 8 9 10 15 20

3 0.8% 0.55% 0.41% 0.12% 0.05%
4 16.4% 12.88% 10.37% 3.93% 1.92%
5 2.19% 1.57% 1.16% 0.37% 0.18%
6 0.41% 0.28% 0.2% 0.05% 0.02%
7 0.08% 0.05% 0.03% 0.01% 0%
8 0.88% 0.6% 0.43% 0.12% 0.06%
9 0.22% 0.14% 0.09% 0.02% 0.01%
10 0.05% 0.03% 0.02% 0% 0%
15 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0%

Inclusion, in %,  of the 3/4 majority rule, in 
Major Order Theorem on the same generated 
sets
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8 0.88% 0.6% 0.43% 0.12% 0.06%
9 0.22% 0.14% 0.09% 0.02% 0.01%
10 0.05% 0.03% 0.02% 0% 0%
15 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0%

Inclusion, in %,  of the 3/4 majority rule, in 
Major Order Theorem on the same generated 
sets

m\n 8 9 10 15 20

3 100% 100% 100% 100% 100%
4 85.2% 84.7% 84.0% 86.7% 88.6%
5 100% 100% 100% 99.96% 100%
6 100% 100% 100% 100% 100%
7 100% 100% 100% 100% 100%
8 99.7% 100% 100% 100% 100%
9 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100%
15 100% 100% 100% 100% 100%
20 100% 100% 100% 100% 100%

13 / 23

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Journées Mastodons

Introduction Problem Definition ConclusionSpace reduction


