Median of permutations: space reduction techniques and link with the 3-hitting set problem

Sylvie Hamel
Département d'informatique et de recherche opérationnelle (DIRO),
Université de Montréal, Québec, Canada
E DIRO
En sabbatique au LRI pour l'année universitaire 2018-2019

* Travaux en collaboration avec Robin Milosz et Adeline Pierrot

LSD \& LAW 2019
February 7-8 2019, King's College, London

© Robin Milosz's thesis

© Robin Milosz's thesis

9：盘啨 200 学
 －合（1）覓追

© Robin Milosz＇s thesis

 －：制 8 省追边

\author{
$\pi_{1}:[4,5,1,2,3]$
 $\left.\pi_{2}:[1,5,3,4,2]\right\} \pi^{*}:[5,4,1,2,3]$ $\left.\pi_{3}:[5,2,3,4,1]\right]$

}
© Robin Milosz＇s thesis

The Kendall- τ distance:

Maurice Kendall

The Kendall- τ distance:

Counts the number of order disagreements between pairs of elements in two permutations i.e

The Kendall- τ distance:

Counts the number of order disagreements between pairs of elements in two permutations i.e Naurice Kendall

$$
\begin{aligned}
d_{K T}(\pi, \sigma)=\#\{(i, j) \mid i<j & \text { and }\left[\left(\pi_{i}^{-1}<\pi_{j}^{-1} \text { and } \sigma_{i}^{-1}>\sigma_{j}^{-1}\right)\right. \\
& \text { or } \left.\left.\left(\pi_{i}^{-1}>\pi_{j}^{-1} \text { and } \sigma_{i}^{-1}<\sigma_{j}^{-1}\right)\right]\right\}
\end{aligned}
$$

The Kendall- τ distance:

Counts the number of order disagreements between pairs of elements in two permutations i.e Maricic Kendall $d_{K T}(\pi, \sigma)=\#\left\{(i, j) \mid i<j\right.$ and $\left[\left(\pi_{i}^{-1}<\pi_{j}^{-1}\right.\right.$ and $\left.\sigma_{i}^{-1}>\sigma_{j}^{-1}\right)$

$$
\text { or } \left.\left.\left(\pi_{i}^{-1}>\pi_{j}^{-1} \text { and } \sigma_{i}^{-1}<\sigma_{j}^{-1}\right)\right]\right\}
$$

- The Kendall- τ distance is equivalent to the "bubble-sort" distance i.e. the number of transpositions needed to transform one permutation into the other one.

The Kendall- τ distance between a permutation π and a set of permutations $\mathcal{A}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\}$:

The Kendall- τ distance between a permutation π and a set of permutations $\mathcal{A}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\}$:

$$
d_{K T}(\pi, \mathcal{A})=\sum_{i=1}^{m} d_{K T}\left(\pi, \pi_{i}\right)
$$

The Kendall- τ distance between a permutation π and a set of permutations $\mathcal{A}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\}$:

$$
d_{K T}(\pi, \mathcal{A})=\sum_{i=1}^{m} d_{K T}\left(\pi, \pi_{i}\right)
$$

Our problem:

The Kendall- τ distance between a permutation π and a set of permutations $\mathcal{A}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right\}$:

$$
d_{K T}(\pi, \mathcal{A})=\sum_{i=1}^{m} d_{K T}\left(\pi, \pi_{i}\right)
$$

Our problem:
Given a set of m permutations $\mathcal{A} \subseteq S_{n}$, we want to find a permutation π^{*} such that

$$
d_{K T}\left(\pi^{*}, \mathcal{A}\right) \leq d_{K T}(\pi, \mathcal{A}), \forall \pi \in \mathcal{S}_{n}
$$

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall $-\tau$ distance

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall- τ distance

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall- τ distance

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall- τ distance

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall- τ distance

20	18
20	17
20	16
20	15
20	

2001 Dwork et al., NP- hard for even $m \geq 4$
Truchon, space reduction 1990
\vdots
\vdots
Condorcet, space reduction 1785

What has been done for space reduction?

Finding a median of a set of m permutations using the Kendall- τ distance

Condorcet 1785: Condorcet criterion

Condorcet 1785: Condorcet criterion

Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations. If for all $j, 1 \leq j \leq n$, element $i \neq j$ is positioned before j in a majority of permutations of \mathcal{A}, then i is the first element of any median of \mathcal{A}

Condorcet 1785: Condorcet criterion

Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations. If for all $j, 1 \leq j \leq n$, element $i \neq j$ is positioned before j in a majority of permutations of \mathcal{A}, then i is the first element of any median of \mathcal{A}

Truchon 1990: Extended Condorcet criterion

Condorcet 1785: Condorcet criterion

Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations. If for all $j, 1 \leq j \leq n$, element $i \neq j$ is positioned before j in a majority of permutations of \mathcal{A}, then i is the first element of any median of \mathcal{A}

Truchon 1990: Extended Condorcet criterion

 Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations.If there is a partition (C, C^{\prime}) of $\{1,2, \ldots, \mathrm{n}\}$ such that for any x in C and y in C^{\prime} the majority prefers x to y in \mathcal{A}, then x must be ranked above y in a least one median of \mathcal{A}

Condorcet 1785: Condorcet criterion

Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations. If for all $j, 1 \leq j \leq n$, element $i \neq j$ is positioned before j in a majority of permutations of \mathcal{A}, then i is the first element of any median of \mathcal{A}

Truchon 1990: Extended Condorcet criterion

 Let $\mathcal{A} \in \mathcal{S}_{n}$ be a set of permutations. If there is a partition (C, C^{\prime}) of $\{1,2, \ldots, \mathrm{n}\}$ such that for any x in C and y in C^{\prime} the majority prefers x to y in \mathcal{A}, then x must be ranked above y in a least one median of \mathcal{A}Pareto criterion or Always Theorem: If a pair of elements appear in the same order in all permutations of the set \mathcal{A}, then they also appear in that order in all medians of \mathcal{A}.

Betzler et al. 2014*: 3/4 majority rule

Betzler et al.2014*: 3/4 majority rule

Definition 1: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty pair of candidates, according to a certain threshold $s \in[0,1]$, is a pair $(a, b), a, b \in\{1,2, \ldots, n\}$ which respect the following property:

Betzler et al. 2014*: 3/4 majority rule

Definition 1: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty pair of candidates, according to a certain threshold $s \in[0,1]$, is a pair $(a, b), a, b \in\{1,2, \ldots, n\}$ which respect the following property: either a is favored to b (a to the left of b) in a ratio of s or more permutations of \mathcal{A}

Betzler et al. 2014*: 3/4 majority rule

Definition 1: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty pair of candidates, according to a certain threshold $s \in[0,1]$, is a pair $(a, b), a, b \in\{1,2, \ldots, n\}$ which respect the following property:
either a is favored to b (a to the left of b) in a ratio of s or more permutations of \mathcal{A}
or $\quad b$ is favored to $a(b$ to the left of a) in a ratio of s or more permutations of \mathcal{A}

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Definition 2: Given a set of permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, a nondirty candidate is an element which forms a non-dirty pair with every other elements of $\{1,2, \ldots, n\}$ according to the threshold $s \in[0,1]$.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than
$(1,3)$ is a non-dirty pair
$(1,2)$ is a dirty pair
3 is a non-dirty candidate

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Betzler et al. 2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

In other words, a non-dirty candidate will separate the median permutation putting the elements favored to it to its left and the other elements to its right.

Betzler et al. 2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

Betzler et al.2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

$$
\pi^{*}=[\quad]
$$

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al.2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

$$
\pi^{*}=[\quad, 3, \quad]
$$

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al.2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

$$
\pi^{*}=[\{1,2,4\}, 3, \quad]
$$

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Betzler et al. 2014*: 3/4 majority rule

Theorem: With $s=0.75$, elements of a median permutation of a set \mathcal{A} will be ordered relatively to a non-dirty candidate in the majority order.

Example: Let $s=0.75$ and

$$
\mathcal{A}=\{[4,1,2,3,5,6],[4,1,3,6,2,5],[2,1,4,3,6,5],[6,2,3,5,1,4]\}
$$

than

$$
\pi^{*}=[\{1,2,4\}, 3,\{5,6\}]
$$

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation, Autonomous Agents and Multi-Agent Systems, vol.28, pp.721-748, 2014.

Applicability of the $3 / 4$ majority rule, in $\%$, on sets of uniformy distributed random permutations. Statistics generated over 10 000-400 000 instances:

$m \backslash n$	8	9	10	15	20
3	0.8%	0.55%	0.41%	0.12%	0.05%
4	16.4%	12.88%	10.37%	3.93%	1.92%
5	2.19%	1.57%	1.16%	0.37%	0.18%
6	0.41%	0.28%	0.2%	0.05%	0.02%
7	0.08%	0.05%	0.03%	0.01%	0%
8	0.88%	0.6%	0.43%	0.12%	0.06%
9	0.22%	0.14%	0.09%	0.02%	0.01%
10	0.05%	0.03%	0.02%	0%	0%
15	0%	0%	0%	0%	0%
20	0%	0%	0%	0%	0%

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less restrictive than the $3 / 4$ majority rule but more englobing than the always theorem?

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less restrictive than the $3 / 4$ majority rule but more englobing than the always theorem?
idea: proximity and low interference

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less restrictive than the $3 / 4$ majority rule but more englobing than the always theorem?

idea: proximity and low interference

- It can be observed that two elements that are close enough in all permutations of a set \mathcal{A} will have the tendency to be placed in their major order, in any median of \mathcal{A}.
* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less restrictive than the $3 / 4$ majority rule but more englobing than the always theorem?

idea: proximity and low interference

- It can be observed that two elements that are close enough in all permutations of a set \mathcal{A} will have the tendency to be placed in their major order, in any median of \mathcal{A}.
- If we limit the interference between two elements, can we derive an extension of the always theorem?
* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less restrictive than the $3 / 4$ majority rule but more englobing than the always theorem?

idea: proximity and low interference

- It can be observed that two elements that are close enough in all permutations of a set \mathcal{A} will have the tendency to be placed in their major order, in any median of \mathcal{A}.
- If we limit the interference between two elements, can we derive an extension of the always theorem? YES!
* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$, $[5,8,3,4,1,2,7,6]\}$

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$, $[5,8,3,4,1,2,7,6]\}$

Always

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

```
Always
    3<1
```


Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

$$
\begin{gathered}
\text { Always } \\
3<1 \\
3<4 \\
3<6 \\
5<4 \\
7<6 \\
8<2 \\
8<4 \\
8<6
\end{gathered}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

$$
\begin{aligned}
& \text { Always } \\
& 3<1 \\
& 3<4 \\
& 3<6 \\
& 5<4 \\
& 7<6 \\
& 8<2 \\
& 8<4 \\
& 8<6
\end{aligned}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always \quad MOT1	
3	<1
3	<4
3	<6
5	<4
7	<6
8	<2
8	<4
8	<6

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

```
Always MOT1
    \(3<1\)
    \(3<4\)
    \(3<6\)
    \(5 \prec 4\)
    \(7<6\)
    \(8 \prec 2\)
    \(8 \prec 4\)
    \(8<6\)
```

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always MOT1
$3<1$
$3<4$
$3<6$
$5<4$
$7<6$
$8 \prec 2$
$8 \prec 4$
$8<6$
$E_{14}=\{2,5,6,7,8\}$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always MOT1
$3<1$
$3<4$
$3<6$
$5 \prec 4$
$7<6$
$8 \prec 2$
$8 \prec 4$

$$
8<6
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always MOT1

$$
3<1
$$

$$
3<4
$$

$$
3<6
$$

$$
5<4
$$

$$
E_{14}=\{2,5,6,7,8\}
$$

$$
7<6
$$

$$
E_{41}=\{ \}
$$

$$
8<2
$$

$$
\delta_{14}=1>\# E_{41}=0
$$

$$
8 \prec 4
$$

$$
8 \prec 6
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	
3	$\prec 1$	$1<4$
3	<4	
3	$\prec 6$	
5		
7		$E_{14}=\{2,5,6,7,8\}$
7		$E_{41}=\{ \}$
8		
8		$\delta_{14}=1>\# E_{41}=0$
8		
8		

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1
$3<1$	$1<4$
$3<4$	$1<6$
$3<6$	$2<6$
$5<4$	$3<2 E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1 \quad E_{41}=\{ \}$
$8<2$	$7 \prec 2 \quad \delta_{14}=1>\# E_{41}=0$
$8 \prec 4$	
$8<6$	

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1
$3<1$	$1<4$
$3<4$	$1<6$
$3<6$	$2<6$
$5<4$	$3<2 \quad E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1 \quad E_{41}=\{ \}$
$8<2$	$7<2 \quad \delta_{14}=1>\# E_{41}=0$
$8<4$	transitive closure
$8<6$	

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1
$3<1$	$1<4$
$3<4$	$1<6$
$3 \prec 6$	$2<6$
$5<4$	$3<2 E_{14}=\{2,5,6$
$7<6$	$5<1 \quad E_{41}=\{ \}$
$8<2$	$7<2 \quad \delta_{14}=1>\# E_{41}=0$
$8 \prec 4$	transitive closure
$8<6$	$5<6$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	MOT2
$3<1$	$1<4$	
$3<4$	$1<6$	
$3<6$	$2<6$	
$5<4$	$3<2$	
$7<6$	$5<1$	
$8<2$	$7<2$	
$8<4$	transitive	
$8<6$	$5<6$	

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,
$[5,8,3,4,1,2,7,6]\}$

Always	MOT1
$3<1$	$1<4$
$3<4$	$1<6$
$3<6$	$2 \prec 6$
$5<4$	$3<2 \quad E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1 \quad E_{41}=\{ \}$
$8<2$	$7<2 \quad \delta_{14}=1>\# E_{41}=0$
$8<4$	MOT2
$8<6$	$5<6$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1 MO	
$3<1$	$1<4$	
$3<4$	$1<6$	$E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$	$E_{42}=\{1\}$
$5<4$	$3<2 \quad E_{14}=\{2,5,6,7,8\}$	$\delta_{24}=\delta_{42}=1$
$7<6$	$5<1 E_{41}=\{ \}$	
$8 \prec 2$	$7<2 \quad \delta_{14}=1>\# E_{41}=0$	
$8 \prec 4$	transitive closure	
$8<6$	$5<6$	

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1 MO	
$3<1$	$1<4$	
$3<4$	$1<6$	$E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$,	$E_{42}=\{1\}$
$5<4$	$3<2 \quad E_{14}=\{2,5,6,7,8\}$	$\delta_{24}=\delta_{42}=1$
$7<6$	$5<1 E_{41}=\{ \}$	
$8 \prec 2$	$7<2 \quad \delta_{14}=1>\# E_{41}=0$	
$8 \prec 4$	transitive closure	
$8 \prec 6$	$5<6$	

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2,3,6,1,5,4],[3,5,1,7,8,6,2,4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,6,1,5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	MOT2
$3<1$	$1<4$	$2<4$
$3<4$	$1<6$	$5<2 E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$	$7<4 E_{42}=\{1\}$
$5<4$	$3<2$	$E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1$	$\delta_{24}=\delta_{42}=1$
$8<2$	$7<2$	$\delta_{14}=1>\# E_{41}=0$
$8<4$	transitive closure	
$8<6$	5	<6

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,5,1.5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	MOT2
$3<1$	$1<4$	$2<4$
$3<4$	$1<6$	$5<2 E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$	$7<4 E_{42}=\{1\}$
$5<4$	$3<2$	$E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1$	$\delta_{24}=\delta_{42}=1$
$8<2$	$7<2$	$\delta_{14}=1>\# E_{41}=0$
$8<4$	transitive closure	
$8<6$	5	<6

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,5,1.5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	MOT2
$3<1$	$1<4$	$2<4$
$3<4$	$1 \prec 6$	$5<2 E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$	$7<4 E_{42}=\{1\}$
$5<4$	$3<2$	$E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1$	$\delta_{24}=\delta_{42}=1$
$8<2$	$7<2$	$\delta_{14}=1>\# E_{41}=0$
$8<4$	transitive closure	
$8<6$	5	<6

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,5,1.5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always	MOT1	MOT2
$3<1$	$1<4$	$2<4$
$3<4$	$1 \prec 6$	$5<2 E_{24}=\{1,3,5,6\}$
$3<6$	$2<6$	$7<4 E_{42}=\{1\}$
$5<4$	$3<2$	$E_{14}=\{2,5,6,7,8\}$
$7<6$	$5<1$	$\delta_{24}=\delta_{42}=1$
$8<2$	$7<2$	$\delta_{14}=1>\# E_{41}=0$
$8<4$	transitive closure	
$8<6$	5	<6

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,5,1.5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Example: Let $\mathcal{A}=\{[7,8,2.3,5,1.5,4],[3,5,1.7,8,6,2.4]$,

$$
[5,8,3,4,1,2,7,6]\}
$$

Always
$3<1$
MOT1
$1<4$
$3<4$
$3<6$
$5<4$
$7<6$
$8<2$
$8<4$ transitive closure
$8<6$
$5<6$

МОТЗ
$1<2$ $5<7$
$6<4$

21 pairs over 28

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

- In all of our Major Order Theorems we had
$\delta_{i j}(\mathcal{A})>$ cardinality of interference set

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

- In all of our Major Order Theorems we had $\delta_{i j}(\mathcal{A})>$ cardinality of interference set
- What happens when $\delta_{i j}(\mathcal{A})=$ cardinality of interference set?

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

- In all of our Major Order Theorems we had $\delta_{i j}(\mathcal{A})>$ cardinality of interference set
- What happens when $\delta_{i j}(\mathcal{A})=$ cardinality of interference set?
- Can we still use our theorems?

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

- In all of our Major Order Theorems we had $\delta_{i j}(\mathcal{A})>$ cardinality of interference set
- What happens when $\delta_{i j}(\mathcal{A})=$ cardinality of interference set ?
- Can we still use our theorems? YES!

Milsoz et al. 2018*: Major Order Theorems with equalities

Dealing with equalities:

- In all of our Major Order Theorems we had $\delta_{i j}(\mathcal{A})>$ cardinality of interference set
- What happens when $\delta_{i j}(\mathcal{A})=$ cardinality of interference set ?
- Can we still use our theorems? YES!

But, we loose the fact that the proven order exist in all medians

* R.Milosz and S.Hamel, Space reduction constraints for the median of permutations problem, Journal of Discrete Applied Mathematics, in press.

Efficiency on real data:

year	n	m	conflicting pairs	3/4 majority rule	MOT3.0	MOT3.0e
1975	13	14	100%	64.1%	73.1%	100%
1980	19	14	95.9%	84.2%	77.2%	94.8%
1981	19	15	97.7%	73.1%	83.1%	92.4%
1982	9	16	97.2%	100%	86.1%	100%
1983	24	15	98.9%	38.1%	69.2%	76.1%
1984	19	16	99.4%	94.2%	87.1%	96.5%
1985	14	16	100%	93.4%	84.6%	96.7%
1986	21	16	98.6%	92.9%	84.8%	100%
1987	21	16	99.5%	98.6%	82.9%	99.1%
1988	28	16	94.4%	84.1%	89.4%	98.7%
1989	26	16	88.9%	98.2%	88.6%	99.4%
1990	24	16	90.2%	96.4%	90.9%	96.7%
1991	24	16	94.9%	84.8%	84.4%	90.9%
1992	22	16	99.1%	88.3%	84.9%	100%
1993	18	16	98.7%	91.5%	83.0%	94.1%
1994	16	16	94.2%	95%	70.8%	100%
1995	16	17	100%	97.5%	98.3%	98.3%
1996	19	16	100%	94.8%	84.8%	100%
1997	18	17	100%	83.0%	91.5%	94.8%
1998	21	16	98.1%	97.2%	91.4%	100%
1999	19	16	97.7%	61.4%	74.3%	84.8%
2000	22	17	99.6%	63.7%	87.0%	88.3%
2001	18	17	99.4%	64.1%	78.4%	82.4%
2002	18	17	91.5%	76.5%	87.6%	92.8%
2003	16	16	98.3%	100%	91.7%	100%
2004	15	18	96.2%	100%	92.4%	100%
2005	13	19	100%	96.2%	96.2%	100%
2006	18	18	99.4%	100%	95.4%	100%
2007	18	17	97.4%	91.5%	93.5%	97.4%
2008	20	18	95.8%	81.1%	90%	94.2%

Efficiency on real data:

year	n	m	conflicting pairs	3/4 majority rule	MOT3.0	MOT3.0e
1975	13	14	100%	64.1%	73.1%	100%
1980	19	14	95.9%	84.2%	77.2%	94.8%
1981	19	15	97.7%	73.1%	83.1%	92.4%
1982	9	16	97.2%	100%	86.1%	100%
1983	24	15	98.9%	38.1%	69.2%	76.1%
1984	19	16	99.4%	93.2%	87.1%	96.5%
1985	14	16	100%	92.9%	84.6%	96.7%
1986	21	16	98.6%	98.6%	84.8%	100%
1987	21	16	99.5%	84.1%	82.9%	99.1%
1988	28	16	94.4%	98.2%	89.4%	98.7%
1989	26	16	88.9%	96.4%	88.6%	99.4%
1990	24	16	90.2%	84.8%	90.9%	96.7%
1991	24	16	94.9%	88.3%	84.4%	90.9%
1992	22	16	99.1%	91.5%	84.9%	100%
1993	18	16	98.7%	95%	83.0%	94.1%
1994	16	16	94.2%	97.5%	70.8%	100%
1995	16	17	100%	94.8%	98.3%	98.3%
1996	19	16	100%	83.0%	84.8%	100%
1997	18	17	100%	97.2%	91.5%	94.8%
1998	21	16	98.1%	61.4%	91.4%	100%
1999	19	16	97.7%	63.7%	84.3%	84.8%
2000	22	17	99.6%	64.1%	88.0%	88.3%
2001	18	17	99.4%	76.5%	87.4%	82.4%
2002	18	17	91.5%	100%	91.7%	92.8%
2003	16	16	98.3%	100%	92.4%	100%
2004	15	18	96.2%	96.2%	96.2%	100%
2005	13	19	100%	100%	95.4%	100%
2006	18	18	99.4%	91.5%	93.5%	97.4%
2007	18	17	97.4%	81.1%	90%	94.2%
2008	20	18	95.8%			

Efficiency on real data:

year	n	m	conflicting pairs	3/4 majority rule	MOT3.0	MOT3.0e
1975	13	14	100%	64.1%	73.1%	100%
1980	19	14	95.9%	84.2%	77.2%	94.8%
1981	19	15	97.7%	73.1%	83.1%	92.4%
1982	9	16	97.2%	100%	86.1%	100%
1983	24	15	98.9%	38.1%	69.2%	76.1%
1984	19	16	99.4%	93.2%	87.1%	96.5%
1985	14	16	100%	92.9%	84.6%	96.7%
1986	21	16	98.6%	98.6%	84.8%	100%
1987	21	16	99.5%	84.1%	82.9%	99.1%
1988	28	16	94.4%	98.2%	89.4%	98.7%
1989	26	16	88.9%	96.4%	88.6%	99.4%
1990	24	16	90.2%	84.8%	90.9%	96.7%
1991	24	16	94.9%	88.3%	84.4%	90.9%
1992	22	16	99.1%	91.5%	84.9%	100%
1993	18	16	98.7%	95%	83.0%	94.1%
1994	16	16	94.2%	97.5%	70.8%	100%
1995	16	17	100%	94.8%	98.3%	98.3%
1996	19	16	100%	83.0%	94.8%	100%
1997	18	17	100%	97.2%	91.5%	94.8%
1998	21	16	98.1%	61.4%	74.4%	100%
1999	19	16	97.7%	63.7%	84.8%	
2000	22	17	99.6%	64.1%	87.0%	88.3%
2001	18	17	99.4%	76.5%	78.4%	82.4%
2002	18	17	91.5%	100%	87.6%	92.8%
2003	16	16	98.3%	100%	91.7%	100%
2004	15	18	96.2%	96.2%	92.4%	100%
2005	13	19	100%	100%	96.2%	100%
2006	18	18	99.4%	91.5%	95.4%	100%
2007	18	17	97.4%	81.1%	93.5%	97.4%
2008	20	18	95.8%		90%	94.2%

Comparison of efficiency of MOT 3.0 and MOTe 3.0, in terms of the proportion of ordering of pairs of elements solved, on sets of uniformly distributed random permutations, statistics generated over 100000 instances for $\mathrm{n} \leq 80$ and 10000 instances for $\mathrm{n}=100$.

	$n=15$		$n=30$		$n=60$		$n=100$	
m	MOT 3.0	MOTe 3.0						
3	0.635	0.878	0.506	0.701	0.409	0.540	0.356	0.450
4	0.520	0.977	0.413	0.806	0.318	0.506	0.2612	0.369
5	0.581	0.801	0.404	0.595	0.279	0.419	0.219	0.319
10	0.517	0.823	0.361	0.548	0.235	0.349	0.173	0.250
15	0.545	0.704	0.354	0.488	0.225	0.319	0.161	0.227
20	0.525	0.748	0.349	0.492	0.221	0.311	0.157	0.217
25	0.544	0.679	0.350	0.465	0.219	0.300	0.154	0.211
30	0.531	0.718	0.346	0.472	0.216	0.298	0.154	0.208
35	0.547	0.667	0.347	0.454	0.216	0.291	0.152	0.204
40	0.535	0.702	0.345	0.462	0.214	0.291	0.152	0.203
45	0.548	0.660	0.347	0.447	0.214	0.286	0.151	0.200
50	0.537	0.691	0.345	0.455	0.214	0.286	0.150	0.200

Milosz et al. 2018*: 3-Cycle Theorem

Question: What happens if we restrict ourselves to the median of 3 permutations problem, whose complexity is still unknown?

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Question: What happens if we restrict ourselves to the median of 3 permutations problem, whose complexity is still unknown?

Answer: We can derive an even better data reduction technique with the use of tournament graphs called here majority graphs.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

(2)
(3)

* R. Milosz, S. Hame et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

(2)
(3)

* R. Milosz, S. Hame et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

(4)
(5)

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

weight 1 edges

(4)
5

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

weight 1 edges

Milosz et al.2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

weight 1 edges
weight 3 edges

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

Majority graph:

$$
\left.\begin{array}{l}
\pi_{1}=[4,5,1,2,3] \\
\pi_{2}=[1,5,3,4,2] \\
\pi_{3}=[5,2,3,4,1]
\end{array}\right\} \pi^{*}=[5,4,1,2,3]
$$

weight 1 edges
weight 3 edges

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{A}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of G_{A} is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

- Proof: by contradiction (see article)
* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

- Proof: by contradiction (see article)
- Reach: includes and improves all previous space reduction techniques for $m=3$ permutations
* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{A}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

- Proof: by contradiction (see article)
- Reach: includes and improves all previous space reduction techniques for $m=3$ permutations
- Time: when combined with an ILP solver (CPLEX) it improve the solving time:
1.6X for randomly generated data sets and
3.7X for real life data sets.
* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science 10979, pp. 224-236, 2018.

Milosz et al. 2018*: 3-Cycle Theorem

3-Cycle Theorem: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

Conjecture 1: Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of m permutations, m odd Let $G_{A}=(V, E)$ be its majority graph. Let π^{*} be any median of \mathcal{A}. If an edge (i, j) of $G_{\mathcal{A}}$ is not contained in any 3-cycles, then $i<_{\pi^{*}} j$.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.

```
\mp@subsup{\pi}{\textrm{I}}{\prime}:[4,5,1,2,3]
\pi
\mp@subsup{\pi}{3}{}[[5,2,3,4,1]
```


* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.

\author{
$\pi_{\mathrm{r}}:[4,5,1,2,3]$
 $\left.\begin{array}{l}\pi_{2}:[1,5,3,4,2] \\ \pi_{3}:[5,2,3,4,1]\end{array}\right\} \pi^{*}:[5,4,1,2,3]$

}
$\mathscr{E}=\{$ edges contained in 3 -cycles $\}$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.
$\left.\begin{array}{l}\pi_{1}:[4,5,1,2,3] \\ \pi_{2}:[1,5,3,4,2] \\ \pi_{3}:[5,2,3,4,1]\end{array}\right\} \pi^{\star}:[5,4,1,2,3]$
$\mathscr{E}=\{$ edges contained in 3 -cycles $\}$

$$
T=\{3 \text {-cycles }\}
$$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.
$\left.\begin{array}{l}\pi_{1}:[4,5,1,2,3] \\ \pi_{2}:[1,5,3,4,2] \\ \pi_{3}:[5,2,3,4,1]\end{array}\right\} \pi^{*}:[5,4,1,2,3]$

$$
\begin{aligned}
\mathscr{E}=\{\text { edges contained in 3-cycles }\} & T=\{3 \text {-cycles }\} \\
e_{1}=(2,3) & (2,3,4)=t_{1} \\
e_{2}=(4,2) & (1,3,4)=t_{2} \\
e_{3}=(3,4) & \\
e_{4} & =(1,3) \\
e_{5} & =(4,1)
\end{aligned}
$$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.
$\left.\begin{array}{l}\pi_{1}:[4,5,1,2,3] \\ \pi_{2}:[1,5,3,4,2] \\ \pi_{3}:[5,2,3,4,1]\end{array}\right\} \pi^{*}:[5,4,1,2,3]$

$$
\begin{aligned}
\mathscr{E}=\{\text { edges contained in 3-cycles }\} & T=\{3 \text {-cycles }\} \\
e_{1} & =(2,3) \\
e_{2} & =(4,2) \\
e_{3} & =(3,4) \\
e_{4} & =(1,3) \\
e_{5} & =(4,1)
\end{aligned}
$$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let \mathscr{E} be a set of elements and T a set of subsets of cardinality 3 of \mathscr{E}. Find the minimal cardinality subset $S \subseteq \mathscr{E}$, such that every subset of T contains at least one element of S.
$\left.\begin{array}{l}\pi_{1}:[4,5,1,2,3] \\ \pi_{2}:[1,5,3,4,2] \\ \pi_{3}:[5,2,3,4,1]\end{array}\right\} \pi^{*}:[5,4,1,2,3]$

$$
\begin{aligned}
\mathscr{E}=\{\text { edges contained in 3-cycles }\} & T=\{3 \text {-cycles }\} \\
e_{1} & =(2,3) \\
e_{2} & =(4,2) \\
e_{3} & =(3,4) \\
e_{4} & =(1,3) \\
e_{5} & =(4,1) \\
&
\end{aligned}
$$

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

Conjecture 2: 3-Hitting Set Conjecture for 3 permutations Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{A}=(V, E)$ be its majority graph. Let \mathscr{E} be the set of edges of $G_{\mathcal{A}}$ involve in 3 -cycles. Let T be the set of 3 -cycles of $G_{\mathcal{A}}$.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

Conjecture 2: 3-Hitting Set Conjecture for 3 permutations
Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let \mathscr{E} be the set of edges of G_{A} involve in 3 -cycles. Let T be the set of 3 -cycles of $G_{\mathcal{A}}$.

Then, \exists an optimal solution S of the 3-Hitting Set problem on \mathscr{E} and T, for which a median permutation can be constructed by reversing all edges $\in S$ in G_{A} and taking the topological ordering of the nodes of the resulting graph.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

Conjecture 2: 3-Hitting Set Conjecture for 3 permutations
Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let \mathscr{E} be the set of edges of G_{A} involve in 3 -cycles. Let T be the set of 3 -cycles of $G_{\mathcal{A}}$.

Then, \exists an optimal solution S of the 3-Hitting Set problem on \mathscr{E} and T, for which a median permutation can be constructed by reversing all edges $\in S$ in G_{A} and taking the topological ordering of the nodes of the resulting graph.
\Longrightarrow solving the median of 3 permutations problem amounts to solving a 3-Hitting Set Problem.

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

Conjecture 2: 3-Hitting Set Conjecture for 3 permutations
Let $\mathcal{A} \subset \mathcal{S}_{n}$ be a set of 3 permutations. Let $G_{\mathcal{A}}=(V, E)$ be its majority graph. Let \mathscr{E} be the set of edges of G_{A} involve in 3 -cycles. Let T be the set of 3 -cycles of $G_{\mathcal{A}}$.

Then, \exists an optimal solution S of the 3-Hitting Set problem on \mathscr{E} and T, for which a median permutation can be constructed by reversing all edges $\in S$ in G_{A} and taking the topological ordering of the nodes of the resulting graph.
\Longrightarrow solving the median of 3 permutations problem amounts to solving a 3-Hitting Set Problem.
\Longrightarrow ILP solving 19x faster on random data sets and $187 \times$ faster on real data sets!!

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979, IWOCA 2018, pp. 224-236, 2018.

Conclusion:

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem
- for the 3 permutations case, the 3-cycle theorem is the best space reduction technique, up to date

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem
- for the 3 permutations case, the 3-cycle theorem is the best space reduction technique, up to date
- we conjecture that the 3-cycle theorem still holds for sets containting an odd number of permutations

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem
- for the 3 permutations case, the 3-cycle theorem is the best space reduction technique, up to date
- we conjecture that the 3-cycle theorem still holds for sets containting an odd number of permutations
- the median of 3 permutations problem is linked to the 3-Hitting set problem

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem
- for the 3 permutations case, the 3-cycle theorem is the best space reduction technique, up to date
- we conjecture that the 3-cycle theorem still holds for sets containting an odd number of permutations
- the median of 3 permutations problem is linked to the 3 -Hitting set problem
- this give us that the 3-Hitting set problem is a really tight lower bound for the median of 3 permutations problem

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of elements in a median
- major order theorems less restrictive than the $3 / 4$ majority rule of Betzler et al. and more englobing than the always theorem
- for the 3 permutations case, the 3-cycle theorem is the best space reduction technique, up to date
- we conjecture that the 3-cycle theorem still holds for sets containting an odd number of permutations
- the median of 3 permutations problem is linked to the 3 -Hitting set problem
- this give us that the 3-Hitting set problem is a really tight lower bound for the median of 3 permutations problem
- we conjecture that solving the median of 3 permutations problem amounts to solving its corresponding 3 Hitting set problem

Questions

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	max nb constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	$\max \mathrm{nb}$ constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	max nb constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	max nb constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

Random uniform data:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	$\max \mathrm{nb}$ constr.	C/D
ex1	29	123	1015	12.1\%	260	406	64\%
ex2	20	58	330	17.6\%	105	190	55.3\%
ex3	44	773	3542	21.8\%	430	946	45.5\%
ex4	64	2356	10912	21.6\%	840	2016	41.7\%
ex5	24	139	572	24.3\%	126	276	45.7\%
ex6	67	1839	12529	14.7\%	1043	2211	47.2\%
ex7	23	97	506	19.2\%	140	253	55.3\%
ex8	42	566	3080	18.4\%	402	861	46.7\%
ex9	28	145	910	15.9\%	219	378	57.9\%
ex10	11	7	55	12.7\%	42	55	76.4\%
ex11	70	3331	14280	23.3\%	824	2415	34.1\%
ex12	67	2846	12529	22.7\%	833	2211	37.7\%
ex13	63	1769	10416	17\%	908	1953	46.5\%
ex14	23	155	506	30.6\%	103	253	40.7\%
ex15	43	566	3311	17.1\%	449	903	49.7\%
ex16	21	100	385	26\%	100	210	47.6\%
ex17	14	17	112	15.2\%	61	91	67\%
ex18	23	122	506	24.1\%	119	253	47\%
ex19	40	507	2660	19.1\%	374	780	48\%
ex20	52	832	5850	14.2\%	689	1326	52%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text {-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	$\max \mathrm{nb}$ constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

Random uniform data:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	max nb constr.	C/D
ex1	29	123	1015	12.1\%	260	406	64\%
ex2	20	58	330	17.6\%	105	190	55.3\%
ex3	44	773	3542	21.8\%	430	946	45.5\%
ex4	64	2356	10912	21.6\%	840	2016	41.7\%
ex5	24	139	572	24.3\%	126	276	45.7\%
ex6	67	1839	12529	14.7\%	1043	2211	47.2\%
ex7	23	97	506	19.2\%	140	253	55.3\%
ex8	42	566	3080	18.4\%	402	861	46.7\%
ex9	28	145	910	15.9\%	219	378	57.9\%
ex10	11	7	55	12.7\%	42	55	76.4\%
ex11	70	3331	14280	23.3\%	824	2415	34.1\%
ex12	67	2846	12529	22.7\%	833	2211	37.7\%
ex13	63	1769	10416	17\%	908	1953	46.5\%
ex14	23	155	506	30.6\%	103	253	40.7\%
ex15	43	566	3311	17.1\%	449	903	49.7\%
ex16	21	100	385	26\%	100	210	47.6\%
ex17	14	17	112	15.2\%	61	91	67\%
ex18	23	122	506	24.1\%	119	253	47\%
ex19	40	507	2660	19.1\%	374	780	48\%
ex20	52	832	5850	14.2\%	689	1326	52\%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Real data from PrefLib.org*:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text {-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	$\max \mathrm{nb}$ constr.	C/D
ex1	29	78	1015	7.7\%	302	406	74.4\%
ex2	20	2	330	0.6\%	185	190	97.4\%
ex3	44	0	3542	0\%	946	946	100\%
ex4	64	124	10912	1.1\%	1848	2016	91.7\%
ex5	24	0	572	0\%	276	276	100\%
ex6	67	1116	12529	8.9\%	1457	2211	65.9\%
ex7	23	1	506	0.2\%	250	253	98.8\%
ex8	42	173	3080	5.6\%	662	861	76.9\%
ex9	28	36	910	4\%	326	378	86.2\%
ex10	11	9	55	16.4\%	39	55	70.9\%
ex11	70	92	14280	0.6\%	2283	2415	94.5\%
ex12	67	873	12529	6.7\%	1524	2211	68.9\%
ex13	63	63	10416	0.6\%	1856	1953	95\%
ex14	23	0	506	0\%	253	253	100\%
ex15	43	4	3311	0.1\%	894	903	99\%
ex16	21	10	385	2.6\%	187	210	89\%
ex17	14	0	112	0\%	91	91	100\%
ex18	23	0	506	0\%	253	253	100\%
ex19	40	0	2660	0\%	780	780	100\%
ex20	52	314	5850	5.4\%	1046	1326	78.9\%

Random uniform data:

		A	B		C	D	
ID	n	\# 3-cycles	$\begin{gathered} \max \\ \# \text { 3-cycles } \end{gathered}$	A/B	$\begin{gathered} \mathrm{nb} \\ \text { constr. } \end{gathered}$	max nb constr.	C/D
ex1	29	123	1015	12.1\%	260	406	64\%
ex2	20	58	330	17.6\%	105	190	55.3\%
ex3	44	773	3542	21.8\%	430	946	45.5\%
ex4	64	2356	10912	21.6\%	840	2016	41.7\%
ex5	24	139	572	24.3\%	126	276	45.7\%
ex6	67	1839	12529	14.7\%	1043	2211	47.2\%
ex7	23	97	506	19.2\%	140	253	55.3\%
ex8	42	566	3080	18.4\%	402	861	46.7\%
ex9	28	145	910	15.9\%	219	378	57.9\%
ex10	11	7	55	12.7\%	42	55	76.4\%
ex11	70	3331	14280	23.3\%	824	2415	34.1\%
ex12	67	2846	12529	22.7\%	833	2211	37.7\%
ex13	63	1769	10416	17\%	908	1953	46.5\%
ex14	23	155	506	30.6\%	103	253	40.7\%
ex15	43	566	3311	17.1\%	449	903	49.7\%
ex16	21	100	385	26\%	100	210	47.6\%
ex17	14	17	112	15.2\%	61	91	67\%
ex18	23	122	506	24.1\%	119	253	47\%
ex19	40	507	2660	19.1\%	374	780	48\%
ex20	52	832	5850	14.2\%	689	1326	52%

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.

Given a set of m permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, we want to find a permutation π^{*} such that

$$
d_{K T}\left(\pi^{*}, \mathcal{A}\right) \leq d_{K T}(\pi, \mathcal{A}), \forall \pi \in \mathcal{S}_{n}
$$

Given a set of m permutations $\mathcal{A} \subseteq \mathcal{S}_{n}$, we want to find a permutation π^{*} such that

$$
d_{K T}\left(\pi^{*}, \mathcal{A}\right) \leq d_{K T}(\pi, \mathcal{A}), \forall \pi \in \mathcal{S}_{n}
$$

This median is not always unique

Average number of permutations in $M(A)$ for uniformly distributed random sets A of m permutations of length n. Statistics generated over 100 to 1000 instances.

$m \backslash n$	8	10	12	14	15	20	25	30
3	2.1	3.0	3.7	4.8	5.6	12.2	23.1	61.4
4	60.6	331.4	1321.4	7551.4	14253.8	-	-	-
5	2.2	2.9	3.6	5.2	6.2	12.9	29.1	49.2
6	31.3	90.6	345.1	1506.2	1614.9	-	-	-
10	13.0	36.8	88.8	201.9	315.6	2947.9	-	-
15	1.7	2.2	2.8	3.5	3.8	6.3	12.3	-
20	6.3	11.4	22.2	39.8	55.5	256.7	-	-
25	1.6	1.9	2.3	2.6	2.9	4.6	7.6	-

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

- Implemented in Java (by Robin)

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

- Implemented in Java (by Robin)
- Theoretical complexity of $O\left(n^{3} m k\right)$:
* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

- Implemented in Java (by Robin)
- Theoretical complexity of $O\left(n^{3} m k\right)$:

$$
\frac{n(n-1)}{2} \text { pairs, } n \text { elements, } m \text { permutations, } k \text { iterations }
$$

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

- Implemented in Java (by Robin)
- Theoretical complexity of $O\left(n^{3} m k\right)$:

$$
\frac{n(n-1)}{2} \text { pairs, } n \text { elements, } m \text { permutations, } k \text { iterations }
$$

- In practice, $1 \leq k \leq 9$ if $n \leq 400$

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

- Implemented in Java (by Robin)
- Theoretical complexity of $O\left(n^{3} m k\right)$: $\frac{n(n-1)}{2}$ pairs, n elements, m permutations, k iterations
- In practice, $1 \leq k \leq 9$ if $n \leq 400$
- Time for calculating the MOTs is small: < 30 seconds for $n \leq 400$ and $m=3$
* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Applicability of the $3 / 4$ majority rule, in $\%$, on sets of uniformy distributed random permutations. Statistics generated over 10000-400 000 instances:

Inclusion, in $\%$, of the $3 / 4$ majority rule, in Major Order Theorem on the same generated sets

$m \backslash n$	8	9	10	15	20
3	0.8%	0.55%	0.41%	0.12%	0.05%
4	16.4%	12.88%	10.37%	3.93%	1.92%
5	2.19%	1.57%	1.16%	0.37%	0.18%
6	0.41%	0.28%	0.2%	0.05%	0.02%
7	0.08%	0.05%	0.03%	0.01%	0%
8	0.88%	0.6%	0.43%	0.12%	0.06%
9	0.22%	0.14%	0.09%	0.02%	0.01%
10	0.05%	0.03%	0.02%	0%	0%
15	0%	0%	0%	0%	0%
20	0%	0%	0%	0%	0%

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Applicability of the $3 / 4$ majority rule, in $\%$, on sets of uniformy distributed random permutations. Statistics generated over 10000-400 000 instances:

Inclusion, in $\%$, of the $3 / 4$ majority rule, in Major Order Theorem on the same generated sets

$m \backslash n$	8	9	10	15	20
3	0.8%	0.55%	0.41%	0.12%	0.05%
4	16.4%	12.88%	10.37%	3.93%	1.92%
5	2.19%	1.57%	1.16%	0.37%	0.18%
6	0.41%	0.28%	0.2%	0.05%	0.02%
7	0.08%	0.05%	0.03%	0.01%	0%
8	0.88%	0.6%	0.43%	0.12%	0.06%
9	0.22%	0.14%	0.09%	0.02%	0.01%
10	0.05%	0.03%	0.02%	0%	0%
15	0%	0%	0%	0%	0%
20	0%	0%	0%	0%	0%

$m \backslash n$	8	9	10	15	20
3	100%	100%	100%	100%	100%
4	85.2%	84.7%	84.0%	86.7%	88.6%
5	100%	100%	100%	99.96%	100%
6	100%	100%	100%	100%	100%
7	100%	100%	100%	100%	100%
8	99.7%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%
10	100%	100%	100%	100%	100%
15	100%	100%	100%	100%	100%
20	100%	100%	100%	100%	100%

[^0]
[^0]: * R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

