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® The Kendall-T distance is equivalent to the “bubble-sort”
distance i.e. the number of transpositions needed tfo
transform one permutation into the other one.
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Problem Definition

The Kendall- 7 distance between a permutation 7 and
a set of permutations A = {7?1, Ty ooy Tm I

Our problem:

Given a set of m permutations 4 C S,,, we want

to find a permutation 7" such that

dKT(T('*,.A) < dKT(ﬂ',.A),VTF c Sn
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element i # j 1s positioned before j 1n a majority of permutations
of A, then i is the first element of any median of A
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Let A € S, be a set of permutations. If forall j,1 < j < n,

element i # j 1s positioned before j 1n a majority of permutations
of A, then i is the first element of any median of A

Truchon 1990: Extended Condorcet criterion
Let A € §,, be a set of permutations.

If there 1s a partition (C, C’) of {1, 2, ..., n} such that for any x
in C and y in C’ the majority prefers x to y in A, then x must be
ranked above y in a least one median of A

Pareto criterion or Always Theorem: If a pair of elements appear in
the same order in all permutations of the set A, then they also appear
in that order in all medians of A.
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Space reduction

Betzler et al. 2014%*: 3/4 majority rule

* N.Betzler, R.Bredereck, R.Niedermeier, Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation,
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Space reduction

Applicability of the 3/4 majority rule, in %, on sets of uniformy distributed
random permutations. Statistics generated over 10 000 - 400 000 1nstances:
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Space reduction

Milsoz et al. 2016*: Major Order Theorems

Question: Is there a data reduction which is less
restrictive than the 3/4 majority rule but more englobing
than the always theorem?

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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e In all of our Major Order Theorems we had

0;5(A) > cardinality of interference set

e What happens when 0;;(A) = cardinality of interference set ?

e Can we still use our theorems? VYES!

, we loose the fact that the proven order exist in = medians
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Tntradiacrtion DPrabhlarn DafGnitinn Space reduction Cancliicion

Efficiency on real data:

conflicting pairs 3/4 majority rule MOT3.0 | MOT3.0e
100% 64.1% 73.1% 100%
95.9% 84.2% 77.2% 94.8%
97.7% 73.1% 83.1% 92.4%
97.2% 100% 86.1% 100%
98.9% 38.1% 69.2% 76.1%
99.4% 94.2% 87.1% 96.5%
100% 93.4% 84.6% 96.7%
98.6% 92.9% 84.8% 100%
99.5% 98.6% 82.9% 99.1%
94.4% 84.1% 89.4% 98.7%
88.9% 98.2% 88.6% 99.4%
90.2% 96.4% 90.9% 96.7%
94.9% 84.8% 84.4% 90.9%
99.1% 88.3% 84.9% 100%
98.7% 91.5 % 83.0% 94.1%
94.2% 95% 70.8% 100%
100% 97.5% 98.3% 98.3%
100% 94.8% 84.8% 100%
100% 83.0% 91.5% 94.8%
98.1% 97.2% 91.4% 100%
97.7% 61.4% 74.3% 84.8%
99.6% 63.7% 87.0% 88.3%
99.4% 64.1% 78.4% 82.4%
91.5% 76.5% 87.6% 92.8%
98.3% 100% 91.7% 100%
96.2% 100% 92.4% 100%
100% 96.2% 96.2% 100%
99.4% 100% 95.4% 100%
97.4% 91.5% 93.5% 97.4%
95.8% 81.1% 90% 94.2%
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Space reduction

Comparison of efficiency of MOT 3.0 and MOTe 3.0, in terms of the proportion of ordering of pairs of
elements solved, on sets of uniformly distributed random permutations, statistics generated over
100 000 instances for n < 80 and 10 000 instances for n=100.
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Space reduction

Milosz et al. 2018%: 3-Cycle Theorem

Question: What happens if we restrict ourselves to the
median of 3 permutations problem, whose complexity is
still unknown?

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science
10979, pp. 224-236, 2018.
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Question: What happens if we restrict ourselves to the
median of 3 permutations problem, whose complexity is
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Answer: We can derive an even beffer data reduction
technique with the use of tournament graphs called here
majority graphs.
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Milosz et al. 2018%: 3-Cycle Theorem
Majority graph:

= = = [9,4,1,2.5]

I weight 1 edges
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Milosz et al. 2018%: 3-Cycle Theorem
Majority graph:
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Milosz et al. 2018%: 3-Cycle Theorem
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T weight 3 edges
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Let G,= (V. E) be its majority graph. Let z* be any
median of A. If an edge (i,j) of G, is not contained in any
3-cycles, then i <_. j.

- Proof: by contradiction (see article)

- Reach: includes and improves all previous space
reduction techniques for m=3 permutations

- Time: when combined with an ILP solver
(CPLEX) it improve the solving time:

1.6X for randomly generated data sets and
3.7X for real life data sets.
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Space reduction

Milosz et al. 2018%: 3-Cycle Theorem

3-Cycle Theorem: Let A C S, be a set of 3 permutations.
Let G,= (V. E) be its majority graph. Let z* be any
median of A. If an edge (i,j) of G, is not contained in any
3-cycles, then i <_. j.

Conjecture 1: Let A C S, be a sef of m permutations, m odd
Let Gy= (V,E) be its majority graph. Let z* be any median
of A. If an edge (i,j) of G4 is not contained in any

3-cycles, theni < . J.

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, Lecture Notes in Computer Science
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3-Hitting Set Problem

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979,
IWOCA 2018, pp. 224-236, 2018.
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3-Hitting Set Problem: Let & be a set of elements and T a set of
subsets of cardinality 3 of &. Find the minimal cardinality subset
S C &, such that every subset of T contains at least one element of S.

n1:[415111213]
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3-Hitting Set Problem: Let & be a set of elements and T a set of
subsets of cardinality 3 of &. Find the minimal cardinality subset
S C &, such that every subset of T contains at least one element of S.

752:[1/5/31412]

n:[4,5,1,2,3] é = {edges contained in 3-cyc|es}
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Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let & be a set of elements and T a set of
subsets of cardinality 3 of &. Find the minimal cardinality subset
S C &, such that every subset of T contains at least one element of S.

n;[1,5,3,4,2] e, = (2,3)
9

n:[4,5,1,2,3] & = {edges contained in 3-cyc|es} F = {3-cycles}
n[5,4,1,2,3]
TC3=[5,2,3,4,1]

ey = (4.,2) 2,3.4) =1,
e; = (3,4)

e, = (1,3) (1,3,4) =1,
es = (4,1)

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979,
IWOCA 2018, pp. 224-236, 2018.

LSD & LAW 2019 18 /20




3-Hitting Set Problem

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let & be a set of elements and T a set of
subsets of cardinality 3 of &. Find the minimal cardinality subset
S C &, such that every subset of T contains at least one element of S.

n:[4,5,1,2,3] & = {edges contained in 3-cyc|es} F = {3-cycles}
n:[5,4,1,2,3]

n,;[1,5,3,4,2] Z
n;05,2,3,4,1] e; = (2,3)

ey = (4.,2) 2,3.4) =1,
e; = (3,4)

e, = (1,3) (1,3.4) =1

€5 = (4,1)/

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979,
IWOCA 2018, pp. 224-236, 2018.

LSD & LAW 2019 18 /20




3-Hitting Set Problem

Milsoz et al. 2018*: Link with the 3-Hitting Set Problem

3-Hitting Set Problem: Let & be a set of elements and T a set of
subsets of cardinality 3 of &. Find the minimal cardinality subset
S C &, such that every subset of T contains at least one element of S.

n;[1,5,3,4,2] e, = (2,3)
9

n:[4,5,1,2,3] & = {edges contained in 3-cyc|es} F = {3-cycles}
n[5,4,1,2,3]
TC3=[5,2,3,4,1]

¢, = (4.2) (2.3.4) =1,

e, = (1,3) (1,3.4) =1,

€5 = (4,1)/

* R. Milosz, S. Hamel et A. Pierrot, Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem, LNCS 10979,
IWOCA 2018, pp. 224-236, 2018.

LSD & LAW 2019 18 /20




3-Hitting Set Problem
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Conjecture 2: 3-Hitting Set Conjecture for 3 permutations
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Conjecture 2: 3-Hitting Set Conjecture for 3 permutations

Let AC S, be a set of 3 permutations. Let G4= (V,E)be its majority

graph. Let & be the set of edges of G4 involve in 3-cycles. Let T be
the set of 3-cycles of G,

Then, 3 an optimal solution S of the 3-Hitting Set problem on &and T,
for which a median permutation can be constructed by reversing all

edges € S in G4 and taking the topological ordering of the nodes of
the resulfing graph.

— solving the median of 3 permutations problem amounts to
solving a 3-Hitting Set Problem.

—> ILP solving 19x faster on random data sets and 187x faster
on real data sefs!!
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Conclusion

Conclusion:

- major order theorems (MOT and MOTe) that solve the relative order of pairs of
elements in a median

- major order theorems less restrictive than the 3/4 majority rule of Betzler et al.
and more englobing than the always theorem

- for the 3 permutations case, the 3-cycle theorem is the best space reduction
technique, up to date

- we conjecture that the 3-cycle theorem still holds for sets containting an odd
number of permutations

- the median of 3 permutations problem is linked to the 3-Hitting set problem

- this give us that the 3-Hitting set problem is a really tight lower
bound for the median of 3 permutfations problem

- we conjecture that solving the median of 3 permutations problem amounts fo solving
its corresponding 3 Hifting set problem

LSD & LAW 2019
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Space reduction

Real data from PrefLib.org™:

C D
nb max nb
constr. | constr.

302 406
185 190
946 946
1848 2016
276 276
1457 2211
250 253
662 861
326 378
39 29

2283 2415
1524 2211
1856 1953
253 253
894 903
187 210
91 91

253 253
780 780
1046 1326

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.
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Space reduction

Random uniform data:

Real data from PrefLib.org™:

C

D

A

B

nb

constr.

max nb
constr.

# 3-cycles

max
# 3-cycles

302

406

123

1015

185

190

58

330

946

946

773

3542

1848

2016

2356

10912

276

276

139

572

1457

2211

1839

12529

250

253

97

506

662

861

566

3080

326

378

145

910

39

29

7

59

2283

2415

3331

14280

1524

2211

2846

12529

1856

1953

1769

10416

253

253

155

506

894

903

566

3311

187

210

100

385

91

91

17

112

253

253

122

506

780

780

507

2660

1046

1326

832

5850

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.
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Space reduction

Random uniform data:

Real data from PrefLib.org™:

C

D

A

B

nb

constr.

max nb
constr.

# 3-cycles

max
# 3-cycles

302

406

123

1015

185

190

58

330

946

946

773

3542

1848

2016

2356

10912

276

276

139

572

1457

2211

1839

12529

250

253

97

506

662

861

566

3080

326

378

145

910

39

29

7

59

2283

2415

3331

14280

1524

2211

2846

12529

1856

1953

1769

10416

253

253

155

506

894

903

566

3311

187

210

100

385

91

91

17

112

253

253

122

506

780

780

507

2660

1046

1326

832

5850

* N. Mattei et T. Walsh, Preflib: A library of preference data, Lecture Notes in Computer Science 8176, pp. 259-270, 2013.
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Conclusion

Given a set of m permutations 4 C S,,, we want

to find a permutation 7" such that

dKT(T('*,.A) < dKT(T(',A),VTF & Sn




Conclusion

Given a set of m permutations 4 C S,,, we want

to find a permutation 7" such that

dKT(T('*,.A) < dKT(T(',A),\V/TF & Sn

This median is not always unique




Conclusion

Average number of permutations in M(A) for uniformly distributed random sets A of m
permutations of length n. Statistics generated over 100 to 1000 instances.

15

0.0
14253.8
6.2
1614.9
315.6
3.8
D9.9
2.9




Space reduction

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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Space reduction

Milsoz et al. 2016*: Major Order Theorems

Implementation characteristics:

e Implemented in Java (by Robin)

e Theoretical complexity of O(n’mk):

nm—1)

pairs, n elements, m permutations, £ iterations

e In practice,1 <k <9 if n <400

e Time for calculating the MOTs is small: < 30 seconds for
n <400 and m =3

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.

Journées Mastodons 12/23




Space reduction

Applicability of the 3/4 majority rule, in %, on sets Inclusion, in %, of the 3/4 majority rule, in
of uniformy distributed random permutations. Major Order Theorem on the same generated
Statistics generated over 10 000 - 400 000 instances: sets

m\n | S8 S| SO W A1 0 X 01 S

0.8%
16.4%
2.19%
0.41%

0.08%
0.88%
0.22%
0.05%
0%
0%

0.55%
12.88%
1.57%
0.28%
0.05%
0.6%
0.14%
0.03%
0%
0%

Journées Mastodons

0.41%
10.37%
1.16%
0.2%
0.03%
0.43%
0.09%
0.02%
0%
0%

0.12%
3.93%
0.37%
0.05%
0.01%
0.12%
0.02%
0%
0%
0%

0. 05%
1.92%
0.18%
0.02%
0%
0.06%
0.01%
0%
0%
0%

* R.Milosz and S.Hamel, Medians of permutations: building constraints, Lecture Notes in Computer Science 9602, pp. 264-276, 2016.
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Space reduction

Inclusion, in %, of the 3/4 majority rule, in
Major Order Theorem on the same generated
sets

Applicability of the 3/4 majority rule, in %, on sets
of uniformy distributed random permutations.
Statistics generated over 10 000 - 400 000 instances:

mn] 8 [ 9 [ 10 [ 15 [

m\n | S8 S| SO W A1 0 X 01 S

0.8%
16.4%
2.19%
0.41%
0.08%
0.88%
0.22%
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