Constructing Antidictionaries

in Output-Sensitive Space

Lorraine Ayad Golnaz Badkobeh Gabriele Fici
Alice Héliou Solon Pissis

LSD/LAW 2019
London, UK, 7-8 Feb. 2019

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition
A word v is an absent word of some word w if v does not occur as a

factor in w.

An absent word is minimal if all its proper factors occur in the word w.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition
A word v is an absent word of some word w if v does not occur as a

factor in w.

An absent word is minimal if all its proper factors occur in the word w.

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition
A word v is an absent word of some word w if v does not occur as a

factor in w.

An absent word is minimal if all its proper factors occur in the word w.

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

@ Bioinformatics (e.g., pathogen-specific signature)

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

@ Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered, consisting
of those MAWSs whose length is bounded by some threshold £.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Properties of Minimal Absent Words

The theory of MAWs is well developed. For example, it is know that:

@ A word of length n has O(n) different MAWSs, which can be stored
occupying O(n) total space.

One can compute the antidictionary of a word of length n in O(n)
time and space.

(2]

@ Any word of length n can be reconstructed in O(n) time and space
from its (complete) antidictionary.

()

The maximal length of a MAW equals 2 + the maximal length of a
repeated factor. Thus, for a random? word of length n, the longest
MAW has length ©(log s, n).

?generated by a Bernoulli i.i.d. source

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Algorithms for Computing Minimal Absent Words

There exist several efficient algorithms for computing the (reduced)
antidictionary of a word of length n, e.g.:

e O(n) time and space using a global data structure (e.g., SA)
[Barton, Héliou, Mouchard, Pissis, 2014]

— can be executed in external memory
[Héliou, Pissis, Puglisi, 2017]

e O(n) + |M| time using O(min{n, £z}) space, where z is the size of
the LZ77 factorization, using the truncated DAWG
[Fujishige, Takuya, Diptarama, 2018]

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Algorithms for Computing Minimal Absent Words

There exist several efficient algorithms for computing the (reduced)
antidictionary of a word of length n, e.g.:

e O(n) time and space using a global data structure (e.g., SA)
[Barton, Héliou, Mouchard, Pissis, 2014]

— can be executed in external memory
[Héliou, Pissis, Puglisi, 2017]

e O(n) + |M| time using O(min{n, £z}) space, where z is the size of
the LZ77 factorization, using the truncated DAWG
[Fujishige, Takuya, Diptarama, 2018]

However, all these algorithms require 2(n) space due to the construction
of a global data structure on the input word.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWSs has been
studied for several sequences.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWSs has been
studied for several sequences.

In the human genome (n ~ 3 x 10%) we have || M2 ~ 105|| = o(n)
(while [|[M19]] = 0).

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWSs has been
studied for several sequences.

In the human genome (n ~ 3 x 10%) we have || M2 ~ 105|| = o(n)
(while [|[M19]] = 0).

Problem

Compute the (reduced) antidictionary in output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Idea:

@ Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ¢ so as not to
lose information.

Y = 1 #Y2H# - Huk, #¢3

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Idea:

@ Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ¢ so as not to
lose information.

Y = 1 #Y2H# - Huk, #¢3

@ Then compute the MAWSs of the input word y incrementally, from
the MAWSs of the concatenation of these & words.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Idea:

@ Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ¢ so as not to
lose information.

Y = 1 #Y2H# - Huk, #¢3

@ Then compute the MAWSs of the input word y incrementally, from
the MAWSs of the concatenation of these & words.

Formally, we state the following

Given k words y1,ya, . .., yr over an alphabet ¥ and an integer ¢ > 0,
compute the set Mél#n'#yk of minimal absent words of length at most ¢

of y = y1#y2#t ... Fyr, # ¢ 2.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Here is an illustration of the theoretical setting: Let y = y1#yo.
We are allowed to store in internal memory y; and yo but not y.

. ¢ ¢ ¢
Our goal is to compute M, from M, and M, .

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Here is an illustration of the theoretical setting: Let y = y1#yo.
We are allowed to store in internal memory y; and yo but not y.

. ¢ ¢ ¢
Our goal is to compute M, from M, and M, .

Let x € Mg. We separate two cases:
¢ ¢
Q 7 belongs to M, UM, (Case 1)
¢ ¢
© 7 does not belong to M, UM, (Case 2)

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Lemma (Case 1)

A word € Mf,l (resp. x € Mf;z) belongs to Mf, if and only if z is a
superword of a word in Mfﬂ (resp. in ./\/lil).

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Lemma (Case 1)

A word € Mf,l (resp. x € Mf;z) belongs to Mi if and only if z is a
superword of a word in Mfﬂ (resp. in ./\/lil).

Example

Let y; = abaab, ys = bbaaab and ¢/ = 5. y = abaab#bbaaab. We have
Mil = {bb,aaa,bab,aaba} and

Mf;z = {bbb,aaaa,baab,aba,bab,abb}.

The word bab is contained in /\/le ﬁ./\/lZ so it belongs to MZ The

word aaba € ./\/lz is a superword of aba € Mz hence aaba € Me On
the other hand, the words bbb, aaaa and abb are superwords of words in
Myl' hence they belong to ./\/lé The remaining MAWSs are not
superwords of MAWSs of the other word.

Mg I’W(./\/li1 U./\/liz) = {aaaa,bab,aaba,abb,bbb}.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWS, RZ as those sets obtained from
Me. after removing those words that are superwords of a word in /\/lg_,

(0.7} = {1,2).

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWS, RZ as those sets obtained from
Me. after removing those words that are superwords of a word in /\/lz ,

(0.7} = {1,2).

Lemma (Case 2)

Let z € Mf; \(/\/lf,1 U/\/lf;g). Then x has a prefix x; in Rf; and a suffix
x; inRY | fori,j such that {i,j} = {1,2}.
J Yj

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWS, RZ as those sets obtained from
Me. after removing those words that are superwords of a word in /\/lg,,

(0.7} = {1,2).

Lemma (Case 2)

Let z € Mf; \(/\/lg1 UMf;Q). Then x has a prefix x; in Rf; and a suffix
x; inRY | fori,j such that {i,j} = {1,2}.
J Yj

Example

Let y; = abaab and y» = bbaaab. y = abaab#bbaaab. We have
th = {bb,aaa} and RgQ = {baab,aba}.

Consider z = abaaa € Mi \(/\/lf;1 U an) (Case 2 MAW).

There is a MAWz, € Riz that is a prefix of abaa and this is aba.

Analogously, there is an x; € Rf;l that is a suffix of abaaa and this is
aaa.

A\

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

9 ‘ T ‘

Let y; = abaab and y; = bbaaab. y = abaab#bbaaab. We have
Ril = {bb,aaa} and Rgz = {baab,aba}.

Consider z = abaaa € M}, \(M}, UM) (Case 2 MAW).

There is a MAWz, € RgZ that is a prefix of abaa and this is aba.
Analogously, there is an z; € Rf;l that is a suffix of abaaa and this is
aaa.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We come to the following general result, which is the theoretical basis of
our algorithm:

Theorem

Let N> 1, and let x € M, , 4, . Then, either
x € ./\/l‘f;l7‘#_7‘7&1”\]71 UMZN (Case 1 MAWs) or, otherwise,

‘ ¢ ‘ - S
T E My, uyy \(/\Zly UM,,) for some i. Morezover, in this latter case, x
has a prefix in R, 4 4, , and a suffix in R, , or the converse, i.e., ©

has a prefix in RgN and a suffix in Ril#...#wal (Case 2 MAWs).

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

At the Nth step, we have in memory the set M§1#~~~#yN—1' Our
algorithm works as follows:

@ We read word yx from the disk and compute J\/liN in time O(Jyn]|)-
@ We compute Case 1 MAWSs using the first Lemma.

@ For every i € [1, N — 1], we perform the following to compute Case
2 MAWs:

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

@ Read word y; from the disk. Construct the suffix tree T}, of word
x = y;#yn in time O(|y;| + lyn|). Use T to locate all occurrences
of elements of R, in y;.

@ Compute the set /\/lii#yN and output the words.

© Suppose au occurs in y; and ub in yy. Check whether au starts
where a word r; of RgN starts and ub ends where a word ro of
Rél#---#y_]\]—l ends. If this is the case and |u] > ma)_({\r1|,_|r2|} -1,
then aub is added to our output set M, otherwise discard it. The
case when au occurs in yny and ub in y; is treated analogously.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

Let MAXIN be the length of the longest word in {y1,...,yx} and
MAXOUT = max{|| le#_”#w [|: N e€[1,k]}.

Given k words yy,va, . .., yr and an integer £ > 0, all
/\/lil,...,./\/lil#_“#yk can be computed in

k : :
Okn+> vy ||M§1#W#W ||) total time using
O(MAXIN + MAXOUT) space, where n = |y1# . . . #yk|.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

As input dataset here we used the entire human genome (version hg38),
which has an approximate size of 3.1GB. The experiments were
conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz
and 128GB of memory running GNU/Linux.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

As input dataset here we used the entire human genome (version hg38),
which has an approximate size of 3.1GB. The experiments were
conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz
and 128GB of memory running GNU/Linux.

We ran the program by splitting the genome into k = 2,4,6, 8,10 blocks
and setting ¢ = 10,11, 12.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The figure depicts the change in elapsed time and peak memory usage as
k and ¢ increase (space-time tradeoff).

Graph (a) shows an increase of time as k and £ increase. Graph (b)
shows a decrease in memory as k increases.

100

T T
Le=10—+— | 0——
60000 -6 =10 ol 03
(=12 —— 2 ——
o L i
« L i
L M | L i
20 F g
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number k of blocks Number k of blocks
(a) (b)

Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

@ Any space-efficient algorithm designed for global data structures can
be directly applied to the k£ blocks in our technique to further reduce
the working space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

@ Any space-efficient algorithm designed for global data structures can
be directly applied to the k£ blocks in our technique to further reduce
the working space.

@ There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

@ Any space-efficient algorithm designed for global data structures can
be directly applied to the k£ blocks in our technique to further reduce
the working space.

@ There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

© Our technique could serve as a basis for a new parallelisation scheme
for constructing antidictionaries, in which several blocks are
processed concurrently.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

Thank you!

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

