
Constructing Antidictionaries
in Output-Sensitive Space

Lorraine Ayad Golnaz Badkobeh Gabriele Fici
Alice Héliou Solon Pissis

LSD/LAW 2019

London, UK, 7-8 Feb. 2019

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is an absent word of some word w if v does not occur as a
factor in w.

An absent word is minimal if all its proper factors occur in the word w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

Mw = {aaa, aaba, bab, bb}

Definition

The set Mw of MAWs of w is called the antidictionary of w.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is an absent word of some word w if v does not occur as a
factor in w.

An absent word is minimal if all its proper factors occur in the word w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

Mw = {aaa, aaba, bab, bb}

Definition

The set Mw of MAWs of w is called the antidictionary of w.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is an absent word of some word w if v does not occur as a
factor in w.

An absent word is minimal if all its proper factors occur in the word w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

Mw = {aaa, aaba, bab, bb}

Definition

The set Mw of MAWs of w is called the antidictionary of w.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Antidictionaries are used in many real-world applications:

Data compression (e.g., on-line lossless compression)

Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M` is considered, consisting
of those MAWs whose length is bounded by some threshold `.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Antidictionaries are used in many real-world applications:

Data compression (e.g., on-line lossless compression)

Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M` is considered, consisting
of those MAWs whose length is bounded by some threshold `.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Properties of Minimal Absent Words

The theory of MAWs is well developed. For example, it is know that:

Theorem

1 A word of length n has O(n) different MAWs, which can be stored
occupying O(n) total space.

2 One can compute the antidictionary of a word of length n in O(n)
time and space.

3 Any word of length n can be reconstructed in O(n) time and space
from its (complete) antidictionary.

4 The maximal length of a MAW equals 2 + the maximal length of a
repeated factor. Thus, for a randoma word of length n, the longest
MAW has length Θ(log|Σ| n).

agenerated by a Bernoulli i.i.d. source

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Algorithms for Computing Minimal Absent Words

There exist several efficient algorithms for computing the (reduced)
antidictionary of a word of length n, e.g.:

O(n) time and space using a global data structure (e.g., SA)
[Barton, Héliou, Mouchard, Pissis, 2014]

— can be executed in external memory
[Héliou, Pissis, Puglisi, 2017]

O(n) + |M`| time using O(min{n, `z}) space, where z is the size of
the LZ77 factorization, using the truncated DAWG
[Fujishige, Takuya, Diptarama, 2018]

However, all these algorithms require Ω(n) space due to the construction
of a global data structure on the input word.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Algorithms for Computing Minimal Absent Words

There exist several efficient algorithms for computing the (reduced)
antidictionary of a word of length n, e.g.:

O(n) time and space using a global data structure (e.g., SA)
[Barton, Héliou, Mouchard, Pissis, 2014]

— can be executed in external memory
[Héliou, Pissis, Puglisi, 2017]

O(n) + |M`| time using O(min{n, `z}) space, where z is the size of
the LZ77 factorization, using the truncated DAWG
[Fujishige, Takuya, Diptarama, 2018]

However, all these algorithms require Ω(n) space due to the construction
of a global data structure on the input word.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWs has been
studied for several sequences.

Example

In the human genome (n ≈ 3× 109) we have ||M12 ≈ 106|| = o(n)
(while ||M10|| = 0).

Problem

Compute the (reduced) antidictionary in output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWs has been
studied for several sequences.

Example

In the human genome (n ≈ 3× 109) we have ||M12 ≈ 106|| = o(n)
(while ||M10|| = 0).

Problem

Compute the (reduced) antidictionary in output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Number and Distribution of Minimal Absent Words

The total number and the distribution of lengths of MAWs has been
studied for several sequences.

Example

In the human genome (n ≈ 3× 109) we have ||M12 ≈ 106|| = o(n)
(while ||M10|| = 0).

Problem

Compute the (reduced) antidictionary in output-sensitive space.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Strategy

Idea:

Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ` so as not to
lose information.

y = y1#y2# · · ·#yk, # /∈ Σ

Then compute the MAWs of the input word y incrementally, from
the MAWs of the concatenation of these k words.

Formally, we state the following

Problem

Given k words y1, y2, . . . , yk over an alphabet Σ and an integer ` > 0,
compute the set M`

y1#...#yk
of minimal absent words of length at most `

of y = y1#y2# . . .#yk, # /∈ Σ.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Strategy

Idea:

Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ` so as not to
lose information.

y = y1#y2# · · ·#yk, # /∈ Σ

Then compute the MAWs of the input word y incrementally, from
the MAWs of the concatenation of these k words.

Formally, we state the following

Problem

Given k words y1, y2, . . . , yk over an alphabet Σ and an integer ` > 0,
compute the set M`

y1#...#yk
of minimal absent words of length at most `

of y = y1#y2# . . .#yk, # /∈ Σ.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Strategy

Idea:

Divide the input word y into k words each of which, alone, fits in
the internal memory, with a suitable overlap of length ` so as not to
lose information.

y = y1#y2# · · ·#yk, # /∈ Σ

Then compute the MAWs of the input word y incrementally, from
the MAWs of the concatenation of these k words.

Formally, we state the following

Problem

Given k words y1, y2, . . . , yk over an alphabet Σ and an integer ` > 0,
compute the set M`

y1#...#yk
of minimal absent words of length at most `

of y = y1#y2# . . .#yk, # /∈ Σ.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Here is an illustration of the theoretical setting: Let y = y1#y2.

We are allowed to store in internal memory y1 and y2 but not y.

Our goal is to compute M`
y from M`

y1
and M`

y2
.

Let x ∈M`
y. We separate two cases:

1 x belongs to M`
y1
∪M`

y2
(Case 1)

2 x does not belong to M`
y1
∪M`

y2
(Case 2)

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Here is an illustration of the theoretical setting: Let y = y1#y2.

We are allowed to store in internal memory y1 and y2 but not y.

Our goal is to compute M`
y from M`

y1
and M`

y2
.

Let x ∈M`
y. We separate two cases:

1 x belongs to M`
y1
∪M`

y2
(Case 1)

2 x does not belong to M`
y1
∪M`

y2
(Case 2)

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Lemma (Case 1)

A word x ∈M`
y1

(resp. x ∈M`
y2

) belongs to M`
y if and only if x is a

superword of a word in M`
y2

(resp. in M`
y1

).

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab. We have
M`

y1
= {bb,aaa,bab,aaba} and

M`
y2

= {bbb,aaaa,baab,aba,bab,abb}.
The word bab is contained in M`

y1
∩M`

y2
so it belongs to M`

y. The

word aaba ∈M`
y1

is a superword of aba ∈M`
y2

hence aaba ∈M`
y. On

the other hand, the words bbb, aaaa and abb are superwords of words in
M`

y1
, hence they belong to M`

y. The remaining MAWs are not
superwords of MAWs of the other word.

M`
y ∩(M`

y1
∪M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

Lemma (Case 1)

A word x ∈M`
y1

(resp. x ∈M`
y2

) belongs to M`
y if and only if x is a

superword of a word in M`
y2

(resp. in M`
y1

).

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab. We have
M`

y1
= {bb,aaa,bab,aaba} and

M`
y2

= {bbb,aaaa,baab,aba,bab,abb}.
The word bab is contained in M`

y1
∩M`

y2
so it belongs to M`

y. The

word aaba ∈M`
y1

is a superword of aba ∈M`
y2

hence aaba ∈M`
y. On

the other hand, the words bbb, aaaa and abb are superwords of words in
M`

y1
, hence they belong to M`

y. The remaining MAWs are not
superwords of MAWs of the other word.

M`
y ∩(M`

y1
∪M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWs, R`
yi

, as those sets obtained from

M`
yi

after removing those words that are superwords of a word in M`
yj

,
{i, j} = {1, 2}.

Lemma (Case 2)

Let x ∈M`
y \(M`

y1
∪M`

y2
). Then x has a prefix xi in R`

yi
and a suffix

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Example

Let y1 = abaab and y2 = bbaaab. y = abaab#bbaaab. We have
R`

y1
= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`

y1
∪M`

y2
) (Case 2 MAW).

There is a MAWx2 ∈ R`
y2

that is a prefix of abaa and this is aba.

Analogously, there is an x1 ∈ R`
y1

that is a suffix of abaaa and this is
aaa.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWs, R`
yi

, as those sets obtained from

M`
yi

after removing those words that are superwords of a word in M`
yj

,
{i, j} = {1, 2}.

Lemma (Case 2)

Let x ∈M`
y \(M`

y1
∪M`

y2
). Then x has a prefix xi in R`

yi
and a suffix

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Example

Let y1 = abaab and y2 = bbaaab. y = abaab#bbaaab. We have
R`

y1
= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`

y1
∪M`

y2
) (Case 2 MAW).

There is a MAWx2 ∈ R`
y2

that is a prefix of abaa and this is aba.

Analogously, there is an x1 ∈ R`
y1

that is a suffix of abaaa and this is
aaa.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We define the reduced sets of MAWs, R`
yi

, as those sets obtained from

M`
yi

after removing those words that are superwords of a word in M`
yj

,
{i, j} = {1, 2}.

Lemma (Case 2)

Let x ∈M`
y \(M`

y1
∪M`

y2
). Then x has a prefix xi in R`

yi
and a suffix

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Example

Let y1 = abaab and y2 = bbaaab. y = abaab#bbaaab. We have
R`

y1
= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`

y1
∪M`

y2
) (Case 2 MAW).

There is a MAWx2 ∈ R`
y2

that is a prefix of abaa and this is aba.

Analogously, there is an x1 ∈ R`
y1

that is a suffix of abaaa and this is
aaa.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

x2 x1

u

a bx :

Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
y2

. Then x is not absent in y2

by Fact 1, and hence in y3, thus x cannot belong to M`
y3

.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`

y1
\M`

y2
belong to M`

y3
. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
y1

obtained from M`
y1

after removing those

words that are superwords of words in M`
y2

. The set R`
y2

is defined analogously.

Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
y1

= {bb,aaa,bab,aaba}
and M`

y2
= {bbb,aaaa,baab,aba,bab,abb}. The word bab is contained in M`

y1
\M`

y2
so it

belongs to M`
y3

. The word aaba 2 M`
y1

is a superword of aba 2 M`
y2

hence aaba 2 M`
y3

. On

the other hand, the words bbb, aaaa and abb are superwords of words in M`
y1

, hence they

belong to M`
y3

. The remaining MAWs are not superwords of MAWs of the other word. The

reduced sets are therefore R`
y1

= {bb, aaa} and R`
y2

= {baab, aba}. In conclusion, we have

for Case 1 that M`
y3
\(M`

y1
[M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
y3

\(M`
y1
[M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b 2 ⌃, be such that x 2 M`
y3

and x /2 M`
y1
[M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x 2 M`
y3

\(M`
y1
[M`

y2
). Then x has a prefix xi in R`

yi
and a su�x

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b 2 ⌃, be a word in M`
y3

\(M`
y1
[M`

y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 2 M`

y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
y1

that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not

Example

Let y1 = abaab and y2 = bbaaab. y = abaab#bbaaab. We have
R`

y1
= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`

y1
∪M`

y2
) (Case 2 MAW).

There is a MAWx2 ∈ R`
y2

that is a prefix of abaa and this is aba.

Analogously, there is an x1 ∈ R`
y1

that is a suffix of abaaa and this is
aaa.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Theoretical Results

We come to the following general result, which is the theoretical basis of
our algorithm:

Theorem

Let N > 1, and let x ∈M`
y1#...#yN

. Then, either

x ∈M`
y1#...#yN−1

∪M`
yN

(Case 1 MAWs) or, otherwise,

x ∈M`
yi#yN

\(M`
yi
∪M`

yN
) for some i. Moreover, in this latter case, x

has a prefix in R`
y1#...#yN−1

and a suffix in R`
yN

, or the converse, i.e., x

has a prefix in R`
yN

and a suffix in R`
y1#...#yN−1

(Case 2 MAWs).

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

At the N th step, we have in memory the set M`
y1#...#yN−1

. Our
algorithm works as follows:

1 We read word yN from the disk and compute M`
yN

in time O(|yN |).

2 We compute Case 1 MAWs using the first Lemma.

3 For every i ∈ [1, N − 1], we perform the following to compute Case
2 MAWs:

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

1 Read word yi from the disk. Construct the suffix tree Tx of word
x = yi#yN in time O(|yi|+ |yN |). Use Tx to locate all occurrences
of elements of R`

yN
in yi.

2 Compute the set M`
yi#yN

and output the words.

3 Suppose au occurs in yi and ub in yN . Check whether au starts
where a word r1 of R`

yN
starts and ub ends where a word r2 of

R`
y1#...#yN−1

ends. If this is the case and |u| ≥ max{|r1|, |r2|} − 1,
then aub is added to our output set M , otherwise discard it. The
case when au occurs in yN and ub in yi is treated analogously.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Algorithm

Let MaxIn be the length of the longest word in {y1, . . . , yk} and
MaxOut = max{||M`

y1#...#yN
|| : N ∈ [1, k]}.

Theorem

Given k words y1, y2, . . . , yk and an integer ` > 0, all
M`

y1
, . . . ,M`

y1#...#yk
can be computed in

O(kn +
∑k

N=1 ||M`
y1#...#yN

||) total time using
O(MaxIn + MaxOut) space, where n = |y1# . . .#yk|.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

As input dataset here we used the entire human genome (version hg38),
which has an approximate size of 3.1GB. The experiments were
conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz
and 128GB of memory running GNU/Linux.

We ran the program by splitting the genome into k = 2, 4, 6, 8, 10 blocks
and setting ` = 10, 11, 12.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

As input dataset here we used the entire human genome (version hg38),
which has an approximate size of 3.1GB. The experiments were
conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz
and 128GB of memory running GNU/Linux.

We ran the program by splitting the genome into k = 2, 4, 6, 8, 10 blocks
and setting ` = 10, 11, 12.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The algorithm has been implemented in the C++ programming language.
(The implementation can be made available upon request.)

As input dataset here we used the entire human genome (version hg38),
which has an approximate size of 3.1GB. The experiments were
conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz
and 128GB of memory running GNU/Linux.

We ran the program by splitting the genome into k = 2, 4, 6, 8, 10 blocks
and setting ` = 10, 11, 12.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Proof-of-Concept Experiments

The figure depicts the change in elapsed time and peak memory usage as
k and ` increase (space-time tradeoff).

Graph (a) shows an increase of time as k and ` increase. Graph (b)
shows a decrease in memory as k increases.

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12

E
la

p
se

d
ti

m
e

[s
]

Number k of blocks

` = 10

+

+
+

+ +

+
` = 11

⇥
⇥

⇥
⇥

⇥

⇥
` = 12

⇤

⇤
⇤

⇤

⇤
⇤

(a)

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

P
ea

k
m

em
or

y
[G

B
]

Number k of blocks

` = 10+

+

+

+
+

+
` = 11

⇥

⇥

⇥
⇥

⇥

⇥
` = 12

⇤

⇤

⇤
⇤

⇤

⇤

(b)

Figure 3: Elapsed time and peak memory usage using increasing k blocks of the entire human
genome for ` = 10, 11, 12; notice that the peak memory usage is the same for all values of `.

k = 2, 4, 6, 8, 10 blocks and setting ` = 10, 11, 12. Figure 3 depicts the change in elapsed
time and peak memory usage as k and ` increase (space-time tradeo↵).

Graph (a) shows an increase of time as k and ` increase; and graph (b) shows a decrease
in memory as k increases (as proved in Theorem 3). Notice that the space to construct the
block-wise data structures bounds the total space used for the specific ` values and that is
why the memory peak is essentially the same for the ` values used. This can specifically be
seen for ` = 10 where all words of length 10 are present in the genome. The same dataset
was used to run the fastest internal memory implementation for computing MAWs [4] on the
same machine. It took only 2242 seconds to compute all MAWs but with a peak memory
usage of 60.80GB. The results confirm our theoretical findings and justify our contribution.

References

[1] Maxime Crochemore, Filippo Mignosi, and Antonio Restivo, “Automata and forbidden words,”
Information Processing Letters, vol. 67, no. 3, pp. 111–117, 1998.

[2] Panagiotis Charalampopoulos, Maxime Crochemore, Gabriele Fici, Robert Mercaş, and
Solon P. Pissis, “Alignment-free sequence comparison using absent words,” Information and
Computation, vol. 262, no. 1, pp. 57–68, 2018.

[3] Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal Mo-
hamed, Solon P. Pissis, and Dimitris Polychronopoulos, “On avoided words, absent words,
and their application to biological sequence analysis,” Algorithms for Molecular Biology, vol.
12, no. 1, pp. 5:1–5:12, 2017.

[4] Carl Barton, Alice Héliou, Laurent Mouchard, and Solon P. Pissis, “Linear-time computation
of minimal absent words using su�x array,” BMC Bioinformatics, vol. 15, pp. 388, 2014.

[5] Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda,
“Computing DAWGs and minimal absent words in linear time for integer alphabets,” in 41st
International Symposium on Mathematical Foundations of Computer Science, MFCS 2016,
August 22-26, 2016 - Kraków, Poland, Piotr Faliszewski, Anca Muscholl, and Rolf Nieder-
meier, Eds. 2016, vol. 58 of LIPIcs, pp. 38:1–38:14, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik.

[6] Panagiotis Charalampopoulos, Maxime Crochemore, and Solon P. Pissis, “On extended special
factors of a word,” In Gagie et al. [23], pp. 131–138.

[7] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen, “Versatile succinct
representations of the bidirectional Burrows-Wheeler transform,” in Algorithms - ESA 2013

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

1 Any space-efficient algorithm designed for global data structures can
be directly applied to the k blocks in our technique to further reduce
the working space.

2 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

3 Our technique could serve as a basis for a new parallelisation scheme
for constructing antidictionaries, in which several blocks are
processed concurrently.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

1 Any space-efficient algorithm designed for global data structures can
be directly applied to the k blocks in our technique to further reduce
the working space.

2 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

3 Our technique could serve as a basis for a new parallelisation scheme
for constructing antidictionaries, in which several blocks are
processed concurrently.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

1 Any space-efficient algorithm designed for global data structures can
be directly applied to the k blocks in our technique to further reduce
the working space.

2 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

3 Our technique could serve as a basis for a new parallelisation scheme
for constructing antidictionaries, in which several blocks are
processed concurrently.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

We presented a new technique for constructing antidictionaries in
output-sensitive space.

The importance of our contribution is underlined by the following:

1 Any space-efficient algorithm designed for global data structures can
be directly applied to the k blocks in our technique to further reduce
the working space.

2 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these
regularities in output-sensitive space.

3 Our technique could serve as a basis for a new parallelisation scheme
for constructing antidictionaries, in which several blocks are
processed concurrently.

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

Conclusion and Open Problems

Thank you!

L. Ayad, G. Badkobeh, G. Fici, A. Héliou, S. Pissis Constructing Antidictionaries in Output-Sensitive Space

