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Straight-line program (SLP)

A context-free grammar in Chomsky normal form with exactly one
production for each nonterminal, hence generating exactly one string.

Fibonacci words

F0 = a

F1 = b

F2 = F1F0

F3 = F2F1

F4 = F3F2

F5 = F4F3

F6 = F5F4

a

b

ba

bab

babba

babbabab

babbababbabba
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Straight-line program (SLP)

What is the size of the smallest SLP deriving a string s[1..n] over an
alphabet of size σ?

By a counting argument: Ω( n
logσ n ).

Constructing an SLP of size O( n
logσ n)

1 Let b = 1
2 logσ n.

2 For every string t s.t. |t | ≤ b prepare a nonterminal deriving t .
3 Cut s into blocks of length b and create a production

S → B1B2 . . .Bn/b, where Bi derives the i-th block.
4 Overall size is O(n/b +

∑b
i=0 σ

i) = O(n/b +
√

n).
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Top Tree Compression

Aim: to represent a tree with clusters
Cluster: a single edge or two clusters merged
Cluster: (has at most two “boundary“ nodes)

Five possible merges (Bille, Gørtz, Landau, Weimann [ICALP ’13]):
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Top Tree Compression

A

B

Compression:
1 tree T → binary tree T of clusters

goal: short
2 binary tree T → top DAG T D without repeating subtrees

goal: small
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Top tree decomposition by Bille et al.

The decomposition proceeds in iterations. Each iteration decreases
the size of the current tree by a constant factor.

Bille, Gørtz, Landau, Weimann [ICALP ’13]
The size of the top DAG is O( n

log0.19
σ n

).

Hübschle-Schneider and Raman [SEA ’15]
The size of the top DAG is O( n

logσ n log logσ n).

Similarly as for SLP, the size of the top DAG is Ω( n
logσ n ).

Is the analysis of Hübschle-Schneider and Raman tight?
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Single iteration of the algorithm by Bille et al.

horizontal vertical

Such iteration decreases the size of the current tree by a constant
factor.
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A difficult instance

For every k we construct a tree on n = Θ(σ8k
) nodes for which the top

DAG is of size Θ( n
logσ n log logσ n).

Let t = 8k . A gadget Gk contains 2k − 1 full ternary trees on 3k leaves,
and a path on 8k nodes.
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) nodes for which the top

DAG is of size Θ( n
logσ n log logσ n).

Let t = 8k . A gadget Gk contains 2k − 1 full ternary trees on 3k leaves,
and a path on 8k nodes.

SkSkSk

︸ ︷︷ ︸
tε

′

Pk

3k steps
CS CSCS CP
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A difficult instance
The whole instance consists of Θ(n/t) copies of the gadget Gk with
the labels of the paths chosen to spell out distinct words of length 8k .

After the initial 3k iterations:
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G
(2)
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(1)
k G

(n/t)
k

P
(n/t)
kP

(2)
k
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P
(1)
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After the initial 3k iterations:

CS CS C
(n/t)
PCS CS C

(2)
PCS CS C

(1)
P · · ·
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A difficult instance

CS CS C
(n/t)
PCS CS C

(2)
PCS CS C

(1)
P · · ·

Now each of the n/t distinct clusters C(i)
P is merged with its 2k − 1

neighbors CS in k = log t iterations and introduces new clusters.
As t = logσ n:

There are Ω(n/t · log t) = Ω( n
logσ n log logσ n) different clusters in the top

DAG.

Slightly more complicated construction works for unlabeled trees.
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An optimal compression algorithm

Our instance exploits the fact that different parts of the tree are being
shrunk with different speeds. Can this be avoided?

Yes!
Simply slow down the compression.

In t-th iteration merge only clusters smaller than αt for some α < 2.
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An optimal compression algorithm

1: T̃ := T
2: initialize leaves of T with edges of T
3: for t = 1, . . . ,Θ(log n), as long as T̃ is not a single edge do
4: list merges that would have been made by one original iteration
5: filter out the merges that use a cluster of size bigger than αt

6: modify T̃ and T by applying the remaining merges
7: construct DAG T D of T

If we have m = p + q clusters after t − 1 iterations, q larger than αt ,
then the next iteration decreases this to 7/8m + q.

After t iterations there are O(n/αt+1) clusters in T̃ , for α = 10/9.

By appropriately choosing t and a similar calculation as the one used
for SLP we obtain that the size of the top DAG is O(n/ logσ n).
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An optimal compression algorithm

Lohrey, Reh, and Sieber arXiv 2017
Another construction algorithm guaranteeing that the size of the top
DAG is O(n/ logσ n).

(but less “uniform”)

Questions?
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