
Forward Private Searchable Symmetric
Encryption with Optimized I/O Efficiency

Changyu Dong
<changyu.dong@newcastle.ac.uk>

Joint work with Xiangfu Song,
Dandan Yuan, Qiuliang Xu,
Minghao Zhao

Motivation: Data Outsourcing

Explosive growth in enterprise data

storage needs grow 52% per year [Forrester Research]
escalating storage management costs: $9,555/TB/year
[Forrester Research]

Increased importance of data availability and business
continuity

remote backup to prevent data loss in disasters like 9.11

Here they come to help you!

Amazon, Google, IBM, Microsoft, HP . . .
. . . by providing cheap-as-chips data storage outsourcing
service.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 2 / 25

You Don’t Trust Them, Do You?

You might save money, you might get better fault-tolerance,
you might even get better performance.

But how about data confidentiality and privacy? Do you really
want someone else to see and control all your sensitive data?

A True Story

In Oct 2003, a woman in Pakistan obtained sensitive patient
documents from the University of California, San Francisco,
Medical Centre through a medical transcription subcontractor that
she worked for, and she threatened to post the files on the Internet
unless she was paid more money.

“Your patient records are out in the open... so you
better track that person and make him pay my dues.”

– San Francisco Chronicle (October 22, 2003)

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 3 / 25

Question

How do we store sensitive data on an untrusted server?

Answer

Encrypt the data before sending it to the server

hides all information about data

the server performs only basic I/O functions and has no
knowledge of what is stored

But

users must download all data, decrypt and perform operations
locally

Can we let the server do more?

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 4 / 25

Searchable Encryption

Typical scenario:

User has a collection of data items that each associates with a
set of keywords, e.g. “new iPhone design”, “list of CIA agents”
The data items and keywords are encrypted before sending to
the server

Functionality: the server should support the following type of
queries:

“Find all data items that contain a given keyword”

Confidentiality: Allow the server to help, but reveal as little
information as possible

First paper published in 2000, now 7,270 results in Google
scholar (Feb, 2019)

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 5 / 25

Query Privacy

The server should not know the plaintext of keywords being
queried.

Server

Client

keyword

token

adversary

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 6 / 25

File Injection Attack

In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

Server

Client adversary

tokens submitted
in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 7 / 25

File Injection Attack

In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

Server

Client adversary

tokens submitted
in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 7 / 25

File Injection Attack

In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

Server

Client adversary

tokens submitted
in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 7 / 25

File Injection Attack

In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

Server

Client adversary

tokens submitted
in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 7 / 25

File Injection Attack

In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

adversary
tokens submitted

in previous queries

X
<latexit sha1_base64="CqDSDieBjbwwNIQYnHQ0d32fBws=">AAACGnicbVC7SgNBFL0bXzG+opZpFoNgFXZttBGDNpYRzAOSEGZnb5Ihsw9m7ophCeh/2NvqL9iI2Nr4B36Gk0ehiQcGDufcO4d7vFgKTY7zZWWWlldW17LruY3Nre2d/O5eTUeJ4ljlkYxUw2MapQixSoIkNmKFLPAk1r3B5div36LSIgpvaBhjO2C9UHQFZ2SkTr7QIryjyT+pQn+Utngf+SBgajDq5ItOyZnAXiTujBTP33Jn9wBQ6eS/W37EkwBD4pJp3XSdmNopUyS4xFGulWiMGR+wHjYNDVmAup1Owkf2oVF8uxsp80KyJ+rvjZQFWg8Dz0wGjPp63huL/3qazDVD5c/lU/e0nYowTghDPo3vJtKmyB73ZPtCISc5NIRxJcwFNu8zxTiZNnOmGne+iEVSOy65Tsm9dovlC5giCwU4gCNw4QTKcAUVqAKHB3iCZ3ixHq1X6936mI5mrNnOPvyB9fkDqZqkZA==</latexit><latexit sha1_base64="gaTbvwFZxbUVT0Os97s7ji67zmA=">AAACGnicbVC7SgNBFJ31GdfXqmWaxSBYhV0bbcSgjWUE84BsCLOzN8mQ2Qczd8WwpPA/7Cxs9RdsRGwF8Q/8DCebFJp4YOBwzr1zuMdPBFfoOF/GwuLS8spqYc1c39jc2rZ2dusqTiWDGotFLJs+VSB4BDXkKKCZSKChL6DhDy7GfuMGpOJxdI3DBNoh7UW8yxlFLXWsoodwi/k/mYRglHmsD2wQUjkYdaySU3Zy2PPEnZLS2at5mjx8mtWO9e0FMUtDiJAJqlTLdRJsZ1QiZwJGppcqSCgb0B60NI1oCKqd5eEj+0Argd2NpX4R2rn6eyOjoVLD0NeTIcW+mvXG4r+eQn3NUAYz+dg9aWc8SlKEiE3iu6mwMbbHPdkBl8BQDDWhTHJ9gc36VFKGuk1TV+POFjFP6kdl1ym7V26pck4mKJAi2SeHxCXHpEIuSZXUCCN35JE8kWfj3ngx3oz3yeiCMd3ZI39gfPwAuyGl2A==</latexit><latexit sha1_base64="gaTbvwFZxbUVT0Os97s7ji67zmA=">AAACGnicbVC7SgNBFJ31GdfXqmWaxSBYhV0bbcSgjWUE84BsCLOzN8mQ2Qczd8WwpPA/7Cxs9RdsRGwF8Q/8DCebFJp4YOBwzr1zuMdPBFfoOF/GwuLS8spqYc1c39jc2rZ2dusqTiWDGotFLJs+VSB4BDXkKKCZSKChL6DhDy7GfuMGpOJxdI3DBNoh7UW8yxlFLXWsoodwi/k/mYRglHmsD2wQUjkYdaySU3Zy2PPEnZLS2at5mjx8mtWO9e0FMUtDiJAJqlTLdRJsZ1QiZwJGppcqSCgb0B60NI1oCKqd5eEj+0Argd2NpX4R2rn6eyOjoVLD0NeTIcW+mvXG4r+eQn3NUAYz+dg9aWc8SlKEiE3iu6mwMbbHPdkBl8BQDDWhTHJ9gc36VFKGuk1TV+POFjFP6kdl1ym7V26pck4mKJAi2SeHxCXHpEIuSZXUCCN35JE8kWfj3ngx3oz3yeiCMd3ZI39gfPwAuyGl2A==</latexit><latexit sha1_base64="l1yux3LEBCNHf8OWsTBjZWP/ykQ=">AAACGnicbVC7TsNAEDyHVwgvA2UaiwiJKrJpoIygoQwSeUhJFJ3Pm+SUO9u6WyMiywX/QU8Lv0CHaGn4Az6Di+MCEkY6aTSze6MdPxZco+t+WaW19Y3NrfJ2ZWd3b//APjxq6yhRDFosEpHq+lSD4CG0kKOAbqyASl9Ax59ez/3OPSjNo/AOZzEMJB2HfMQZRSMN7Wof4QHzf1IFQZb22QTYVFI1zYZ2za27OZxV4hWkRgo0h/Z3P4hYIiFEJqjWPc+NcZBShZwJyCr9RENM2ZSOoWdoSCXoQZqHZ86pUQJnFCnzQnRy9fdGSqXWM+mbSUlxope9ufivp9FcM1PBUj6OLgcpD+MEIWSL+FEiHIyceU9OwBUwFDNDKFPcXOCwCVWUoWmzYqrxlotYJe3zuufWvVuv1rgqSiqTKjkhZ8QjF6RBbkiTtAgjj+SZvJBX68l6s96tj8VoySp2jskfWJ8/EsSilw==</latexit>

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 7 / 25

Forward Privacy

Informally, the adversary should not be able to link newly
inserted file in anyway to previous search queries

until the link being revealed in a future search query

adversary
tokens submitted

in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 8 / 25

Prior Work on Forward Private Searchable Encryption

Chang and Mitzenmacher 2005

search query size grows linearly in the number of updates,
communication cost for the search will eventually become
unacceptable.

Stefanov et al. 2014, Garg et al. 2016, Hoang et al. 2016

use ORAM like structures
communication cost is too high
not practical

Sophos (Bost, CCS 2016)

first practical scheme
communication complexity is optimal 3
search operation is public key based (slow) 7
slow I/O due to access (read & write) to storage media is
random 7

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 9 / 25

I/O Efficiency

Random access

Slow

sequential access

fast

fast

Slow

More to read

Less to read

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 10 / 25

Our Contributions

FAST (Forward privAte searchable Symmetric encrypTion):
Uses only symmetric key crypto

FASTIO (FAST + I/O Optimized): as the name suggests.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 11 / 25

How Forward Privacy was Achieved in Sophos?

The client stores a state, and update it every time inserting a
new file.

When inserting a new file, the client also inserts an index
entry (to enable search)

The state is used as an input to encrypt the index entry

The search token is essentially the latest state

The server can compute all previous states from the token

Each state matches the corresponding index entry.

The function to update the state is public key based:

The server who has the public key can only go backward to the
previous states of the given one – but not to later states
Only the client can evolve the state forward using the private
key.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 12 / 25

How Forward Privacy was Achieved in Sophos?

Server

Client adversary

tokens submitted
in previous queries

st1

st2

st3st2

st1

st3

st4

st4

st4

st4

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 13 / 25

How About Symmetric Key Crypto?

There is only one key, not two

So Bost’s strategy cannot be migrated to symmetric key
crypto.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 14 / 25

How did we solve it?

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 15 / 25

Simplified Version

Warning: this is not an accurate description

When inserting the i-th file, we generate a fresh key ki .

The new state is the encryption of the previous state
sti = Eki (sti−1).

The index entry contains the pointer along with the new key,
encrypted under the new state

(pointeri ||ki)⊕ H(sti) (slightly simplified version)

Given sti , the server can compute H(sti), then recover
pointeri ||ki
With ki , the server can obtain the previous state
sti−1 = Dki (sti)

With sti−1 the server can recover the state sti−2 and
pointeri−1

Thus finds all files up to sti

But no way to get sti+1

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 16 / 25

How did we solve it?

Server

adversary

tokens submitted
in previous queries

st1

st2

st1

st3

k1

st2

k2

st3

k3

st4

k4

st3

k3

st2

k2k1

st1

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 17 / 25

I/O Efficiency

During search, the server needs to read the index from the disk

The index entries are placed at random locations in an index
file

The ciphertext (pointeri ||ki)⊕ H(sti) is 100% larger than the
plaintext.

Both are bad for I/O

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 18 / 25

FASTIO

Setup(�,?;?)

Client:
1: ks

$ � {0, 1}�
2: ⌃⌃⌃ empty map

Server:
3: Te, Tc empty map

Update(ks,⌃⌃⌃, ind, w, op; Te)

Client:
4: (st, c) ⌃⌃⌃[w]
5: if (st, c) = ? then
6: st

$ � {0, 1}�
7: c 0
8: end if
9: u H1(st||(c + 1))

10: e (ind||op)�H2(st||(c + 1))
11: ⌃⌃⌃[w] (st, c + 1)

12: send (u, e) to server

Server:
13: Te[u] = e

Search(ks,⌃⌃⌃, w; Te, Tc)

Client:
14: (st, c) ⌃⌃⌃[w]
15: if (st, c) = ? then
16: return ;
17: end if
18: tw F (ks, h(w))
19: if c 6= 0 then
20: kw st, st

$ � {0, 1}�
21: ⌃⌃⌃[w] (st, 0)
22: else
23: kw ?
24: end if
25: send (tw, kw, c) to Server

Server:
26: ID ;
27: ID.add(Tc[tw])
28: if kw =? then
29: return ID
30: end if
31: for i = 1 to c do
32: ui H1(kw||i)
33: (ind, op) Te[ui]�H2(kw||i)
34: if op = “del” then
35: ID ID� {ind}
36: else if op = “add” then
37: ID ID [{ind}
38: end if
39: delete Te[ui]
40: end for
41: Tc[tw] ID
42: send ID to client

Fig. 3: Pseudocode of Protocols in FASTIO

(a) |DB| = 14⇥ 106 (b) |DB| = 14⇥ 107 (c) |DB| = 14⇥ 108

Fig. 4: Search time per matched document for FAST, FASTIO and Sophos.

In practice, the document identifiers need to be long enough to be
unique and l is often large, e.g. 128. Then the server side index
size and read efficiency in FASTIO are only less than 1% worse
than optimal.

The locality can be improved because reading the previous
search query result can be done in one go. If there have been
c̄w new updates after the last search query, we need c̄w non-
contiguous reads (this part cannot be improved by caching pre-
vious result). Therefore the overall locality is c̄w + 1 (in contrast
to cw). As we have discussed in Section 3.5, locality and forward
privacy are two irreconcilable notions. The implication is that,
as Bost observed, the worst-case locality cannot be improved
unless large modifications is done to the encrypted database. If
the keyword is rarely searched, the optimization has little effect.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FAST and FASTIO,
and compare the results with Sophos, which is the most efficient
forward private searchable encryption to date.

6.1 Implementation and Experiment Settings

We implemented FAST and FASTIO using C++1. We use Cryp-
to++ library2 for the cryptographic operations: SHA256 for H1

and H2, and AES-128 for F and P . To make the comparison fair,
in our implementation, we use the same underlying libraries as in
the Sophos implementation: Rocksdb3 for storing key-value pairs
and gRPC4 for communication. We used the C++ implementation
of Sophos5 by the author in our comparison. The identifier length
is set to 64-bit in all schemes. The server is deployed on an Alibaba
Cloud ECS.i1.xlarge instance located in US West, which has 4
cores (Intel Xeon E5-2682v4, 2.5 GHz), 16GB RAM and 2⇥ 104
GB SSD disks. The client is deployed on a desktop PC located
in China, which has 4 cores (Intel Core i5-3470, 3.7Ghz), 4 GB
RAM and 500 GB hard disk.

1. https://github.com/BintaSong/DistSSE/tree/2.0
2. https://cryptopp.com
3. http://rocksdb.org
4. http://www.grpc.io
5. https://gitlab.com/sse/sophos

8

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 19 / 25

High Level Ideas

The server caches the search results after each search

This does not leak more information to the server
The server already knows the results, and has the token that
can be used to re-generate it again

The client only updates the state when a search query is
performed

Instead of every file update
The states are truly random and independent
In between two search queries, sub-states are derived using a
counter
No need to store keys because there are no keys

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 20 / 25

Consequences

Entries from previous search now can be accessed sequentially,
and only new entries after the last search still need random
access;

Small ciphertext expansion rate, less than 1%, ciphertext size
is pointer size + 1 bit.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 21 / 25

Update Efficiency

6.2 Experiment Results
6.2.1 Update Efficiency
We first show the performance of the update operation. As we
explained earlier, the update operation in Sophos is based on
a public key primitive, while update operations in FAST and
FASTIO are all symmetric key based. We first measured the update
efficiency of FAST, FASTIO and Sophos in a local setting in which
we ran the client and the server on the same cloud instance. In this
setting, the time we measured does not include latency caused
by network, therefore it gives a better picture of the difference in
computational efficiency. We then measured the update efficiency
in a WAN setting, in which the server (in US) and the client (in
China) are distributed. The results are shown in Table 1.

As we can see, in the local setting, the throughput of FAST
is about 11⇥, and FASTIO is about 15⇥, that of Sophos. In the
WAN setting, the throughput of FAST is about 7⇥, and FASTIO
about 10⇥, that of Sophos. The results confirm that FAST and
FASTIO are superior in terms of update efficiency, compared to
public key based Sophos.

FAST FASTIO Sophos

Local Throughput (ops/s) 54060 76100 4890
Single update time (ms) 0.018 0.013 0.20

WAN Throughput (ops/s) 21650 31080 2990
Single update time (ms) 0.046 0.032 0.334

TABLE 1: Update efficiency for FAST, FASTIO and Sophos

6.2.2 Search Efficiency – Index Processing
For FAST, FASTIO and Sophos, the search operation on the server
side requires processing a list of encrypted index entries to find
matching documents. The search efficiency thus depends crucially
on the efficiency of processing the index. In Fig. 4, we show the
performance of index processing in the three schemes.

We conducted three experiments with different database sizes
14⇥106, 14⇥107 and 14⇥108. In each experiment, we measured
the total time on the server side (i.e. without counting network
latency and token generation time on the client side) for searching
keywords that have 10 � 105 matching documents. We repeated
30 times and took the average, then divided it by the number
of matching documents to get the time for processing a single
entry. As we can see in the figure, the time for processing a
single entry decreases when the number of entries increases. This
is because there is a fixed cost for initializing the search, which
is amortized into the per entry processing time. As the number
of entries increases, the amortized initialization cost becomes less
significant. When the database size is 14 ⇥ 106 and 14 ⇥ 107,
FAST performs better than FASTIO and Sophos in the cases where
the number of entries is small (10). This is because FAST has a
smaller initialization cost, which is the result of an implementation
level optimization.

We can observe the impact of I/O from Fig. 4. As we can
see, for the same scheme and the same index size, the time we
measured with the largest database (14 ⇥ 108) is much higher
than the time we measured with the smaller databases (14 ⇥ 106

and 14 ⇥ 107). The performance degradation is about 2 orders
of magnitude. The observation is in line with the results from
previous studies (see Section 2). We can also see that FAST was
impacted the most as it has the worst I/O efficiency.

In smaller databases where I/O does not dominates the pro-
cessing time, FASTIO performs much better than Sophos. The

performance difference is about 1 - 2 times. This is mainly because
FASTIO uses only symmetric key operations. In large databases,
the performance difference is not that large, but FASTIO still
performs marginally better than Sophos.

Even though FAST is based on symmetric primitives, we can
observe that compared to Sophos, the efficiency improvement for
search (around 2 ⇥ faster) is not as significant as that with update
(10⇥ faster). One reason is that in the Sophos implementation, the
trapdoor permutation evaluation (for generating previous states) on
the server side is done by a dedicated thread, and there are multiple
threads taking the states produced and searching in parallel. While
in FAST, due to its inherent structure (conceptually a linked list),
the search cannot be parallelized because the previous state cannot
be found until the search has gone through the current node.
FASTIO does not have this problem.

6.2.3 Search Efficiency – Trace Simulation
The experiments in Section 6.2.2 do not fully reflect the search
performance of FASTIO. In fact, it shows the worst-case perfor-
mance of FASTIO. Recall that in FASTIO, the previous search
results are stored to make search more efficient. In order to
see how significant this improvement is, we also simulated the
dynamic setting using traces. We generated 3 traces. Each trace is
a list of update and search queries for a certain keyword. We fixed
the length of the trace to 100,000. Each trace has a parameter ↵
that is the probability of search queries, i.e. each query in the trace
has a probability of ↵ to be a search query and a probability of
1 � ↵ to be an update query. In the experiment, we let the client
to replay the traces to simulate a real-world setting where updates
and search queries are interleaved. We recorded the total time on
the server side for each search query (from receiving search token
to obtaining the results) in the trace.

In Fig. 5, we show the comparison of search efficiency with
regard to the random traces. We used three different database
sizes and three different query probabilities. In each sub-figure,
the x-axis shows the sequence number of the query in the trace
and the y-axis shows the search time. For FAST and Sophos, the
search time increases almost monotonically in accordance to the
number of update queries performed so far. Recall that in these
two schemes, their indexes contain all entries from all previous
updates. The index entries have to be stored in random locations in
order to ensure forward privacy, this results in the decrease of I/O
efficiency as the locality will increase monotonically. For FASTIO,
as we can see, the search performance is much better, especially
when search is more frequent. The difference is more significant
for large databases. This is because in FASTIO, the index contains
only entries since the last search query. The locality is much better
than in the other two schemes.

In Fig. 6, we show the search time of FASTIO with regard to
the traces. As we can see, despite the large number of updates,
FASTIO’s search time is always kept low. Obviously the more
frequent the search queries are performed, the more performance
gain we will see. This suggest that FASTIO has a better scalability,
as frequent updates and large database size has a much less impact
on its search performance than in the other two schemes.

7 CONCLUSION

Designing searchable symmetric encryption is not trivial if we
want to combine efficiency and forward privacy, which are two
irreconcilable properties. In this paper, we designed two forward

9

WAN: server @ US west, client@ China

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 22 / 25

Search time per matched file

Setup(�,?;?)

Client:
1: ks

$ � {0, 1}�
2: ⌃⌃⌃ empty map

Server:
3: Te, Tc empty map

Update(ks,⌃⌃⌃, ind, w, op; Te)

Client:
4: (st, c) ⌃⌃⌃[w]
5: if (st, c) = ? then
6: st

$ � {0, 1}�
7: c 0
8: end if
9: u H1(st||(c + 1))

10: e (ind||op)�H2(st||(c + 1))
11: ⌃⌃⌃[w] (st, c + 1)

12: send (u, e) to server

Server:
13: Te[u] = e

Search(ks,⌃⌃⌃, w; Te, Tc)

Client:
14: (st, c) ⌃⌃⌃[w]
15: if (st, c) = ? then
16: return ;
17: end if
18: tw F (ks, h(w))
19: if c 6= 0 then
20: kw st, st

$ � {0, 1}�
21: ⌃⌃⌃[w] (st, 0)
22: else
23: kw ?
24: end if
25: send (tw, kw, c) to Server

Server:
26: ID ;
27: ID.add(Tc[tw])
28: if kw =? then
29: return ID
30: end if
31: for i = 1 to c do
32: ui H1(kw||i)
33: (ind, op) Te[ui]�H2(kw||i)
34: if op = “del” then
35: ID ID� {ind}
36: else if op = “add” then
37: ID ID [{ind}
38: end if
39: delete Te[ui]
40: end for
41: Tc[tw] ID
42: send ID to client

Fig. 3: Pseudocode of Protocols in FASTIO

(a) |DB| = 14⇥ 106 (b) |DB| = 14⇥ 107 (c) |DB| = 14⇥ 108

Fig. 4: Search time per matched document for FAST, FASTIO and Sophos.

In practice, the document identifiers need to be long enough to be
unique and l is often large, e.g. 128. Then the server side index
size and read efficiency in FASTIO are only less than 1% worse
than optimal.

The locality can be improved because reading the previous
search query result can be done in one go. If there have been
c̄w new updates after the last search query, we need c̄w non-
contiguous reads (this part cannot be improved by caching pre-
vious result). Therefore the overall locality is c̄w + 1 (in contrast
to cw). As we have discussed in Section 3.5, locality and forward
privacy are two irreconcilable notions. The implication is that,
as Bost observed, the worst-case locality cannot be improved
unless large modifications is done to the encrypted database. If
the keyword is rarely searched, the optimization has little effect.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FAST and FASTIO,
and compare the results with Sophos, which is the most efficient
forward private searchable encryption to date.

6.1 Implementation and Experiment Settings

We implemented FAST and FASTIO using C++1. We use Cryp-
to++ library2 for the cryptographic operations: SHA256 for H1

and H2, and AES-128 for F and P . To make the comparison fair,
in our implementation, we use the same underlying libraries as in
the Sophos implementation: Rocksdb3 for storing key-value pairs
and gRPC4 for communication. We used the C++ implementation
of Sophos5 by the author in our comparison. The identifier length
is set to 64-bit in all schemes. The server is deployed on an Alibaba
Cloud ECS.i1.xlarge instance located in US West, which has 4
cores (Intel Xeon E5-2682v4, 2.5 GHz), 16GB RAM and 2⇥ 104
GB SSD disks. The client is deployed on a desktop PC located
in China, which has 4 cores (Intel Core i5-3470, 3.7Ghz), 4 GB
RAM and 500 GB hard disk.

1. https://github.com/BintaSong/DistSSE/tree/2.0
2. https://cryptopp.com
3. http://rocksdb.org
4. http://www.grpc.io
5. https://gitlab.com/sse/sophos

8

without caching results

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 23 / 25

Search time based on random traces

α = #search
#(search+update)

(a) ↵ = 0.0001, |DB| = 14⇥ 106 (b) ↵ = 0.001, |DB| = 14⇥ 106 (c) ↵ = 0.01, |DB| = 14⇥ 106

(d) ↵ = 0.0001, |DB| = 14⇥ 107 (e) ↵ = 0.001, |DB| = 14⇥ 107 (f) ↵ = 0.01, |DB| = 14⇥ 107

(g) ↵ = 0.0001, |DB| = 14⇥ 108 (h) ↵ = 0.001, |DB| = 14⇥ 108 (i) ↵ = 0.01, |DB| = 14⇥ 108

Fig. 5: Search efficiency by trace simulation.

(a) |DB| = 14⇥ 106 (b) |DB| = 14⇥ 107 (c) |DB| = 14⇥ 108

Fig. 6: Trace simulation for FASTIO. Search time is presented in log scale.

private searchable symmetric encryption schemes, both achieve
optimal computational and communicational complexity. As the

first attempt, FAST utilized a state based approach and is compu-
tation friendly for its symmetric construction. Based on the idea

10

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 24 / 25

Conclusion

Designing a searchable encryption scheme with forward
privacy and efficiency is not trivial.

Questions:

What are the theoretical bounds for I/O efficiency?
Is forward privacy enough?
What does an “optimal” scheme in terms of security and
efficiency look like?

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University 25 / 25

