Newcastle
+ University

Forward Private Searchable Symmetric
Encryption with Optimized 1/0 Efficiency

Changyu Dong
<changyu.dong@newcastle.ac.uk>

Joint work with Xiangfu Song,
Dandan Yuan, Qiuliang Xu,
Minghao Zhao

Motivation: Data Outsourcing

@ Explosive growth in enterprise data
o storage needs grow 52% per year [Forrester Research]
o escalating storage management costs: $9,555/TB/year
[Forrester Research]
@ Increased importance of data availability and business
continuity
e remote backup to prevent data loss in disasters like 9.11
@ Here they come to help youl!
e Amazon, Google, IBM, Microsoft, HP ...
o ...by providing cheap-as-chips data storage outsourcing
service.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

You Don't Trust Them, Do You?

@ You might save money, you might get better fault-tolerance,
you might even get better performance.

@ But how about data confidentiality and privacy? Do you really
want someone else to see and control all your sensitive data?

A True Story

In Oct 2003, a woman in Pakistan obtained sensitive patient
documents from the University of California, San Francisco,
Medical Centre through a medical transcription subcontractor that
she worked for, and she threatened to post the files on the Internet
unless she was paid more money.

“Your patient records are out in the open... so you
better track that person and make him pay my dues.”
— San Francisco Chronicle (October 22, 2003)

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How do we store sensitive data on an untrusted server?

Answer

Encrypt the data before sending it to the server
@ hides all information about data

@ the server performs only basic I/O functions and has no
knowledge of what is stored

But

@ users must download all data, decrypt and perform operations
locally

Can we let the server do more?

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Searchable Encryption

@ Typical scenario:
e User has a collection of data items that each associates with a
set of keywords, e.g. “new iPhone design”, "list of CIA agents”
e The data items and keywords are encrypted before sending to
the server
@ Functionality: the server should support the following type of
queries:
e "Find all data items that contain a given keyword"

o Confidentiality: Allow the server to help, but reveal as little
information as possible

@ First paper published in 2000, now 7,270 results in Google
scholar (Feb, 2019)

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Query Privacy

@ The server should not know the plaintext of keywords being
queried.

® Q)

Client adversary

keyword
v
L @
.
'

token

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

File Injection Attack

@ In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

tokens submitted

in previous queries

Client adversary

] 2] (23 B]

SSSS

Server

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

File Injection Attack

@ In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

tokens submitted
in previous queries

@

adversary

%

|

o5 @-Ei®
es

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

File Injection Attack

@ In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

tokens submitted
in previous queries

@®)

Client adversary

Bo
ElEEEE

RS

Server

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

File Injection Attack

@ In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

tokens submitted
in previous queries

@®)

Client adversary

] 2] (23 B]

SSSS

Server

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

File Injection Attack

@ In USENIX Security 2016, Zhang et.al. showed that query
privacy can be totally broken by a file injection attack.

®

adversary
tokens submitted
in previous queries

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Forward Privacy

@ Informally, the adversary should not be able to link newly
inserted file in anyway to previous search queries

o until the link being revealed in a future search query

@®

adversary
tokens submitted
in previous queries

&
%@
&

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Prior Work on Forward Private Searchable Encryption

@ Chang and Mitzenmacher 2005

e search query size grows linearly in the number of updates,
e communication cost for the search will eventually become
unacceptable.
@ Stefanov et al. 2014, Garg et al. 2016, Hoang et al. 2016
o use ORAM like structures

e communication cost is too high
e not practical

@ Sophos (Bost, CCS 2016)

o first practical scheme

e communication complexity is optimal v/

e search operation is public key based (slow) X

o slow 1/O due to access (read & write) to storage media is
random X

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

/O Efficiency

More to read

Random access

Slow Slow

X Less to read
sequential access

fast

fast

dong@newcastle.ac.uk Newecastle University

Our Contributions

e FAST (Forward privAte searchable Symmetric encrypTion):
Uses only symmetric key crypto

e FASTIO (FAST + 1/O Optimized): as the name suggests.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How Forward Privacy was Achieved in Sophos?

@ The client stores a state, and update it every time inserting a
new file.

@ When inserting a new file, the client also inserts an index
entry (to enable search)

o The state is used as an input to encrypt the index entry
The search token is essentially the latest state
The server can compute all previous states from the token

Each state matches the corresponding index entry.
The function to update the state is public key based:
e The server who has the public key can only go backward to the
previous states of the given one — but not to later states

e Only the client can evolve the state forward using the private
key.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How Forward Privacy was Achieved in Sophos?

tokens submitted
in previous queries

@ @ st1

adversary

@@
[©)]

Q
T
2

@ st2
@ st

@5

s

e 3-8

23
i

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How About Symmetric Key Crypto?

@ There is only one key, not two

@ So Bost's strategy cannot be migrated to symmetric key
crypto.

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How did we solve it?

Setup(A, L; L)
Client:
It kg & {0, 1}
2: ¥ « empty map
Server:
3: T < empty map

Client:

ty F(ks, h(w))

) « B[w]

¢) =L then

sto & {0,112, c 0
end if

ke & {0,110

Step1 4 Plketr, ste)

Update(k, 2, ind, w, op; T)

11: Blw] < (steyr.c+1)

12: e < (ind||op||kes1) ® Ha(ty||sterr) 23 fori=ctoldo

13: w4 Hy(tyl[ster)

14: send (u, e) to server
Server:

15: Tlu]l =e

Search(k,, 2, w; T)

Client:
16: tyy « F(ks, h(w))
17: (ste, ¢) « B[w]
18: if (st.,c) = L then
19: return ()
20: end if

21: send (%, st., c) to Server

Server:
22: ID,A « 0

24: w < Hy(ty[st;)

25 e« Tu]

26: (ind, op, k;) < e & Hy(t,||st;)
27: if op = “del” then

28: A AU {ind}

29: else if op = “add” then

30: if ind € A then

31 A~ A—ind
32: else

33 ID « ID U {ind}
34: end if

35: endif

36: stiog « P~ (ki, sti)
37: end for

38: send ID to client

Fig. 1: Pseudocode of Protocols in FAST

dong@newcastle.ac.uk

Newcastle University

Simplified Version

Warning: this is not an accurate description
When inserting the i-th file, we generate a fresh key k;.

@ The new state is the encryption of the previous state

st = Ek,-(Sti—l)-
The index entry contains the pointer along with the new key,
encrypted under the new state

o (pointer;||k;) @ H(st;) (slightly simplified version)
Given st;, the server can compute H(st;), then recover
pointer;||k;
With k;, the server can obtain the previous state
Sti_1 = Dkl.(St,')
With st;_1 the server can recover the state st;_» and
pointer;_1
Thus finds all files up to st;

e But no way to get stj

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

How did we solve it?

@ tokens submitted

in previous queries

@ st1
Bz’ st2

== ©

Server

adversary

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

|/O Efficiency

@ During search, the server needs to read the index from the disk

@ The index entries are placed at random locations in an index
file

@ The ciphertext (pointer;||k;) ® H(st;) is 100% larger than the
plaintext.

@ Both are bad for 1/0

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

FASTIO

send (u, €) to server

Setup(A, L; 1) 12: Server:
T Clent Server: 26: ID 0
- J(U e 13: Telu] = ¢ 27: ID.add(T,[t,,])
C o ’ 28: if k,, =L then
2 X 4 empty map w 29: return ID
Server: Client: 30: end if
3: Te, T¢ 4 empty map 14: (st,c) + B[w] 31: fori = 1tocdo
Update(ks, &, ind, w, op; Tc) 15: if (st,c) = L then 32w Hikolli))
N 16: return () 33 (ind,op) < Telu;] ® Ha(kyl|i)
Client: 17: end if 34: if op = “del” then
& (st) Zlu] 18: 1y F(ky, h(w)) 350 ID « ID — {ind}
5t if (Slr,g) = L then 19: if ¢ # 0 then 36: else if op = “add” then
6 ste {011 20 ky st,st & {0, 1P 37: ID < ID U {ind}
7 ¢ e 0) [w] (st,0) 38: end if
8: end if 2. else 39: delete T, [u;)
9: w4 Hi(st||(c+1)) 2 kg L 40: end for
10: e «— (ind||op) & Ha(st||(c + 1)) 24: end if 41: T,[t,] « ID
1: Sw] = (st,c+1) 25: send (fyy, ku, ©) to Server 42: send ID to client
Fig. 3: Pseudocode of Protocols in FASTIO

dong@newcastle.ac.uk

Newecastle University

High Level ldeas

@ The server caches the search results after each search
e This does not leak more information to the server
e The server already knows the results, and has the token that
can be used to re-generate it again

@ The client only updates the state when a search query is
performed
o Instead of every file update
The states are truly random and independent
o In between two search queries, sub-states are derived using a
counter
No need to store keys because there are no keys

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Consequences

@ Entries from previous search now can be accessed sequentially,
and only new entries after the last search still need random

access;
@ Small ciphertext expansion rate, less than 1%, ciphertext size
is pointer size + 1 bit.

changyu.dong@newcastle.ac.uk ngyu Dong, Newcastle University

Update Efficiency

FAST | FASTIO | Sophos
Throughput (ops/s) 54060 76100 4890
Single update time (ms) | 0.018 0.013 0.20
WAN Throughput (ops/s) 21650 31080 2990
Single update time (ms) | 0.046 0.032 0.334

Local

TABLE 1: Update efficiency for FAST, FASTIO and Sophos

@ WAN: server @ US west, client@ China

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

Search time per matched file

0.024]

0.024f 0240+

BN e e L S

0.020} -

°
2

0.016|

2

0.012] 0.012] -

Search time per matching entry(ms)
Search time per matching entry(ms)

Search time per matching entry(ms)

0.160}
0.008 000
0.120 i i R &
0.004 0.004} -
o 10 10 10000 100000 o. 10 1 1000 10000 100000 o. 10 100 1000 10000 100000
Number of matching documents(log scala) Number of matching documents(log scala) Number of matching documents(log scala)
(a) |DB| = 14 x 10° (b) [DB| = 14 x 107 (c) |DB| = 14 x 10®

Fig. 4: Search time per matched document for FAST, FASTIO and Sophos.

@ without caching results

dong@newcastle.ac.uk Newecastle University

Search time based on random traces

o =

##search

#(search-+update)

a0 .
70
z . Zoo Zoo .
%50 £ 5o %50 .
£ oo . 2 ao £ a0
Foo &0 : S
200 L 20
P 10
70000 40000 60000 0000 100000 20000 40000 60000 80000 100000 20000 40000 60000 80000 100000
‘Seauence number of queries Seauence number of quenes Sequence number o queries
() a = 0.0001,|DB| = 14 x 10° () a = 0.001,|DB| = 14 x 10° (¢)a = 0.01,[DB| = 14 x 10°
Seonos Sopros Seonos
B w1 1 5o I R
FasTIo 7oq]|- * eastio e 70|+ + rastio
2 oo Eeo / & L
% o 2 s s % s
£ 400) £ a0 S < a00)
HE H f‘ L HE
20 20 [N 20
10 10 10
§ NN e Sy
200585 e0om0—8oHo—TaB000 S g5 55 {bo000 ST BB To00

Search time(ms)

Sequence number of queries

(d) a = 0.0001, |DB| = 14 x 107

equence number of queries

(e) a = 0.001, |DB| = 14 x 107

Sequence number of queries

(f) @ = 0.01,|DB| = 14 x 107

30000 Sophos
FAST

FASTIO

Sophos|
4 & FAST
+ + FAS]

£

Search time(ms)

Sophos
A A FasT
+ + FASTIO

Y Yt
o000t 0005000 I
Sequence number of queries.

(g) @ = 0.0001, |DB| = 14 x 10®

0005 8380438505~ G0 — 000
‘Sequence number of queries

(h) a = 0.001, |DB| = 14 x 10°

o o
Sequence number of queries.

(i) a =0.01,|DB| = 14 x 10°

™

00

Conclusion

@ Designing a searchable encryption scheme with forward
privacy and efficiency is not trivial.
@ Questions:

o What are the theoretical bounds for 1/0O efficiency?

o Is forward privacy enough?

e What does an “optimal” scheme in terms of security and
efficiency look like?

changyu.dong@newcastle.ac.uk Changyu Dong, Newcastle University

